共查询到17条相似文献,搜索用时 0 毫秒
1.
Xiaoyu Liu Bing Zhu Wenji Zhou Shanying Hu Dingjiang Chen Charla Griffy-Brown 《International Journal of Greenhouse Gas Control》2011,5(5):1240-1249
China's calcium carbide output has dominated the global market for several years, driven by the demand for PVC (polyvinyl chloride), a fundamental polymer material and also the primary downstream product of calcium carbide in China. The fast growth of this energy-intensive industry leads to an inevitable increase in CO2 emissions. However, there is a large reduction potential with process improvement in this industry which is currently characterized by widespread outdated facilities. In this study, we attempt to assess the reduction potential of CO2 emissions in China's calcium carbide production, based on the analysis of CO2 emission patterns and estimation of the emission amount. Three scenarios regarding process improvement are employed to conduct this assessment. The results imply that the cumulative CO2 abatement in the Current Policy Scenario and in the Strengthened Policy Scenario from 2008 to 2020, compared with the Baseline Scenario, are 89.0 and 107.6 million t, respectively. The specific measures and policy implications to achieve this potential are also discussed in the article. 相似文献
2.
Milos Tichy 《Environmental management》1996,20(Z1):S47-S55
The models used to assess greenhouse gas mitigation options for the Czech Republic are discussed and compared with respect to their capabilities and ease of use. The input data and preliminary results are described. According to the projections, Czech CO2 emissions will not exceed their 1990 level until 2010. Assessment of several mitigation options shows that a 6% reduction in CO2 emissions can be achieved using cost-effective technologies. Key areas for mitigation measures are fuel switching from brown coal to natural gas through replacement of boilers, efficiency improvements in household heating, and use of compact fluorescent lamps. 相似文献
3.
采用显示性比较优势理论,对2005-2010年我国华北地区5个省市人均CO2净排放和单位GDP CO2净排放的显示性比较优势做了分析;同时采用变异系数差异分析,结合空间自相关分析方法,对其空间格局和演变规律做了深入研究.研究发现,华北地区5省市人均CO2净排放高于全国平均水平.北京、天津、河北、山西4个省市出现下滑势头,而内蒙古自治区呈现大幅上升势头.山西单位GDP CO2净排放在全国最高,天津和北京低于全国平均水平.华北地区人均CO2净排放和单位GDP CO2净排放比较优势空间分别呈现负相关和正相关特性. 相似文献
4.
Input-output modeling and multiplier analysis are used to assess Taiwan's five petrochemical industries, based upon their economic contribution and potential impacts on energy consumption and CO2 emission. In addition, a consolidated index system was developed for evaluating energy and economic efficiencies as well as targets for CO2 reduction. Results indicate that petrochemical materials (PM) make a major contribution to economic development, with lesser contributions from plastic materials (PL) and artificial fibres (AF). PM has the highest energy multiplier while PL has the largest induced potential for energy consumption. Plastic and rubber products (PP, RP) are relatively insignificant energy consumers. AF has the highest CO2 multiplier, and its induced potential for CO2 emission is the most significant. The consolidated index shows that the upstream petrochemical industries perform rather poorly in an integrated view of economic, energy, and CO2 emission, and should be seen as the primary targets for CO2 reduction. Investment of the petrochemical industries in Taiwan should be adjusted to improve energy efficiency, economic bases, and lower CO2 emissions. 相似文献
5.
James J. Dooley Robert T. Dahowski Casie L. Davidson 《International Journal of Greenhouse Gas Control》2009,3(6):720-730
Desires to enhance the energy security of the United States have spurred renewed interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3 MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000 and 7000 MtCO2, in addition to storing potentially 900–5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000–5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000–22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation's CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation. 相似文献
6.
This paper presents a system dynamics computer model to evaluate alternative type of recycling center under different policy and economy environments through comparison on the economic feasibility of recycling centers and ratio of savings to costs in C&D waste management. A case study for the City of Chongqing, China is selected. Simulated results show three key factors can contribute to the economic feasibility of recycling and the ratio of savings to costs in C&D waste management: (a) profit; (b) unit recycling cost; (c) extra revenue from location advantage (It was assumed that the mobile centers can attain extra revenue from the location advantage compared with fixed recycling centers). The sensitive analysis and comparison on ratios between public and private sector indicate that to achieve the optimum ratio of savings to costs, design of recycling centers and selection of governmental instruments are determined by the priority list: (1) low extra revenue from location advantage; (2) low profit; (3) low unit recycling cost. Meanwhile, the fluctuation of the three factors must be prior to achieve economic feasibility of corresponding recycling centers. 相似文献
7.
利用长沙市城区2011年及2012年连续自动监测获得的CO2数据,两年的平均值为412.2×10^-6,高于世界本底站青海瓦里关5.6%,与临安、无锡相当,略高于乌鲁木齐,而低于北京、上海。冬季CO2浓度日小时变化呈现双峰形态,峰值出现在上午9时及晚上19时~21时。夏季日小时变化为单峰形态,峰值出现在上午8时。冬季CO2浓度日均值为420.3×10^-6,比夏季高3.4%。CO2除与O3呈负相关以外,与其它污染物均呈现显著性正相关,特别是与CO、NO、NO2、NOx、SO2的相关性最强,而与颗粒物(PM10、PM25)的相关性稍差。 相似文献
8.
9.
《International Journal of Green Energy》2013,10(2):217-231
This article is concerned with control issues related to the design of a semi-closed O 2/CO 2 gas turbine cycle for CO 2 capture. Some control strategies and their interaction with the process design are discussed. One control structure is implemented on a dynamic simulation model using a predictive controller, and simulations assess the performance and compare its merits with a conventional PI structure. The results indicate that it can be advantageous for operability to allow a varying (as opposed to fixed) compressor inlet pressure, at the cost of a more expensive design. Furthermore, the results show that a predictive controller has some advantages with respect to the simpler conventional PI control structure, in particular in terms of constraint handling. 相似文献
10.
Daniela Sotirchos de Oliveira Ana Claudia Prinholato Suzana Maria Ratusznei Jos Alberto Domingues Rodrigues Marcelo Zaiat Eugênio Foresti 《Journal of environmental management》2009,90(10):3070-3081
The objective of this work was to study the technological feasibility of treating wastewater from a personal care industry (PCI-WW) in a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) containing immobilized biomass on polyurethane foam. An assessment was made on how system efficiency and stability would be affected by: increasing organic load; supplementation of nutrients and alkalinity; and different feed strategies. The AnSBBR operated with 8-h cycles, stirring speed of 400 rpm, temperature of 30 °C, and treated with 2.0 L wastewater per cycle. First the efficiency and stability of the AnSBBR were studied when submitted to an organic loading rate (OLR) of 3.1–9.4 gCOD/(L d), and when the PCI-WW was supplemented with nutrients (sucrose, urea, trace metals) and alkalinity. The AnSBBR was shown to be robust and presented stability and removal efficiency exceeding 90%. At an OLR of 12.0 gCOD/(L d) efficiency became difficult to maintain due to the presence of commercial cleansers and disinfectants in the wastewater lots. In a subsequent stage the AnSBBR treated the wastewater supplemented with alkalinity, but with no nutrients at varying feed strategies and maintaining an OLR of approximately 9.0 gCOD/(L d). The first strategy consists of feeding 2.0 L of the influent batchwise [OLR of 9.4 gCOD/(L d)]. In the second 1.0 L of influent was fed-batchwise and an additional 1.0 L was fed fed-batchwise [OLR of 9.2 gCOD/(L d)], i.e., in relation to the first strategy the feed volume was maintained but supplied in different periods. In the third strategy 1.0 L of treated effluent was maintained in the reactor and 1.0 L of influent was fed fed-batchwise [OLR of 9.0 gCOD/(L d)], i.e., in relation to the first strategy the feed volume was different but the feed period was the same and the OLR was maintained by increasing the influent concentration. Comparison of the first and second strategies revealed that organic matter removal efficiency was unaffected (exceeding 90%). The third strategy resulted in a reduction in average removal efficiency from 91 to 83% when compared to the first one. A kinetic study resulted in first order kinetic parameters ranges from 0.42 to 1.46 h−1 at OLRs from 3.1 to 12.0 gCOD/(L d), respectively, and the second feed strategy [OLR of 9.2 gCOD/(L d)] was shown to be the most favorable. 相似文献
11.
A GIS-based approach for the screening assessment of noise and vibration impacts from transit projects 总被引:2,自引:0,他引:2
Urban transportation projects are essential in increasing the efficiency of moving people and goods within a city, and between cities. Environmental impacts from such projects must be evaluated and mitigated, as applicable. Spatial modeling is a valuable tool for quantifying the potential level of environmental consequences within the context of an environmental impact assessment (EIA) study. This paper presents a GIS-based tool for the assessment of airborne-noise and ground-borne vibration from public transit systems, and its application to an actual project. The tool is based on the US Federal Transit Administration's (FTA) approach, and incorporates spatial information, satellite imaging, geostatistical modeling, and software programming. The tool is applied on a case study of initial environmental evaluation of a light rail transit project in an urban city in the Middle East, to evaluate alternative layouts. The tool readily allowed the alternative evaluation and the results were used as input to a multi-criteria analytic framework. 相似文献
12.
Recent measurements at different locations suggest that the emission of mercury from soils may play a more pronounced role in the global mercury cycle as suggested by global emission inventories and global mercury cycling models. For up scaling and modelling of mercury emissions from soils a comprehensive assessment of the processes controlling the emission of mercury from soils is imperative. We have developed a laboratory flux measurement system (LFMS) to study the effect of major environmental variables on the emission of mercury under controlled conditions. We have investigated the effects of turbulent mixing, soil temperature and solar radiation on the emission of mercury from soils. The emission of mercury from soils is constant over time under constant experimental conditions. The response of the mercury emission flux to variations of the atmospheric transfer parameters such as turbulence requires a rapid adjustment of the equilibrium that controls the Hg(o) concentration in the soil air. It has been shown that the light-induced flux is independent of the soil temperature and shows a strong spectral response to UV-B. 相似文献
13.
Abdul-Wahab SA 《Environmental management》2004,34(3):372-382
The CAL3QHC model was used to predict carbon monoxide (CO) concentrations from motor vehicles at an existing urban intersection (Star Cinema in Muscat area, Oman). The CO concentrations predicted from the model were compared with those measured in the field. Predicted average CO concentrations were found to compare favorably with measured values obtained at all eight receptors considered within the modeled intersection. In general, the comparison indicates good agreement with some underprediction for CO. For receptor 6, the model overpredicts the average CO concentration. This overprediction is associated with the presence of trees and green area in the location of receptor 6. In general, the measurements and the model results indicated that the highest CO concentrations were found to occur close to the intersection and, hence, a decrease in the concentration levels was seen as the distance from the road increased. The results indicated that the levels of CO were well below the ambient air quality standard and that probably no health risk was present in areas adjacent to the star cinema intersection. However, the predicted worst-case 1-h CO concentrations assuming inversion atmospheric stability conditions (class F) and wind speed of 1 m/s indicated that the levels of CO were close to or higher than the Omans National Ambient Air Quality Standards (NAAQS) value of 35 ppm at all receptors considered. The results of this study are useful in transport development and traffic management planning.Published online. 相似文献
14.
The membrane separation process for CO2 capture can be interfered by the gaseous components and the fine particles in flue gas, especially in desulfurized flue gas. In this work, the pint-sized Polyimide(PI) hollow fiber membrane contactors were self-packed to investigate the membrane CO2 separation from flue gas containing fine particles and gaseous contaminants (SO2,SO3,H2O). First, the effects of SO2, SO3, water vapor, and gypsum particles on the CO2 capture were studied independently and synergistically. The results showed that the effect of SO2 on the membrane separation properties is indistinctive; however, the membrane performance was damaged seriously with the addition of SO3. The high humidity promoted the CO2 separation initially before inhibiting the PI membrane performance. Moreover, the decrease of the CO2/N2 selectivity and the permeation rate were accelerated with the coexistence of SO2. The membrane performance showed an obvious deterioration in the presence of gypsum particles, with a 21% decrease in the CO2/N2 selectivity and 51% decrease in the permeation rate. Furthermore, the gypsum particles exerted dramatic damage. Under the WFGD conditions, the combined effects of SO2, water vapor, and the gypsum particles influenced the stability of the membrane significantly. This tendency is mainly attributed to the deposition of fine particles and aerosol on the membrane surface, which occupied the effective area and enhanced the mass transfer resistance. This study of impurities’ influence could play an important role in further industrial application of membrane CO2 capture. 相似文献
15.
CO2 transportation for carbon capture and storage: Sublimation of carbon dioxide from a dry ice bank
Alberto Mazzoldi Tim Hill Jeremy J. Colls 《International Journal of Greenhouse Gas Control》2008,2(2):210-218
Climate change is being caused by greenhouse gases such as carbon dioxide (CO2). Carbon capture and storage (CCS) is of interest to the scientific community as one way of achieving significant global reductions of atmospheric CO2 emissions in the medium term. CO2 would be captured from large stationary sources such as power plants and transported via pipelines under high pressure conditions to underground storage. If a downward leakage from a surface transportation system module occurs, the CO2 would undergo a large temperature reduction and form a bank of “dry ice” on the ground surface; the sublimation of the gas from this bank represents an area source term for subsequent atmospheric dispersion, with an emission rate dependent on the energy balance at the bank surface. Gaseous CO2 is denser than air and tends to remain close to the surface; it is an asphyxiant, a cerebral vasodilator and at high concentrations causes rapid circulatory insufficiency leading to coma and death. Hence a subliming bank of dry ice represents safety hazard. A model is presented for evaluating the energy balance and sublimation rate at the surface of a solid frozen CO2 bank under different environmental conditions. The results suggest that subliming gas behaves as a proper dense gas (i.e. it remains close to the ground surface) only for low ambient wind speeds. 相似文献
16.
Hilke Würdemann Fabian Mller Michael Kühn Wolfgang Heidug Niels Peter Christensen Günter Borm Frank R. Schilling the COSINK Group 《International Journal of Greenhouse Gas Control》2010,4(6):938-951
The CO2SINK pilot project at Ketzin is aimed at a better understanding of geological CO2 storage operation in a saline aquifer. The reservoir consists of fluvial deposits with average permeability ranging between 50 and 100 mDarcy. The main focus of CO2SINK is developing and testing of monitoring and verification technologies. All wells, one for injection and two for observation, are equipped with smart casings (sensors behind casing, facing the rocks) containing a Distributed Temperature Sensing (DTS) and electrodes for Electrical Resistivity Tomography (ERT). The in-hole Gas Membrane Sensors (GMS) observed the arrival of tracers and CO2 with high temporal resolution. Geophysical monitoring includes Moving Source Profiling (MSP), Vertical Seismic Profiling (VSP), crosshole, star and 4-D seismic experiments. Numerical models are benchmarked via the monitoring results indicating a sufficient match between observation and prediction, at least for the arrival of CO2 at the first observation well. Downhole samples of brine showed changes in the fluid composition and biocenosis. First monitoring results indicate anisotropic flow of CO2 coinciding with the “on-time” arrival of CO2 at observation well one (Ktzi 200) and the later arrival at observation well two (Ktzi 202). A risk assessment was performed prior to the start of injection. After one year of operations about 18,000 t of CO2 were injected safely. 相似文献
17.
A new surface molecular imprinting adsorbent (SMIA) was used in an expanded bed. The expansion ratio and adsorption performance were studied at different volumetric rates, inlet concentrations, and pH values. A model based on the Adams-Bohart adsorption model of breakthrough curves was established. The predicted curves had good agreement with the experimental curves. The breakthrough time (T(1/2)) decreased with increasing inlet concentration when the outlet concentration was half the initial concentration (C/C(0)=0.5). The inlet concentration had little effect on the adsorption rate constant (k(1)) value when the initial concentration (C(0)) was above 150 mg/L. However, T(1/2) values increased with increasing initial pH of the inlet solution, and the k(1) value decreased due to the competition between H(+) and Ni(2+). 相似文献