首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Water use for oil and gas development (i.e., hydraulic fracturing) is a concern in semiarid basins where water supply is often stressed to meet demands, and oil and gas production can exacerbate the situation. Understanding the impacts of water use for hydraulic fracturing (HF) on water availability in semiarid regions is critical for management and regulatory decisions. In the current work, we quantify water use for HF at several scales — from municipal to state‐wide — using the IHS Enerdeq database for the South Platte Basin. In addition, we estimate produced water (a by‐product of oil and gas production), using data from the Colorado Oil and Gas Conservation Commission to explore reuse scenarios. The South Platte River Basin, located in northeastern Colorado, encompasses the Denver‐Metro area. The basin has one of the most productive oil and gas shale formations in Colorado, with much of the production occurring in Weld County. The basin has experienced higher horizontal drilling rates coupled with an increasing population. Results show water use for horizontal and vertical wells averages 11,000 and 1,000 m3, respectively. Water use for HF in the South Platte Basin totaled 0.63% of the basin's 2014 total water demand. For Weld County, water use for HF was 2.4% of total demand, and for the city of Greeley, water use was 7% of total demand. Produced water totaled 9.4 Mm3 in the basin for 2014, which represents 42% of the total water used for HF.  相似文献   

2.
    
This article presents an empirically based model, WiCTS ( Wi thdrawal and C onsumption for T hermoelectric S ystems), to estimate regional water withdrawals and consumption implied by any electricity generation portfolio. WiTCS uses water use rates, developed at the substate level, to predict water use by scaling the rates with predicted energy generation. The capability of WiCTS is demonstrated by assessing the impact of renewable electricity generation scenarios on water use in the United States (U.S.) through 2050. The energy generation scenarios are taken from the Renewable Energy Futures Study performed by the U.S. National Renewable Energy Laboratory of the U.S. Department of Energy. Results indicate reductions in water use are achieved under these renewable energy scenarios. The analysis further explores the impact of two modifications to the modeling framework. The first modification presumes geothermal and concentrated solar power generation technologies employ water‐intensive cooling systems vs. cooling technology that requires no water. The second modification presumes all water‐intensive cooling technologies use closed cycle cooling (as opposed to once‐through cooling) technologies by 2050. Results based on one of the renewable generation scenarios indicate water use increases by over 20% under the first modification, and water consumption increases by approximately 40% while water withdrawals decrease by over 85% under the second modification.  相似文献   

3.
Chen, Limin, Sujoy B. Roy, and Robert A. Goldstein, 2012. Projected Freshwater Withdrawals Under Efficiency Scenarios for Electricity Generation and Municipal Use in the United States for 2030. Journal of the American Water Resources Association (JAWRA) 1‐16. DOI: 10.1111/jawr.12013 Abstract: Water withdrawals in the United States (U.S.) have been relatively uniform over the past two decades on a nationally aggregated basis, although on a more highly resolved geographical basis, increases have occurred, largely associated with growth in population and the cooling needs for new electricity generation. Using recent county‐level water use data, we develop projections for five different scenarios, bracketing a range of future conditions, and representing different levels of efficiency in the municipal and electricity generation sectors, where the municipal sector includes public and self‐supplied domestic withdrawals. Starting with the 2005 estimate of 347 billion gallons per day (bgd) of freshwater withdrawal in the continental U.S., our analysis shows that under a business‐as‐usual scenario of growth, there will be a need for additional water over current levels: 11 bgd in the municipal sector, with a smaller requirement for new electricity generation (1 bgd). However, we also estimate that withdrawals could be reduced significantly over current levels, through increased water use efficiencies in the electric power and municipal sectors. The study shows that if water withdrawals are to be held at their current levels for the thermoelectric and municipal sectors individually at a county level over the next 25 years, large improvements in efficiency will be needed in many parts of the Southeast and Southwest.  相似文献   

4.
Pereira Filho, Augusto J., Richard E. Carbone, John E. Janowiak, Phillip Arkin, Robert Joyce, Ricardo Hallak, and Camila G.M. Ramos, 2010. Satellite Rainfall Estimates Over South America – Possible Applicability to the Water Management of Large Watersheds. Journal of the American Water Resources Association (JAWRA) 46(2):344-360. DOI: 10.1111/j.1752-1688.2009.00406.x Abstract: This work analyzes high-resolution precipitation data from satellite-derived rainfall estimates over South America, especially over the Amazon Basin. The goal is to examine whether satellite-derived precipitation estimates can be used in hydrology and in the management of larger watersheds of South America. High spatial-temporal resolution precipitation estimates obtained with the CMORPH method serve this purpose while providing an additional hydrometeorological perspective on the convective regime over South America and its predictability. CMORPH rainfall estimates at 8-km spatial resolution for 2003 and 2004 were compared with available rain gauge measurements at daily, monthly, and yearly accumulation time scales. The results show the correlation between satellite-derived and gauge-measured precipitation increases with accumulation period from daily to monthly, especially during the rainy season. Time-longitude diagrams of CMORPH hourly rainfall show the genesis, strength, longevity, and phase speed of convective systems. Hourly rainfall analyses indicate that convection over the Amazon region is often more organized than previously thought, thus inferring that basin scale predictions of rainfall for hydrological and water management purposes have the potential to become more skillful. Flow estimates based on CMORPH and the rain gauge network are compared to long-term observed average flow. The results suggest this satellite-based rainfall estimation technique has considerable utility. Other statistics for monthly accumulations also suggest CMORPH can be an important source of rainfall information at smaller spatial scales where in situ observations are lacking.  相似文献   

5.
    
Historically, thermoelectric water withdrawal has been estimated by the Energy Information Administration (EIA) and the U.S. Geological Survey's (USGS) water‐use compilations. Recently, the USGS developed models for estimating withdrawal at thermoelectric plants to provide estimates independent from plant operator‐reported withdrawal data. This article compares three federal datasets of thermoelectric withdrawals for the United States in 2010: one based on the USGS water‐use compilation, another based on EIA data, and the third based on USGS model‐estimated data. The withdrawal data varied widely. Many plants had three different withdrawal values, and for approximately 54% of the plants the largest withdrawal value was twice the smallest, or larger. The causes of discrepancies among withdrawal estimates included definitional differences, definitional noise, and various nondefinitional causes. The uncertainty in national totals can be characterized by the range among the three datasets, from 5,640 m3/s (129 billion gallons per day [bgd]) to 6,954 m3/s (158 bgd), or by the aggregate difference between the smallest and largest values at each plant, from 4,014 m3/s (92 bgd) to 8,590 m3/s (196 bgd). When used to assess the accuracy of reported values, the USGS model estimates identify plants that need to be reviewed.  相似文献   

6.
ABSTRACT: A comprehensive nationwide recognizance-level assessment of water needs for energy development over the 1985 to 2000 time frame and options for overcoming any actual or potential water supply problems are summarized. Water requirements for energy production and other uses are totaled for each geographic region of the United States and compared with available stream flow to identify regions with potentially inadequate water supplies to meet expanding energy needs. Water quality impacts and water-related institutional factors affecting energy development are also considered. It is concluded that, if proper planning measures are not initiated, water demands for energy production will not be satisfied by the year 2000, particularly in those areas with known fossil energy resources. No unmanageable water quality problems are foreseen, and water-related institutional factors will primarily delay rather than exclud energy development.  相似文献   

7.
ABSTRACT: Water and energy are inextricably bound. Energy is consumed and sometimes produced by every form of water resources system. Opportunities for future development and production of energy resources abound as well as those for significant reductions in energy consumption through wise water development and management. Technological, political, social, economic and environmental factors interrelate in the energy-water mix. The role of the water resources planner will have to be expanded to include assessment of water-energy impacts in addition to traditional planning considerations. An energy conservation account may well have to be added to the dimensions of national economic development and environmental quality in water resources planning. Ways must be found to reduce amounts and rates of water used and energy consumed through new manufacturing processes, improved irrigation practices, better management, new or altered social-political-economic arrangements and other procedures. To do this will require setting priorities and making difficult management decisions. The water fraternity can play a major role in alleviating the energy crisis we now face.  相似文献   

8.
塔里木河流域水资源利用与生态农业发展   总被引:10,自引:0,他引:10  
从生态学角度分析塔里木河流域丰富的自然资源条件与恶劣的气候条件之间的突出矛盾,得出水资源的占有和利用是流域生态改善和农业发展之储多要素中最大限制因子的结论,从而决定了农业发展的根本出路是发展生态农业。必须根据生态脆弱指数采取有力措施保证生态用水;只有因地制宜地建立高效输水、灌溉节水、结构科学、布局合理、资源配置优化、整体功能强的高产优质高效的良性循环的农业生产模式,才能切实有地促进自然生态与生态农业的持续、协调发展。  相似文献   

9.
Water supply and wastewater services incur a large amount of energy and GHG emissions. It is therefore imperative to understand the link between water and energy as their availability and demand are closely interrelated. This paper presents a literature review and assessment of knowledge gaps related to water–energy–greenhouse gas (GHG) nexus studies in an urban context from an ‘energy for water’ perspective. The review comprehensively surveyed various studies undertaken in various regions of the world and focusing on individual or multiple subsystems of an urban water system. The paper also analyses the energy intensity of decentralized water systems and various water end-uses together with the major tools and models used. A major gap identified from this review is the lack of a holistic and systematic framework to capture the dynamics of multiple water–energy–GHG linkages in an integrated urban water system where centralized and decentralized water systems are combined to meet increased water demand. Other knowledge gaps identified are the absence of studies, peer reviewed papers, data and information on water–energy interactions while adopting a ‘fit for purpose water strategy’ for water supply. Finally, based on this review, we propose a water–energy nexus framework to investigate ‘fit-for-purpose’ water strategy.  相似文献   

10.
ABSTRACT Nebraska is well endowed with water, particularly groundwater, but has few fossil fuel reserves. However, it is located adjacent to states which have almost no water but have enormous quantities of coal and oil shale. Recent court cases facilitate the movement of water from water-rich states such as Nebraska to water-short states, such as Colorado and Wyoming. The possibility of an energy-water partnership exists and raise numerous policy questions. Within Nebraska, energy consumption patterns are similar to those of the nation's, with consumption of electricity in the agricultural sector growing fastest. Water consumption in the state is dominated by agriculture, and future development of groundwater for irrigation is expected to be intense. Although water and energy are both factors of economic production, an equivalent amount of water consumption provides more jobs in the energy industries than in agriculture. Water and energy are also interdependent. Each is required to produce the other and conservation of one will cause conservation of the other. If both agriculture and electricity are involved, such as in irrigation, the conservation effects are synergistic. Current water policy in Nebraska is biased toward agriculture relative to the energy industries and provides little incentive for water conservation. Given recent court cases and economic conditions, the advantages and disadvantages of the sale of water for export or the use of water with Wyoming coal for energy development need to be compared systematically with those of using water only for agriculture.  相似文献   

11.
ABSTRACT: Growers in California used several energy and water conservation strategies in response to the drought conditions of 1976 and 1977. The strategies included an increased use of ground water, in creased irrigation efficiencies, and shifts in cropping patterns. Drought-related losses to irrigated agriculture were minimized as a result of these modifications. Some future problems may have been created, however, by obtaining the needed water supplies for 1976–77. These problems include the effects of extensive water pumping on ground water reservoirs and ground subsidence. In addition, reduced water application by less frequent irrigation and changes in irrigation methods may affect the total salt balance for future years. Several conservation strategies that have some potential application in California were identified as: maintaining and augmenting surface water supply, increasing power use efficiencies, and improving irrigation efficiencies. Electricity savings associated with water conservation have been estimated as high as 25 percent. Specific near term actions suggested for facilitating conservation included: an expanded irrigation management system, efficient water deliveries, and a continued effort on the part of the individual growers to use resources during periods of normal rainfall as they were used under drought conditions.  相似文献   

12.
While collaborative governance has many benefits for environmental planning and management, those benefits are not politically feasible if they impact on process efficiency. This study assesses collaboration's effect on the duration of water permitting processes, specifically the United States’ Federal Energy Regulatory Commission's hydropower relicensing process. Collaboration was measured using a survey of participants in 24 recent hydropower relicensing processes. A Cox proportional hazards model with mixed effects assessed the relationship between collaboration, regulatory framework, hydropower facility characteristics, and relicensing process duration. Collaboration was not associated with time to license. Instead, process duration depended on the regulatory framework (especially the switch to the Integrated Licensing Process and presence of endangered species) and facility characteristics (generating capacity and facility type). The results suggest that agencies should consider engaging collaboratively during planning and permitting, given that collaboration's benefits to decision quality do not incur a cost on overall process time.  相似文献   

13.
We consider the implications of trends in the number of U.S. farmers and food imports on the question of what role U.S. farmers have in an increasingly global agrifood system. Our discussion stems from the argument some scholars have made that American consumers can import their food more cheaply from other countries than it can produce it. We consider the distinction between U.S. farmers and agriculture and the effect of the U.S. food footprint on developing nations to argue there might be an important role for U.S. farmers, even if it appears Americans don’t need them. For instance, we may need to protect U.S. farmland and, by implication, U.S. farmers, for future food security needs both domestic and international. We also explore the role of U.S. farmers by considering the question of whether food is a privilege or a right. Although Americans seem to accept that food is a privilege, many scholars and commentators argue that, at least on a global scale, food is a right, particularly for the world’s poor and hungry. If this is the case, then U.S. farmers might have a role in meeting the associated obligation to ensure that the poor of the world have enough food to eat. We look at the consequences of determining that food is a right versus a privilege and the implications of that decision for agricultural subsidies as well as U.S. agriculture and nutrition policies.  相似文献   

14.
    
ABSTRACT: This paper reports on the development of a mathematical model for forecasting energy development in the Yellowstone study area for the years 1985 and 2000, and determining the associated economic demands for water, land, labor, capital, and mineral resources. The study was prepared for use by the Missouri River Basin Commission in conducting a comprehensive, “Level B” planning study of the water and related land resources in the Yellowstone River Basin. The study results indicate that the amount of coal development in the Yellowstone study area will depend primarily upon state and federal energy policies and regulations. Policies related to slurry pipeline transportation of coal will be particularly important in determining the level and pattern of future energy development in the area. Coal production under the “most probable” scenario is expected to increase from about 40 million tons in 1976 to 163 million tons per year by 1985, and 513 million tons in the year 2000. Consumptive water use for energy development in the study area could be as much as 556,000 acre-feet per year by the year 2000 (under the high scenario). A parametric analysis was conducted on the 1985 most probably scenario to determine the influence on the study results of variations in the delivered price of water. Water requirements were reduced by nearly one-fourth as water costs increased from zero to over $750 per acre-foot.  相似文献   

15.
    
Aligning water supply with demand is a challenge, particularly in areas with large seasonal variation in precipitation and those dominated by winter precipitation. Climate change is expected to exacerbate this challenge, increasing the need for long-term planning. Long-term projections of water supply and demand that can aid planning are mostly published as agency reports, which are directly relevant to decision-making but less likely to inform future research. We present 20-year water supply and demand projections for the Columbia River, produced in partnership with the Washington State Dept. of Ecology. This effort includes integrated modeling of future surface water supply and agricultural demand by 2040 and analyses of future groundwater trends, residential demand, instream flow deficits, and curtailment. We found that shifting timing in water supply could leave many eastern Washington watersheds unable to meet late-season out-of-stream demands. Increasing agricultural or residential demands in watersheds could exacerbate these late-season vulnerabilities, and curtailments could become more common for rivers with federal or state instream flow rules. Groundwater trends are mostly declining, leaving watersheds more vulnerable to surface water supply or demand changes. Both our modeling framework and agency partnership can serve as an example for other long-term efforts that aim to provide insights for water management in a changing climate elsewhere around the world.  相似文献   

16.
    
Good information and data on water demands are needed to perform good analyses, yet collecting and compiling spatially and temporally consistent water demand data are challenges. The objective of our work was to understand the limitations associated with water‐use estimates and projections. We performed a comprehensive literature review of national and regional United States (U.S.) water‐use estimates and projections. We explored trends in past regional projections of freshwater withdrawals and compared these values to regional estimates of freshwater withdrawals made by the U.S. Geological Survey. Our results suggest a suite of limitations exist that have the potential for influencing analyses aiming to extract explanatory variables from the data or using the data to make projections and forecasts. As we explored regional projections, we paid special attention to the two largest water demand‐side sectors — thermoelectric energy and irrigation — and found thermoelectric projections are more spread out than irrigation projections. All data related to water use have limitations, and there is no alternative to making the best use that we can of the available data; our article provides a comprehensive review of these limitations so that water managers can be more informed.  相似文献   

17.
    
ABSTRACT: Water management agencies seek the next generation of modeling tools for planning and operating river basins. Previous site‐specific models such as U.S. Bureau of Reclamation's (USBR) Colorado River Simulation System and Tennessee Valley Authority's (TVA) Daily Scheduling Model have become obsolete; however, new models are difficult and expensive to develop and maintain. Previous generalized river basin modeling tools are limited in their ability to represent diverse physical system and operating policy details for a wide range of applications. RiverWare(tm), a new generalized river basin modeling tool, provides a construction kit for developing and running detailed, site‐specific models without the need to develop or maintain the supporting software within the water management agency. It includes an extensible library of modeling algorithms, several solvers, and a rich “language” for the expression of operating policy. Its point‐and‐click graphical interface facilitates model construction and execution, and communication of policies, assumptions and results to others. Applications developed and used by the TVA and the USBR demonstrate that a wide range of operational and planning problems on widely varying basins can be solved using this tool.  相似文献   

18.
    
ABSTRACT: In the Green Mountain state of Vermont, droughts of one form or another and of varying intensities, seventies, and areal extent are not uncommon occurrences. The 1990s were marked by at least three drought events of which the 1998 to 1999 was the most recent. In spite of this recurrence, ongoing drought monitoring and mitigative planning efforts are not as advanced as they could be and no official drought plan exists for the state. This article is the first of two in this volume. It summarizes the cascade of drought types that impacted the state during the 1998 to 1999 episode. From a number of precipitation statistics and drought indices, fine spatial scales (county or better) were found to best capture the character of drought impacts, while the weekly time step is recommended as the temporal unit around which to base planning and monitoring efforts. The companion article outlines a possible framework for drought planning efforts and highlights key constituencies to be included in the process.  相似文献   

19.
Carroll, Rosemary W.H., Greg Pohll, David McGraw, Chris Garner, Anna Knust, Doug Boyle, Tim Minor, Scott Bassett, and Karl Pohlmann, 2010. Mason Valley Groundwater Model: Linking Surface Water and Groundwater in the Walker River Basin, Nevada. Journal of the American Water Resources Association (JAWRA) 46(3):554-573. DOI: 10.1111/j.1752-1688.2010.00434.x Abstract: An integrated surface water and groundwater model of Mason Valley, Nevada is constructed to replicate the movement of water throughout the different components of the demand side of water resources in the Walker River system. The Mason Valley groundwater surface water model (MVGSM) couples the river/drain network with agricultural demand areas and the groundwater system using MODFLOW, MODFLOW’s streamflow routing package, as well as a surface water linking algorithm developed for the project. The MVGSM is capable of simulating complex feedback mechanisms between the groundwater and surface water system that is not dependent on linearity among the related variables. The spatial scale captures important hydrologic components while the monthly stress periods allow for seasonal evaluation. A simulation spanning an 11-year record shows the methodology is robust under diverse climatic conditions. The basin-wide modeling approach predicts a river system generally gaining during the summer irrigation period but losing during winter months and extended periods of drought. River losses to the groundwater system approach 25% of the river’s annual budget. Reducing diversions to hydrologic response units will increase river flows exiting the model domain, but also has the potential to increase losses from the river to groundwater storage.  相似文献   

20.
    
ABSTRACT: This paper brings together spatially and temporally explicit mechanistic models of hydrodynamic, water quality, and ecological processes with an economic model to examine water management alternatives for California's Sacramento River and Delta ecosystem, a large‐scale watershed. Overallocated water supplies in most years, combined with increasing demand for water for environmental purposes, have created a politically charged atmosphere and a need for quantitative assessment of the implications of policy alternatives. By developing and analyzing a common set of policy scenarios, this integrated framework allows us to consider tradeoffs between agricultural economic factors, water quality, and population dynamics for two at‐risk fish species. We analyze two rather extreme types of policy options; one involves structural modifications to change the flow of water within the watershed but no change in water diversions, while the other reallocates water from agricultural users to fish and wildlife. Results suggest that substantial environmental improvements could be made at a relatively modest cost to farmers (1 to 4 percent reductions in revenues) but that those costs could be significant locally. In addition to tradeoffs between farmers and environmental interests, results suggest that policy makers may need to balance competing environmental objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号