首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee C  Yoon J 《Chemosphere》2004,56(10):923-934
The thermal enhancement of the formation of *OH by the hv/Fe(III)/H2O2 system (including the Fe(III)/H2O2 system) was quantitatively investigated with reaction temperatures ranging from 25 to 50 degrees C. A temperature dependent kinetic model for the hv/Fe(III)/H2O2 system, incorporating 12 major reactions with no fitted rate constants or activation energies, was developed, and successfully explained the experimental measurements. Particularly, the thermal enhancement of Fe(OH)2+ photolysis which is the most significant step in the hv/Fe(III)/H2O2 system was effectively explained by two factors; (1) the variation of the Fe(OH)2+ concentration with temperature, and (2) the temperature dependence of the quantum yield for Fe(OH)2+ photolysis (measured activation energy=11.4 kJ mol(-1)). Although in both the hv/Fe(III)/H2O2 and Fe(III)/H2O2 systems, elevated temperatures enhanced the formation of *OH, the thermal enhancement was much higher in the dark Fe(III)/H2O2 system than the hv/Fe(III)/H2O2 system. Furthermore, it was found that the relative thermal enhancement of the formation of *OH in the presence of *OH scavengers (tert-butyl alcohol) was magnified in the Fe(III)/H2O2 system but was not in the hv/Fe(III)/H2O2 system.  相似文献   

2.
Liao CH  Kang SF  Wu FA 《Chemosphere》2001,44(5):1193-1200
Simultaneous effect of inorganic anions, such as chloride and bicarbonate ions, on the scavenging of hydroxyl radicals (HO*) in the H2O2/UV process is the focus of this paper. The model compound of n-chlorobutane (BuCl) was used as the probe of HO*. By changing the pH conditions (2-9) and the concentrations of NaCl (0.25-2500 mM) and NaHCO3 (25 mM), the variation of HO* concentrations and the rate of H2O2 decomposition were compared. In general, the BuCl and H2O2 follow closely the first-order reaction within the first 10 and 40 min, respectively. In the presence of chloride alone at the pH range of 2-6, the HO* concentration in the reaction mixture increases with the increase of pH, and the HO* concentration at pH = 6 is 100 times of that at pH = 2. Including bicarbonate species in the solution, the peak HO* concentration was found at a certain pH, which shifts from 4, 5, to 5-7, as the molar ratios of chloride/bicarbonate species increase from 1 to 100. In addition, without bicarbonate species HO* concentration decreases significantly with increasing chloride concentration but remained rather unchanged beyond 1250 mM. In contrast, the HO* scavenging in the presence of bicarbonate species became relatively significant only when the chloride concentration reached beyond 250 mM. Throughout all experiments of different water quality conditions, the H2O2 decomposition rate remains rather unchanged.  相似文献   

3.
Semi-continuous measurements of atmospheric molecular hydrogen (H2) and carbon monoxide (CO) were performed at a suburban sampling site in Switzerland from November 2002 to February 2005. The presented data provide information about time series, seasonal and diurnal cycles as well as sources and sinks in a suburban environment. Such records become increasingly important for the assessment of the effects of a possible future hydrogen economy on the environment. No significant trend of background H2 concentrations could be observed for the considered period. Seasonal cycles show the expected pattern with maxima in winter and minima in summer and autumn. When extracting the background H2 mixing ratios, the absolute levels as well as the seasonal amplitude agree well with literature data from semi-rural and remote sites. The H2 dry deposition velocity for summer days with low winds is estimated to be between 0.5×10-4 to 1×10-4ms-1. Diurnal cycles are dominated by H2 emissions from nearby traffic. The influence of traffic-related emissions is also corroborated by a high H2 to CO correlation. Typical molar H2 to CO ratios from traffic were found to be 0.33 on a molar basis (ppb/ppb). A reduction of 37–62% in European anthropogenic H2 emissions is estimated for a period covering the last 25 years. Since the ambient H2 concentration did not decline during the same period, other simultaneous changes of sinks or sources of H2 must have compensated this reduction.  相似文献   

4.
At a mononitrotoluene-contaminated waste disposal site, the groundwater was screened for polar transformation products of mononitrotoluenes, by means of HPLC-MS, HPLC-NMR and further off-line NMR and MS techniques. Besides expected metabolites such as aminotoluenes (ATs) and nitrobenzoic acids (NBAs), three unknowns (di- and tetrahydro-derivatives of (2-oxo-quinolin-3-yl) acetic acid) could be identified which, in the context of explosives and related compounds, are new metabolites. Evidence could be provided by microcosm experiments with 2-nitrotoluene (2-NT) that these metabolites are microbial transformation products of 2-NT under anaerobic conditions. The NMR and MS data are presented and the possible pathway for the formation of these metabolites after addition of 2-NT to fumarate is discussed.  相似文献   

5.
Mu Y  Yu HQ  Wang Y 《Chemosphere》2006,64(3):350-358
The role of pH in the fermentative H(2) production from an upflow acidogenic granule-based reactor was investigated in this study. Experimental results show that all H(2) partial pressure, H(2) production rate and H(2) yield were pH-dependent, in the range of 2.8 x 10(4)-5.2 x 10(4)Pa, 61-145 ml-H(2)l(-1)h(-1) and 0.68-1.61 mol-H(2)mol-glucose(-1), respectively. The maximum H(2) partial pressure was observed at pH 3.4, while both maximum H(2) production rate and H(2) yield were found at pH 4.2. Acetate, propionate, butyrate, i-butyrate, valerate, caporate and ethanol were present in the effluent of this UASB reactor, and their distribution was also pH-dependent. As pH was decreased from 4.2 to a lower level of 3.4 or increased to a higher level of 6.3, the fermentative type of this H(2)-producing reactor would shift from butyrate-type to caporate- or ethanol-type. Thermodynamic analysis was performed to explore the possible metabolic pathways of caproate and valerate formation. The metabolic pathway of caproate formation was pH-dependent, while that of valerate formation was pH-independent. A neural network model was designed, trained and validated. It was able to successfully describe the daily variations of H(2) partial pressure and H(2) yield of the reactor, and to predict its steady state performance at various pHs.  相似文献   

6.
A commercially available enzyme-linked immunosorbent assay (ELISA) kit was evaluated for the determination of toxic equivalents (TEQs) of dioxin-like polychlorinated biphenyls (PCBs) in retail fish. The ELISA was highly specific for 2,3',4,4',5-pentachlorobiphenyl (PCB 118), which is generally the most abundant dioxin-like PCB isomer found in fish. The quantitative limit of the ELISA (using 3,3',4'-trichloro-4-methoxybiphenyl as a surrogate standard for PCB 118) was 10 ng ml(-1) (125 pg assay(-1)) in the standard curve, corresponding to 50 pg PCB 118 g(-1) in the tested sample. Good recoveries of PCB 118 (78.7-112.3%) were obtained for spiked purified fish extracts according to the ELISA. Good linearity was also obtained in dilution tests using purified fish extracts. No significant interference of the matrix was observed in the ELISA when this purification procedure was used. Recovery tests in which PCB 118 was added to fish samples also resulted in acceptable recoveries (60.2-82.3%) in the ELISA following purification. The ELISA results for fish samples correlated well with the TEQ concentrations of dioxin-like PCBs obtained by high-resolution gas chromatography/high-resolution mass spectrometry (r = 0.92, n = 26). These data indicate that the ELISA kit is suitable for screening retail fish for the TEQs of dioxin-like PCBs.  相似文献   

7.
In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H2O2 residual in the effluent of the combined UV-C/H2O2-VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOCo) and hydrogen peroxide (H2O2o) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H2O2 residual of 1.05% were TOCo of 213 mg L?1, H2O2o of 450 mg L?1, and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H2O2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H2O2, and UV-C/H2O2, were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H2O2-VUV processes. Results confirmed that an adequate combination of the UV-C/H2O2-VUV processes is essential for an optimized TOC removal and H2O2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H2O2-VUV processes.  相似文献   

8.
A series of atmospheric lead concentration measurements in the Oviedo urban area have been carried out. A linear correlation between lead and large positive ion concentrations has been obtained (r2 = 0.88). From this correlation and by use of a box diffusion model, the lead source strength has been calculated. As an application, measurements of large positive ion concentrations can provide an easy method for lead monitoring in an urban site.  相似文献   

9.
Atmospheric chemistry directly above snowpacks is strongly influenced by ultraviolet (UV) radiation initiated emissions of chemicals from the snowpack. The emission of gases from the snowpack to the atmosphere is in part due to chemical reactions between hydroxyl radical, OH (produced from photolysis of hydrogen peroxide (H2O2) or nitrate (NO3)) and impurities in the snowpack. The work presented here is a radiative-transfer modelling study to calculate the depth-integrated production rates of hydroxyl radical from the photolysis of hydrogen peroxide and nitrate anion in snow for four different snowpacks and for solar zenith angles 30°–90°. This work also demonstrates the importance of hydrogen peroxide photolysis to produce hydroxyl radical relative to nitrate photolysis with (a) different snowpacks, (b) different ozone column depths, and (c) snowpack depths. The importance of hydrogen peroxide photolysis over nitrate photolysis for hydroxyl radical production increases with increasing depth in snowpack, column ozone depth, and solar zenith angle. With a solar zenith angle of 60° the production of hydroxyl radical from hydrogen peroxide photolysis accounts for 91–99% of all hydroxyl radical production from hydrogen peroxide and nitrate photolysis.  相似文献   

10.
11.
This study compared the variations in the mass of certain particles at an urban site, Washington, DC, and at a remote site, Shenandoah National Park, VA, in the eastern United States. Seven years (1991-1997) of Interagency Monitoring of Protected Visual Environments (IMPROVE) fine particulate matter (PM2.5), PM10, coarse fraction, SO4(2-), and total sulfur data were used for this study together with available meteorology/climatology data. Various statistical modeling and analysis procedures, including time series analysis, factor analysis, and regression modeling, were employed. Time series of the constituents were divided into four terms: the long-term mean, the intraannual perturbation, the interannual perturbation, and the synoptic perturbation. PM2.5 at the two sites made up approximately 72% of the total mass for PM10, and the coarse fraction made up the remaining 28%, on average. Thirty-one percent of the PM2.5 at the DC site and 42% at the Shenandoah site was SO4(2-), based on average data for the entire period. At the DC site, the two main contributors to the constituent mass were the long-term mean and the synoptic perturbation terms, and at the Shenandoah site, they were the long-term mean and the intra-annual perturbation terms. This suggested that the constituent mass at the two sites was affected by very different processes. The terms that provided the principal contribution to the constituent mass at the two sites were studied in detail. At the DC site, dew point trends, a climate variable, were the primary driver of the 7-year trends for PM2.5, PM10, the coarse fraction, and total sulfur, and SO2 emission trends were the primary driver of the trends for SO4(2-). SO2 emission trends influenced the trends for PM2.5 and total sulfur, appearing as the second term in the model, but only parameters dealing with climate trends had significant effects on the trends for PM10 and the coarse fraction. At the Shenandoah site, only parameters dealing with climate trends affected long-term particle trends.  相似文献   

12.
Its is well known that in the biodesulfurization (BDS) process the low water solubility of sulfur compounds hinders its transference from the oil phase to the cells being the rate-limiting step in the metabolism of dibenzothiophenes (DBT). Thus sulfur compounds derivatives with high water solubility could be more easily transported increasing the BDS efficiency. The present work performed a stepwise evaluation of the enzymatic oxidation of DBT by horseradish peroxidase (HRP). Reactions were carried out in monophasic organic media containing 25% (v/v) acetonitrile. The following parameters were evaluated: DBT:H2O2 molar ratio (1:1-1:20); H2O2 addition mode (single or stepwise); pH (6.0-8.0) and temperature (37-50 degrees C). Best results were observed in a reaction medium at pH 8.0 presenting HRP 0.06IUml(-1), DBT 0.267mM, DBT:H2O2 molar ratio of 1:20 (stepwise hydrogen peroxide addition) and incubated at 45 degrees C for 60min. Under these conditions 60% of DBT was converted into dibenzothiophene sulfoxide (12%) and dibenzothiophene sulfone (46%). The DBT oxidation rate observed in this work, of 5mmolmin(-1)g(-1) of HRP, was 250-fold higher than the BDS rate, 20mumolmin(-1)g(-1) of catalyst. As such a combined enzyme-microbial desulfurization process could be envisaged. Products were determined by HPLC RP C-18.  相似文献   

13.
In this study, we present ∼1 yr (October 1998–September 1999) of 12-hour mean ammonia (NH3), ammonium (NH4+), hydrochloric acid (HCl), chloride (Cl), nitrate (NO3), nitric acid (HNO3), nitrous acid (HONO), sulfate (SO42−), and sulfur dioxide (SO2) concentrations measured at an agricultural site in North Carolina's Coastal Plain region. Mean gas concentrations were 0.46, 1.21, 0.54, 5.55, and 4.15 μg m−3 for HCl, HNO3, HONO, NH3, and SO2, respectively. Mean aerosol concentrations were 1.44, 1.23, 0.08, and 3.37 μg m−3 for NH4+, NO3, Cl, and SO42−, respectively. Ammonia, NH4+, HNO3, and SO42− exhibit higher concentrations during the summer, while higher SO2 concentrations occur during winter. A meteorology-based multivariate regression model using temperature, wind speed, and wind direction explains 76% of the variation in 12-hour mean NH3 concentrations (n=601). Ammonia concentration increases exponentially with temperature, which explains the majority of variation (54%) in 12-hour mean NH3 concentrations. Dependence of NH3 concentration on wind direction suggests a local source influence. Ammonia accounts for >70% of NHx (NHx=NH3+NH4+) during all seasons. Ammonium nitrate and sulfate aerosol formation does not appear to be NH3 limited. Sulfate is primarily associated ammonium sulfate, rather than bisulfate, except during the winter when the ratio of NO3–NH4+ is ∼0.66. The annual average NO3–NH4+ ratio is ∼0.25.  相似文献   

14.
Liao CH  Lu MC  Su SH 《Chemosphere》2001,44(5):913-919
The purpose of this study is to reveal the role of cupric ions as a natural water contaminant in the H2O2/UV oxidation of humic acids. Humic acids are naturally occurring organic matter and exhibit a strong tendency of complexation with some transition metal ions. Chlorination of humic acids causes potential health hazards due to formation of trihalomethane (THM). The removal of THM precursors has become an issue of public concern. The H2O2/UV process is capable of mineralizing humic acids due to formation of a strong oxidant, hydroxyl radicals, in reaction solution. Experiments were conducted in a re-circulated photoreactor. Different cupric concentrations (0-3.8 mg/l) and different pH values (4-9) were controlled to determine their effects on the degradation of humic acids, UV light absorbance at 254 nm, and H2O2. The presence of cupric ions inhibits humic mineralization and decreases the rate of destruction of humic acids which absorb UV light at 254 nm. On the other hand, the higher the cupric concentration, the lower the H2O2 decomposition rate. In the studied pH range, the minimum of total organic carbon (TOC) removal occurs at pH = 6 in the presence of 2.6 mg/l of cupric ions; both acidification (pH = 4) and alkaline condition (pH = 9) lead to a better removal of TOC. It is inferred from this study that the cupric-complexed form of humic acids is more refractory than the non-complexed one.  相似文献   

15.
Song R  He Y  Murphy MB  Yeung LW  Yu RM  Lam MH  Lam PK  Hecker M  Giesy JP  Wu RS  Zhang W  Sheng G  Fu J 《Chemosphere》2008,71(10):1888-1894
Polybrominated diphenyl ethers (PBDEs) and tetrabromobisphenol A (TBBPA) are brominated flame retardants that are produced in large quantities and are commonly used in construction materials, textiles, and as polymers in electronic equipment. Environmental and human levels of PBDEs have been increasing in the past 30 years, but the toxicity of PBDEs is not fully understood. Studies on their effects are relatively limited, and show that PBDEs are neurotoxins and potential endocrine disrupters. Hydroxylated (OH) and methoxylated (MeO) PBDEs have also been reported in the adipose tissue, blood and milk of wild animals and humans. In the present study, 15 PBDE metabolites, two BDE mixtures (DE71 and DE79), and TBBPA were studied individually to determine their effects on ten steroidogenic genes, aromatase activity, and concentrations of two steroid hormones (testosterone and 17beta-estradiol) in the H295R human adrenocortical carcinoma cell line. Exposure to 0.05 microM 2'-OH-BDE-68 significantly induced the expression of CYP11A, CYP11B2, CYP17, CYP21, 3betaHSD2, 17betaHSD1, and 17betaHSD4, and the expression of StAR was induced by 6-OH-BDE-90 at the three exposure concentrations. Exposure to DE71 and DE79 resulted in dose-dependent trend towards induction, but these effects were not significant. Exposure to 0.5 microM 2-OH-BDE-123 and 2-MeO-BDE-123 resulted in significantly greater aromatase activity. However, none of the compounds affected sex hormone production at the concentrations tested. Generally, OH-BDEs had a much stronger ability to affect steroidogenic gene expression than MeO-BDEs.  相似文献   

16.
The wind flow field around urban street-building configurations has an important influence on the microscale pollutant dispersion from road traffic, affecting overall dilution and creating localised spatial variations of pollutant concentration. As a result, the “representativeness” of air quality measurements made at different urban monitoring sites can be strongly dependent on the interaction of the local wind flow field with the street-building geometry surrounding the monitor. The present study is an initial attempt to develop a method for appraising the significance of air quality measurements from urban monitoring sites, using a general application computational fluid dynamics (CFD) code to simulate small-scale flow and dispersion patterns around real urban building configurations. The main focus of the work was to evaluate routine CO monitoring data collected by Westminster City Council at an intersection of street canyons at Marylebone Road, Central London. Many monitors in the UK are purposely situated at urban canyon intersections, which are thought to be local “hot spots” of pollutant emissions, however very limited information exists in the literature on the flow and dispersion patterns associated with them. With the use of simple CFD simulations and the analysis of available monitoring data, it was possible to gain insights into the effect of wind direction on the small-scale dispersion patterns at the chosen intersection, and how that can influence the data captured by a monitor. It was found that a change in wind direction could result in an increase or decrease of monitored CO concentration of up to 80%, for a given level of traffic emissions and meteorological conditions. Understanding and de-coupling the local effect of wind direction from monitoring data using the methods presented in this work could prove a useful new tool for urban monitoring data interpretation.  相似文献   

17.
As part of a program aimed at developing a field process for cleanup of PCB contaminated soils using photochemistry in basic 2-propanol, additional details of the dechlorination pathway are presented. The mechanism involves a chain reaction with both homolytic photochemical C-Cl bond fission and electron transfer steps producing PCB anion radicals. Kinetics of dechlorination of various congeners show patterns of relative rates associated with the basic 2-propanol medium that are not found in other media because both electron transfer and photochemical homolysis steps determine overall rates of dechlorination and govern the pathways and relative concentrations of intermediates. The electron transfer steps display opposite structure-reactivity correlations to the photo-homolysis, C-Cl bond fission steps. Oxygen quenching is shown to differentially affect both types of steps. In contrast to the suggestion that inter system crossing can be highly efficient with reaction originating from a PCB triplet, oxygen quenching data suggest that a significant minimum of the quantum yield is non-quenchable, presumably because of a reaction path from the PCB singlet. This may help to explain why exclusion of air is not entirely necessary in practice.  相似文献   

18.
Environmental Science and Pollution Research - Production of the greenhouse gas nitrous oxide (N2O) from the completely autotrophic nitrogen removal over nitrite (CANON) process is of growing...  相似文献   

19.
In this paper we evaluated the H2O2/UV and the Fenton's oxidation processes for the treatment of tannery wastewater under different experimental conditions. Efficiencies were judged by the amounts of organic substances degraded or eliminated under these treatment techniques. Daphnia magna and Vibrio fischeri were used to monitor toxicity. Organic compounds contained in the untreated and treated tannery wastewater were determined and identified using substance specific techniques. Gas chromatography-mass spectrometry (GC-MS) in positive electron impact (EI(+)) mode was applied to determine volatile organics. Atmospheric pressure ionization (API) mass (MS) and tandem mass spectrometry (MS-MS) coupled with flow injection analysis (FIA) or liquid chromatography (LC) were used to detect or identify polar organic pollutants. The experimental results indicated that both oxidation processes--H2O2/UV at pH 3 and Fenton at pH 3.5--are able to reduce TOC content by mineralisation of the organic compounds.  相似文献   

20.
A 60-m flux tower was built on a 2100 m mountain for the measurement of the air pollutant concentration and the evaluation of dry deposition velocity in Central Taiwan. The tower was constructed in an evergreen broadleaf forest, which is the dominant species of forest in the world. Multiple-level SO2 concentrations and meteorological variables at the site were measured from February to April 2008. The results showed that the mean dry deposition velocities of SO2 were 0.61 cm s?1 during daytime and 0.27 cm s?1 during nighttime. From the comparison of the monthly data, a tendency was observed that the dry deposition velocity increases with LAI and solar radiation. Furthermore, it was observed that the deposition velocity was larger over wet canopy than over dry canopy, and that higher deposition velocities in the wet season were mainly caused by non-stomatal uptake of wet canopy. Over wet canopy, the mean dry deposition velocities of SO2 were estimated to be 0.83 cm s?1 during daytime and 0.47 cm s?1 during nighttime; and 0.44 cm s?1 during daytime and 0.19 cm s?1 during nighttime over dry canopy. There is good agreement between the results of this study and those in other studies and the predictions of Zhang et al. (2003a). The medians (geometric means) of derived rc during daytime are 233 (266) m s?1 over dry canopy and 147 (146) m s?1 over wet canopy. It was found that solar radiation is the critical important meteorological variable determining stomatal resistance during daytime. For non-stomatal resistance, clear dependencies were observed on the friction velocity and relative humidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号