首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrient sufficiency of zooxanthellae in the sea anemone Aiptasia pallida cultured in low nutrient seawater depends on the availability of particulate food to the host. Zooxanthellae in anemones unfed for 20 to 30 d exhibited the following characteristics of nutrient deficiency: cell division rates decreased; chlorophyll a content gradually decreased from 2 to <1 pg cell–1; and C:N ratios increased from 7.5 to 16. Over a 3-mo period, algal populations in unfed anemones gradually decreased, indicating that zooxanthellae were lost faster than they were replaced by division. The mitotic index of zooxanthellae in unfed anemones was stimulated either by feeding the host or by the addition of inorganic N and P to the medium. Whether algae are nutrient-limited in hosts under field conditions has not been examined fully; however, C:N ratios in zooxanthellae from field-collected hosts are slightly higher (9.4 vs 7.5) than in hosts fed to repletion in laboratory cultures. This observation might indicate N limitation in the field.  相似文献   

2.
3.
Harland  A. D.  Davies  P. S. 《Marine Biology》1995,123(4):715-722
Dark respiration of the symbiotic sea anemone Anemonia viridis (Forskäl) was observed to increase by 34% when anemones were exposed to hyperoxic sea water (150% oxygen saturation) overnight, and by 39% after exposure to 6 h in the light at a saturating irradiance of 300 E m-2 s-1 at normoxia (100% oxygen saturation). No increase due to light stimulation was observed in aposymbiotic control anemones. In darkness, the oxygen concentration of the coelenteric fluid was hypoxic. However, within 10 min of anemones being illuminated, coelenteric fluid was hyperoxic, and it remained elevated throughout a 12 h light period. When measured over a 24 h period (12 h light: 12 h dark), the dark respiration rate increased gradually over the first 6 h of the light period until it was 35% above the dark night-time resting rate. It remained elevated throughout the remaining light period and for 2 h into the following dark period, after which it fell back to the resting rate. Gross photosynthesis (P gross) increased significantly when anemones were exposed to either hyperoxia (150% oxygen saturation) or 300 E m-2 s-1 at normoxia. This increase was not observed when symbiotic anemones were illuminated at a low-light intensity of 100 E m-2 s-1. The results of this study suggest that respiration in the dark is limited by oxygen diffusion and that normal respiration is restored in the daytime by utilisation of the oxygen released by photosynthesis. Furthermore, it appears that the increased respiration following exposure to high-light intensities provides a CO2-rich intracellular environment which further enhances the photosynthetic rate of the zooxanthellae.  相似文献   

4.
Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella   总被引:3,自引:0,他引:3  
Symbiotic Aiptasia pulchella and freshly isolated zooxanthellae were incubated in NaH14CO3 and NH4Cl for 1 to 240 min, and samples were analysed by reverse-phase high-performance liquid chromatography (HPLC) and an online radiochemical detector. NH4 + was first assimilated into 14C-glutamate and 14C-glutamine in the zooxanthellae residing in A. pulchella. The specific activities (dpm nmol−1) of 14C-glutamate and 14C-glutamine in vivo, were far greater in the zooxanthellae than in the host tissue, indicating that NH4 + was principally incorporated into the glutamate and glutamine pools of the zooxanthellae. 14C-α-ketoglutarate was taken up from the medium by intact A. pulchella and assimilated into a small amount of 14C-glutamate in the host tissue, but no 14C-glutamine was detected in the host fraction. The 14C-glutamate that was synthesized was most likely produced from transamination reactions as opposed to the direct assimilation of NH4 +. The free amino acid composition of the host tissue and zooxanthellae of A. pulchella was also measured. The results presented here demonstrate that NH4 + was initially assimilated by the zooxanthellae of A. pulchella. Received: 3 February 1997 / Accepted: 24 October 1997  相似文献   

5.
Sea anemones (Aiptasia pulchella) containing zooxanthellae (Symbiodinium microadriaticum) were maintained in a long-term laboratory culture on a 12 h light (100 E m-2 s-1):12 h dark cycle. Photosynthetic oxygen production was measured for the symbiotic association and for freshlyisolated zooxanthellae. Light utilization efficiencies () were similar for both sets of zooxanthellae, suggesting negligible shading of zooxanthellae by animal tissue in this association. Whereas freshly-isolated zooxanthellae were photoinhibited at high irradiances (800 to 1 800 E m-2 s-1), zooxanthellae in the host continued to function at photosynthetic capacity. Time of day may influence photosynthetic measurements in symbiotic organisms, as it was found that photosynthesis in A. pulchella followed a diel periodicity at both light-saturating (1 200 E m-2 s-1) and subsaturating (150 E m-2 s-1) irradiances. There was a peak period of photosynthesis between 12.00 and 14.00 hrs. Light stimulated dark respiration rates of A. pulchella. Dark respiration of sea anemones increased somewhat towards the end of the light cycle and was always greater after exposure to high irradiances.  相似文献   

6.
To determine how the animal and algal components of the symbiotic sea anemone Aiptasia pulchella respond to changes in food availability and culture irradiance, sea anemones from a single clone were maintained at four irradiance levels (320, 185, 115, and 45 E m-2 s-1) and either starved or fed for 5 wk. Changes in protein biomass of sea anemones maintained under these conditions were not related to the productivity of zooxanthellae, since the protein biomass of fed A. pulchella decreased with increase in irradiance and there was no difference in protein biomass among starved sea anemones at the four irradiance levels. Except for the starved high-light sea anemones, the density of symbiotic zooxanthellae was independent of culture irradiance within both starved and fed. A. pulchella. Starved sea anemones contained over twice the density of zooxanthellae as fed sea anemones. Within both starved and fed individuals, chlorophyll per zooxanthella increased with decreasing culture irradiance while algal size remained constant (in fed sea anemones) at about 8.80 m diameter. Chlorophyll a: c 2 ratios of zooxanthellae increased with decreasing culture irradiance in zooxanthellae from starved sea anemones but remained constant in zooxanthellae from fed sea anemones. As estimated from mitotic index data, the in situ growth rates of zooxanthellae averaged 0.007 d-1 and did not vary with irradiance or feeding regime. Photosynthesis-irradiance (P-I) responses of fed A. pulchella indicated an increase in photosynthetic efficiency with decreasing culture irradiance. But there was no consistent pattern in photosynthetic capacity with culture irradiance. Respiration rates of fed sea anemones also did not vary in relation to culture irradiance. The parameter I k , defined as the irradiance at which light-saturated rates of photosynthesis are first attained, was the only parameter from the P-I curves which increased linearly with increasing culture irradiance. The daily ratio of net photosynthesis to respiration for A. pulchella ranged from 1.6 to 2.8 for sea anemones maintained at the three higher irradiances, but was negative for those maintained at 45 E m-2 s-1. Since the final protein biomass was greatest for sea anemones maintained at the lowest irradiance, these results indicate that sea anemone growth cannot be directly related to productivity of zooxanthellae in this symbiotic association.  相似文献   

7.
S. Edmands 《Marine Biology》1995,123(4):723-733
Four morphologically similar species in the sea anemone genus Epiactis exhibit overlapping distributions on the Pacific coast of North America; E. prolifera, E. lisbethae, E. ritteri and E. fernaldi. All brood their offspring up to the juvenile stage, but each has a different combination of internal versus external brooding and hermaphroditism versus gonochory (separate sexes). Specimens were collected from sites ranging from British Columbia to southern California between December 1988 and July 1992. Mating systems were inferred from genetic comparisons of mothers and offspring histological analyses of sex expression and observations on brooding and spawning behavior. Allozyme and multilocus DNA fingerprint analyses of the gynodioecious hermaphrodite E. prolifera showed that offspring were all identical to their mothers, a result consistent with either asexual reproduction, self-fertilization or extreme biparental inbreeding. In the gonochore E. lisbethae, mothers and offspring were also electrophoretically identical, but variation in DNA fingerprints indicated cross-fertilization. Similar DNA fingerprint differences between mother and offspring in the gonochore E. ritteri implied that cross-fertilization also occurs in this species. No mother-offspring comparisons were performed on E. fernaldi, as this species was not observed brooding offspring during this study. Although incomplete, the results of this study increase our knowledge of the very unusual combination of reproductive modes in the genus Epiactis, and argue for further investigations of the evolution and genetic consequences of mating systems in these species.  相似文献   

8.
D. J. Ayre 《Marine Biology》1982,66(2):199-205
The entire process of development from eggs to juveniles was observed in the sea-star Ctenopleura fisheri Hayashi. The breeding season of this sea-star in Toyama Bay, the Sea of Japan, occurs in the winter. The eggs are 465 in diameter, semitranslucent and pale brown in color. They develop into a barrel-shaped larva, neither bipinnaria nor brachiolaria, through a wrinkled blastula stage by holoblastic, radial cleavage. Larvae are free-swimming and do not feed during the larval stage. At metamorphosis the stalk, a larval organ, disappears by one of either 2 different processes; absorption into future body of the juveniles, or rupture and collapse. Fifteen days after insemination, metamorphosis is completed and the resulting juveniles, about 1 000 m in diameter, bear 2 pairs of tube-feet and a terminal tentacle in each arm.  相似文献   

9.
Biochemical genetic variation provided evidence for the mode of reproduction of brooded young in the sea anemone Epiactis prolifera Verrill, 1869. Individuals of E. prolifera are female when small but hermaphroditic when large (i.e., gynodioecious); juveniles are brooded externally on the column. Brooding individuals collected from 6 intertidal sites (5 in central California and 1 in Washington State, USA) in the spring and summer of 1980 were assayed for gene-enzyme variation by starch-gel electrophoresis. Three of 12 enzyme loci were polymorphic; phosphoglucose isomerase appeared to be encoded by two, closely linked loci. Genotypic frequencies deviated markedly from expected random mating proportions. Only three heterozygotes were found; two were heterozygous at all three polymorphic loci, and the other was polymorphic at the two PGI loci. All 158 juveniles from 25 brooding individuals were assayed (2–19 juveniles per parent). Juveniles on homozygous adults were always identical to their parent. However, brooded young of heterozygous individuals were not identical to their parent. but showed 1:2:1 phenotypic segregation ratios consistent with reproduction by self-fertilization. This genetic evidence together with findings of marked heterozygote deficiencies and genetic identity of homozygous adults and their brooded young supports the conclusion that E. prolifera usually reproduces by self-fertilization, and cross-fertilization is rate.  相似文献   

10.
The sexually produced young of the externally brooding actinian Epiactis prolifera Verrill, 1869 are attached to the parent's column just above the base. A transitory brood groove may be formed around the limbus when the parent contracts. In the population studied on the coast of Sonoma County, California, USA, from 27 to 49% of the adult anemones were brooding at any time, the proportion being inversely related to seawater temperature and directly related to size of the anemones. A brood usually consisted of young of various sizes. Overall, number of young being brooded was directly related to parent size and inversely related to size of the brooded juveniles. The growth rate of juvenile anemones was inferred to average about a millimeter in pedal disc diameter per month. Juveniles dislodged from the parent when smaller than 4 mm in basal diameter apparently cannot survive in the intertidal zone. Juveniles which successfully make the transition to adulthood have, therefore, been brooded for at least 3 months. Fewer than 50% of the smallest juveniles survived to a size at which they could live independently. The transition to adulthood was accompanied by a mortality of 80%. The survival rate, from egg to adult, was calculated to be about 1% per season.This work was done in partial fulfillment of the requirements for the Ph.D. degree in the Department of Zoology, University of California, Berkeley, and was supported by a U.S. National Science Foundation Traineeship.  相似文献   

11.
The Belizean reef coral Agaricia tenuifolia Dana forms aggregations in which rows of thin, upright blades line up behind each other. On average, the spacing between blades increases with depth and hence with decreasing ambient irradiance. We designed and built a small, inexpensive light meter and used it to quantify the effect of branch spacing on light levels within colonies at varying distances from branch tips. Concurrently, we measured photosynthetic pigment concentrations and population densities of symbiotic dinoflagellates (zooxanthellae) extracted from coral branches of colonies with tight (≤3 cm) vs wide (≥6 cm) branch spacing, collected at 15 to 17 m and from colonies with tight branch spacing collected at 1 to 2 m. Light levels decreased significantly with tighter branch spacing and with distance from the branch tips. Total cellular pigment concentrations (chlorophylls a, c 2 and peridinin) as well as chlorophyll a:c 2 and chlorophyll a: peridinin ratios all increased significantly with distance from the branch tip, indicating very localized differences in photoacclimation within individual branches. Zooxanthellae from colonies with widely-spaced branches displayed significantly lower chlorophyll a:c 2 and chlorophyll a:peridinin ratios, and were present at significantly higher population densities than those from colonies with tightly-spaced branches collected at the same depth (15 m). Tightly-spaced colonies collected from shallow environments (1 to 2 m) displayed pigment ratios similar to those from widely-spaced colonies from deeper water (15 m), but maintained zooxanthellae populations at levels similar to those in tightly-branched colonies from deeper water. Thus, variation in colony morphology (branch spacing and distance from branch tip) can affect symbiont physiology in a manner comparable to an increase of over 15 m of water depth. These results show that a host's morphology can strongly determine the microhabitat of its symbionts over very small spatial scales, and that zooxanthellae can in turn display steep gradients in concordance with these altered physical conditions. Received: 12 June 1997 / Accepted: 24 June 1997  相似文献   

12.
Anthothoe albocincta, a common subtidal anemone along south-eastern Australia, reproduces both sexually through broadcast spawning and clonally through fission. Clones may be distinguished both by their electrophoretic genotypes and the colour of their tentacles and oral discs. Local populations typically consist of many, dense clonal aggregations. However, some clones appear to have locally extensive distributions, forming a series of separate aggregations. The capacity of clones to disperse among local populations is unknown. In this study we used an electrophoretic survey at six allozyme loci to quantify levels of variation among samples from each of 13 local populations and four geographic regions sampled between April 1992 and June 1993. These data revealed that populations of A. albocincta, separated by up to 930 km, were at least moderately subdivided. Levels of geographic variation were high and the average F ST value (standardised genetic variation) was 0.27 based on genotypes of all individual polyps. This value reflects substantial variation both within (F PR =0.13) and among (F RT =0.16) regions. Estimates of gene flow among both neighbouring populations and regions are therefore low (N e m=1.7 and 1.3, respectively). UPGMA (unweighted pair-group method using arithmetic averages) dendrograms suggest that a genetic discontinuity occurs at the very south-east corner of Australia, paralleling reports for two other south-eastern Australian marine invertebrates. In addition, our analyses and theoretical predictions imply that localised proliferation of clonal genotypes may have caused us to underestimate the potential importance of gene flow via larval dispersal. Moreover, the abundance and vast geographic range of this species suggests that widespread dispersal does occur. Collections from three populations covering the peroid December 1992 to June 1993 were examined by crude dissection along with histological sectioning, and showed A. albocincta to be dioecious, with unisexual clones. Eggs within the ovaries of six females sampled over a 3 mo period were small (96±4 m) and similar to those of related species that produce planktotrophic larvae. In contrast, we found no evidence that clones were dispersed (shared) among neighbouring local populations. An average of only 6% of six-locus genotypes were common to pairs of local populations separated by up to 125 km, this being equal to the percentage expected through sexual reproduction alone. In addition, the percentage of shared genotypes did not decline with increasing geographic separation. These data imply that although asexual reproduction may be used to maintain local populations, the sexual production of genotypically diverse larvae is the primary source of widely dispersed colonists and hence of new clones.  相似文献   

13.
Test probes were touched to tentacles to investigate whether discharge of spirocysts likely is regulated by hair bundle mechanoreceptors. Significantly more spirocysts discharge onto test probes in the presence of vibrations at 11–15 Hz as compared to 0 Hz. Adding N-acetylneuraminic acid, NANA, shifts maximal discharge of spirocysts upwards to 36–40 Hz, and possibly to 21–25 Hz. In contrast, NANA shifts maximal discharge of basitrichous isorhiza nematocysts downwards to 1–20 Hz. Thus, discharge of cnidae (‘stinging capsules’) is differentially regulated according to the type of cnida. Furthermore, it appears that chemodetection of N-acetylated sugars is not a prerequisite to capturing prey because, in seawater alone, maximal discharge of cnidae occurs at frequencies overlapping movements of calmly swimming prey. Nevertheless, chemodetection of N-acetylated sugars broadens the range of frequencies stimulating maximal discharge of cnidae and, therefore, likely enhances prey capture.  相似文献   

14.
The chemical activators of feeding behaviour for coelenterates have been generally regarded as species specific. Recently, however, and English (North Sea) population of the sea anemone Diadumene (Haliplanella) luciae (Verrill) and an American (Californian) population of the same species were found to respond to different chemical activators. The results of further examination of this apparent anomaly show that a third population (from the English Channel, selected because of differences in colour variety and type of habitat from the North Sea population) shared the same activators as the other English population. There was no correlation between the identities of the feeding-behaviour activators and either the type of habitat or coloration of the three populations. Since the only physical factor shared by anemones with similar activators (i.e., the two English populations) was geographical, it is tentatively concluded that physiological races of D. luciae may be evolving, independently of morphological or differently coloured races, in different parts of the world.  相似文献   

15.
Populations of the sea anemone Metridium senile (L.) were sampled from several locations in eastern North America in two series, one collected from 1977–1979 and the other from 1981–1985. Fourteen populations were sampled twice at one- to six-year intervals. Samples were analyzed for temporal differences in genetic composition at both the single locus and multiple locus levels. Overall patterns of geographic variation in allele frequency did not change between series. Regressions describing clines did not differ significantly, and loci not showing clinal variation in the first series remained similar in the second. Analysis of populations sampled twice produced no systematic evidence of change in allele frequency with time for any of four polymorphic loci. Comparisons with computer simulations of repeated sampling of multiple locus genotypes from panmictic populations with free recombination also revealed little temporal change at this level. One population showed possible evidence of recruitment from a different gene pool. Other significant departures from expectations reflected more reproducibility of genotype distributions between samples than expected for sexual populations. This excess stability likely results jointly from clonal reproduction and little sexual recruitment. Despite these indications of genetic stability in adult populations, newly settled juveniles were genetically different from resistant adults in one population, demonstrating the potential for genetic change by immigration. Successful sexual recruitment seems to be rare, even though larvae regularly settle from the plankton. Although interpretation of these results is somewhat limited by lack of knowledge of longevities and generation times, to the extent that they reflect longer-term trends, they suggest that at least some of the observed patterns of geographic variation in allele frequency probably result from natural selection.  相似文献   

16.
Under the general heading of symbiosis, defined originally to mean a living together of two dissimilar species, exist the sub-categories of mutualism (where both partners benefit), commensalism (where one partner benefits and the other is neutral) and parasitism (where one partner benefits and the other is harmed). The sea anemone-fish (mainly of the genus Amphiprion) symbiosis has generally been considered to benefit only the fish, and thus has been called commensal in nature. Recent field and laboratory observations, however, suggest that this symbiosis more closely approaches mutualism in which both partners benefit to some degree. The fishes benefit by receiving protection from predators among the nematocyst-laden tentacles of the sea anemone host, perhaps by receiving some form of tactile stimulation, by being less susceptible to various diseases and by feeding on anemone tissue, prey, waste material and perhaps crustacean symbionts. The sea anemones benefit by receiving protection from various predators, removal of necrotic tissue, perhaps some form of tactile stimulation, removal of inorganic and organic material from on and around the anemone, possible removal of anemone parasites, and by being provided food by some species of Amphiprion.  相似文献   

17.
The sea anemone Entacmaea quadricolor simultaneously harbours multiple symbiont types from the genus Symbiodinium, while providing essential habitat for anemonefish. This anemone lives close to its upper thermal threshold and experiences bleaching under elevated temperature and light stress. Here, we determine whether E. quadricolor experienced a shuffling in the abundance of two genetically distinct symbiont types (Symbiodinium C25 and C3.25) during bleaching and recovery. Anemones were exposed to control (22.9 °C) or elevated temperature (28.5 °C) for 42 days, whereas for the following 75 days, all anemones were exposed to 22.9 °C. By day 47, a more pronounced bleaching occurred via symbiont expulsion in the elevated temperature treatment than the control, and the proportion of C25 to C25 + C3.25 increased by 6.2 and 13.2 % in the control and bleached anemones, respectively. The increased relative abundance of C25 to C3.25 after exposure to thermal stress may indicate that C3.25 performs poorly when temperature is elevated. Although no significant recovery in symbiont density was detected, a revival of the C3.25 genotype was found at day 117, which may indicate that it is either more competitive or has qualities that are beneficial to the symbiosis when thermal stress is no longer apparent. This work demonstrates the potential for this anemone species to shuffle its symbiont types in response to environmental change and could provide resilience during times of stress.  相似文献   

18.
Methane mussels (Bathymodiolus sp., undescribed; personal communication by R. Turner to CRF) were collected in September 1989 and April 1990 from offshore Louisiana in the Gulf of Mexico. These mussels contain endosymbiotic methane-oxidizing bacteria and are capable of utilizing environmental methane as a source of energy and carbon. Oxygen consumption, methane consumption, and carbon dioxide production were measured in mussels with intact symbionts, functionally aposymbiotic mussels, and separated symbiont preparations under controlled oxygen and methane conditions, in order to study the roles of the symbionts and the hosts in methane utilization. The association was found to be very efficient in fixing methane carbon (only 30% of CH4 consumed is released as CO2), and to be capable of maximal rates of net carbon uptake of nearly 5 mol g-1 h-1. Rates of oxygen and methane consumption were dependent upon oxygen and methane concentrations. Maximal consumption rates were measured at 250 to 300 M O2 and 200 to 300 M CH4, under which conditions, oxygen consumption by the gill tissues (containing symbionts) had increased more than 50-fold over rates measured in the absence of methane. A model is proposed for the functioning of the intact association in situ, which shows the symbiosis to be capable of achieving growth rates (net carbon assimilation) in the range of 0.003 to 0.50% per day depending upon oxygen and methane concentrations. Under the conditions measured in the seep environment (200 M O2, 60 M CH4), a mussel consuming methane at rates found to be typical (4 to 5 mol g-1 h-1) should have a net carbon assimilation rate of about 0.1% per day. We suggest that the effectiveness of this symbiosis arises through integration of the morphological and physiological characteristics inherent to each of the symbiotic partners, rather than from extensive specialization exhibited by other deep-sea chemotrophic associations.  相似文献   

19.
Invertebrates containing endosymbiotic dinoflagellate algae (zooxanthellae) retain excretory nitrogen, and many are able to take up ammonium from the surrounding seawater. However, the site of assimilation and role of nitrogen recycling between symbiont and host remains unclear. In the present study, ammonium uptake by the symbiotic sea anemone Anemonia viridis (Forskål) was examined by following the pathway of assimilation using 15N-enriched ammonium. Since zooxanthellae became enriched with 15N from ammonium at up to 17 times the rate of the host, they appear to be the primary site of assimilation. In the light, the rate of zooxanthellae enrichment at 20?M was twice that at 10?M, whereas the rate of host enrichment was not significantly affected by ammonium concentration. When anemones were incubated with [15N]ammonium in the dark, after 12?h without light the rate of enrichment was lowered in both zooxanthellae and host. However, while the enrichment of the host was significantly reduced when the light level was lowered from 300 to 150?μmol photons m?2?s?1, zooxanthellae enrichment was unchanged. Low molecular weight material from the zooxanthellae became enriched at 20 times the rate of that from the host, and enrichment was detected in the amino acids glutamate, glutamine, aspartate, alanine, glycine, phenylalanine, threonine, valine, tyrosine, and leucine from zooxanthellae. In the zooxanthellae, amino acids accounted for 65% of the total enrichment of low molecular weight material. Of the amino acids detected in zooxanthellae, over 90% of the enrichment was accounted for by glutamate, glutamine and aspartate. The enrichment of the amide group of glutamine was greater than that of the amine group of glutamate or glutamine, consistent with the glutamine synthetase/glutamine 2-oxoglutarate amidotransferase cycle as the mechanism of ammonium assimilation. To examine the flux of 15N from zooxanthellae to host, anemones were pulse-labelled with [15N]ammonium and then transferred to an unlabelled chase. Over a 2?h period there was no evidence for a flux of nitrogen from zooxanthellae to host. However, during the chase period, the enrichment of low molecular weight material declined and that of high molecular weight material increased in both zooxanthellae and host, indicating that protein was synthesized using 15N from ammonium in both components of the symbiosis. Again by using a pulse-chase system, it was found that glutamate was metabolised most rapidly by zooxanthellae, followed by (in order of decreasing rate of turnover) aspartate, alanine, glycine and valine (no data are available for glutamine). Unlike these amino acids, nitrogen was transferred to the essential amino acids phenylalanine and threonine, increasing their enrichment during the chase period. While recycled nitrogen is clearly important to this symbiosis, the mechanism by which it is cycled remains to be resolved.  相似文献   

20.
The seasonal cycle of sexual reproduction in the corallimorpharian sea anemone Corynactis californica (Calgren, 1936) was studied for 18 consecutive months (July 1987 to December 1988) at a subtidal area in the Hopkins Marine Refuge (HMLR), Pacific Grove, Monterey Bay, California. Samples were collected, histological sections were prepared, and gametocytes were examined and measured. C. californica grows by multiple or longitudianl fission to form single-sexed clones of various color and size. In female clones, oocytes appeared in late August and early September; they increased in size steadily in fall, and peaked in early December in both years. In male clones, spermatogenesis was synchronous with the female oogenic cycle, and motile sperm were observed in most testes in early December. Spawned gonads were found in both sexes from late November to early December. Spawning was induced in the laboratory in early December, and external fertilization was followed by development of free-swimming larvae. Gametogenesis and spawning are correlated with seasonal increases in seawater temperature and phytoplankton abundance, and we discuss and compare timing of sexual reproduction in this corallimorpharian to those in several actiniarian and scleractinian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号