首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environmental influence on Chernobyl-derived 137Cs levels in perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.) was revealed using partial least-squares regression (PLS). The 53 environmental predictors used describe land use in catchment areas, various catchment area and lake characteristics, lake water chemistry, and fish stock composition. The study showed a profound effect of land use on the 137Cs levels in fish. Radiocaesium deposited on arable land was retained in the soil to a greater extent than was 137Cs deposited on wetlands, which more easily leached out to the lake ecosystems. The 137Cs deposition close to the lakes had a more pronounced effect on 137Cs levels in the fish than did more distant deposition. The radiocaesium bioavailability is mainly governed by lake water cation content, as hardwater lakes had significantly lower 137Cs content in fish. Resuspension of 137Cs contaminated sediments only had a limited influence on the observed levels in fish.  相似文献   

2.
The transfer of 137Cs into fish in seepage and drainage lakes from 1988 to 1992 was analysed using linear regression. Empirical results for 137Cs in lake water and fish were used to calculate concentration factors (CFs). In the drainage lakes the CF decreased during the study period by 9% per year whereas in the seepage lakes the CF increased significantly by 4.3% per year. The transfer of 137Cs into pike was significantly (1.6 times) higher than that into perch. The CF increased on average by 3.4% for each 1-cm increase in the median size of perch. The relationship between the water chemistry and the CF differed between clear-water seepage and brown-water drainage lakes.  相似文献   

3.
4.
Long-term investigations of radiocaesium activity concentrations in carp in the Republic of Croatia are presented. The radiocaesium levels in carp decreased exponentially and the effective ecological half-life of (137)Cs was estimated to be about 1 year during 1987-2002 and 5 years during 1993-2005. The observed (134)Cs:(137)Cs activity ratio in carp was found to be similar to the ratio observed in other environmental samples. The concentration factor for carp (wet weight) was estimated to be 128+/-74 Lkg(-1), which is in reasonable agreement with model prediction based on K(+) concentrations in water. Estimated annual effective dose received by adult members of the Croatian population due to consumption of carp contaminated with (134)Cs and (137)Cs are small: per capita dose from this source during 1987-2005 was estimated to be 0.5+/-0.2 microSv. Due to minor freshwater fish consumption in Croatia and low radiocaesium activity concentrations in carp, it can be concluded that carp consumption was not a critical pathway for the transfer of radiocaesium from fallout to humans after the Chernobyl accident.  相似文献   

5.
The accident at the Chernobyl nuclear power plant in 1986 significantly elevated the 137Cs levels of fish in Finnish lakes. About 6200 fish samples from 390 lakes comprising 20 species have been analysed for 137Cs since 1986. The sizes of the lakes varied from a few hectares to about 1000 km2. Activity concentrations of 137Cs in fish still varied widely in 2003, from 16 to 6400 Bq/kg fresh weight. This paper presents the results of statistical analyses with multivariate linear regression models carried out on the empirical data collected since 1986. The statistical analysis resulted in separate models for two time periods describing temporal changes of 137Cs in fish. The explanatory variables were fish species with various feeding habits, the size class of the lake, municipal division, drainage area, time since the deposition and deposition level of the municipality. The calculated values for 137Cs in fish did not differ statistically significantly from the observed values in the validation data. The explanatory variables explained 58% (the first time period) and 72% (the second time period) of the total variability of 137Cs in fish.  相似文献   

6.
Two field expeditions in 1996 studied 137Cs intake patterns and its content in the bodies of adult residents from the village Kozhany in the Bryansk region, Russia, located on the shore of a drainless peat lake in an area subjected to significant radioactive contamination after the 1986 Chernobyl accident. The 137Cs contents in lake water and fish were two orders of magnitude greater than in local rivers and flow-through lakes, 10 years after Chernobyl radioactive contamination, and remain stable. The 137Cs content in lake fish and a mixture of forest mushrooms was between approximately 10-20 kBq/kg, which exceeded the temporary Russian permissible levels for these products by a factor of 20-40. Consumption of lake fish gave the main contribution to internal doses (40-50%) for Kozhany village inhabitants Simple countermeasures, such as Prussian blue doses for dairy cows and pre-boiling mushrooms and fish before cooking, halved the 137Cs internal dose to inhabitants, even 10 years after the radioactive fallout.  相似文献   

7.
The radial and vertical distributions of radiocaesium, potassium and calcium were determined in two Scots pine stands (17 and 58 yr old) similarly affected by the Chernobyl fallout. For both age classes, concentrations are always the lowest in the stemwood, highest in the inner bark and intermediary levels were observed for the outer bark. Due to the cumulative character of its biomass. however. stemwood is a long-term major reservoir of 137Cs. With tree development, changes in the 137Cs radial distribution are well described by variations in the sap ascent pattern and reveal an important transfer between tree rings. It is shown that. both the biomass evolution and knowledge of the evolution of the 137Cs radial gradient are important to predicting 137Cs accumulation in wood with time. According to the common transfer factor (TF) approach, one would expect a decrease in radiocaesium accumulation with time (from 0.0047 +/- 0.0013 to 0.0035 +/- 0.0008 m2kg(-1) for the 17 and 58 yr old trees, respectively). With the wood immobilisation potential (WIP) approach, it was, however, clearly shown that additional annual uptake was highest for the older stand (3.12 +/- 0.23 Bq cm(-3) yr(-1) for the 58-year-old stand compared to 1.99 +/- 0.30 Bq cm(-3) yr(-1) for the younger stand). Following the WIP approach, it was moreover possible to distinguish between the 137Cs incorporated via the root uptake process and a possible lasting effect of interception. It is shown that, whereas for the younger stand (5 yr old at the time of the accident) root uptake contributed exclusively to the wood contamination, the former process explained only 48% of the measured total 137Cs content in the wood of the older tree.  相似文献   

8.
The work describes the uptake, retention/biological elimination and organ/tissue distribution of 137Cs by freshwater Japanese catfish (Silurus asotus Linnaeus) under laboratory conditions. The fish were divided into three groups based on their size and age and reared in 137Cs-spiked water. The concentration of 137Cs in the whole body of the live fish was measured at regular intervals up to 60 days. A significant accumulation of 137Cs was found, but a steady state condition was not achieved by the end of the experiment. The bioaccumulation factors at steady state and the required time to reach steady state were estimated to be 1.55 and 255 days, 1.76 and 180 days and 1.99 and 160 days for large, medium and small size fish, respectively. To determine the effective half-life of 137Cs, the fish were transferred and reared in the non-contaminated host water. The concentration of the remaining 137Cs in the whole body of the live fish was measured up to 66 days. The average effective half-life of 137Cs in the fish species was found to be approximately 142 days for fish of all sizes. The distribution of 137Cs in different organs/tissues of the fish was determined. Accumulation of 137Cs in muscle/flesh of the fish was found to be approximately 75% of whole body accumulation. The uptake rate and the retention capability of juvenile fish were found to be higher and therefore, these were more susceptible to 137Cs than adult and old fish, and could be an important source of 137Cs in the human food chain.  相似文献   

9.
An uptake parameter u (L kg−1 d−1) and a loss rate parameter k (d−1) were estimated for the patterns of accumulation and loss of 133Cs by three fish species following an experimental 133Cs addition into a pond in South Carolina, USA. These u and k parameters were compared to similar estimates for fish from other experimental ponds and from lakes that received 137Cs deposition from Chernobyl. Estimates of u from ponds and lakes declined with increasing potassium concentrations in the water column. Although loss rates were greater in the experimental ponds, the times required to reach maximum Cs concentrations in fish were similar between ponds and lakes, because ponds and lakes had similar retentions of Cs in the water column. The maximum Cs concentrations in fish were largely determined by initial Cs concentrations in the water column. These maximum concentrations in fish and the times required to reach these maxima are potentially useful indicators for assessments of risks to humans from fish consumption.  相似文献   

10.
This paper presents results of a model-test carried out within the framework of the COMETES project (EU). The tested model is a new lake model for radiocesium to be used within the MOIRA decision support system (DSS; MOIRA and COMETES are acronyms for EU-projects). This model has previously been validated against independent data from many lakes covering a wide domain of lake characteristics and been demonstrated to yield excellent predictive power (see H?kanson, Modelling Radiocesium in Lakes and Coastal Areas. Kluwer, Dordrecht, 2000, 215 pp). However, the model has not been tested before for cases other than those related to the Chernobyl fallout in 1986, nor for lakes from this part of the world (Southern Urals) and nor for situations with such heavy fallout as this. The aims of this work were: (1) to carry out a blind test of the model for the case of continental Lake Uruskul, heavily contaminated with 90Sr and 137Cs as a result of the Kyshtym radiation accident (29 September 1957) in the Southern Urals, Russia, and (2) if these tests gave satisfactory results to reconstruct the radiocesium dynamics for fish, water and sediments in the lake. Can the model provide meaningful predictions in a situation such as this? The answer is yes, although there are reservations due to the scarcity of reliable empirical data. From the modelling calculations, it may be noted that the maximum levels of 137Cs in fish (here 400 g ww goldfish), water and sediments were about 100,000 Bq/kg ww, 600 Bq/l and 30,000 Bq/kg dw, respectively. The values in fish are comparable to or higher than the levels in fish in the cooling pond of the Chernobyl NPP. The model also predicts an interesting seasonal pattern in 137Cs levels in sediments. There is also a characteristic "three phase" development for the 137Cs levels in fish: first an initial stage when the 137Cs concentrations in fish approach a maximum value, then a phase with relatively short ecological half-lives followed by a final phase with long ecological half-lives more or less corresponding to the physical decay of radiocesium.  相似文献   

11.
The methodology for estimating radiocaesium distribution between solid and liquid phases in lakes is applied for three prealpine lakes: Lake Constance (Germany), Lake Lugano (Switzerland) and Lake Vorsee (Germany). It is based on use of the exchangeable distribution coefficient and application of the exchangeable radiocaesium interception potential (RIPex). The methodology was tested against experimental data. Good agreement was found between estimated and measured 137Cs concentrations in Lake Constance and Lake Lugano, whereas for Lake Vorsee a discrepancy was found. Bottom sediments in Lake Vorsee are composed mainly of organic material and probably cannot be described in terms of the specific sorption characteristics attributed to illitic clay minerals.  相似文献   

12.
A model predicting plant uptake of radiocaesium based on soil characteristics is described. Three soil parameters required to determine radiocaesium bioavailability in soils are estimated in the model: the labile caesium distribution coefficient (kd1), K+ concentration in the soil solution [mK] and the soil solution-->plant radiocaesium concentration factor (CF, Bq kg-1 plant/Bq dm-3). These were determined as functions of soil clay content, exchangeable K+ status, pH, NH4+ concentration and organic matter content. The effect of time on radiocaesium fixation was described using a previously published double exponential equation, modified for the effect of soil organic matter as a non-fixing adsorbent. The model was parameterised using radiocaesium uptake data from two pot trials conducted separately using ryegrass (Lolium perenne) on mineral soils and bent grass (Agrostis capillaris) on organic soils. This resulted in a significant fit to the observed transfer factor (TF, Bq kg-1 plant/Bq kg-1 whole soil) (P < 0.001, n = 58) and soil solution K+ concentration (mK, mol dm-3) (P < 0.001, n = 58). Without further parameterisation the model was tested against independent radiocaesium uptake data for barley (n = 71) using a database of published and unpublished information covering contamination time periods of 1.2-10 years (transfer factors ranged from 0.001 to 0.1). The model accounted for 52% (n = 71, P < 0.001) of the observed variation in log transfer factor.  相似文献   

13.
We examined the long-term effects of a single application of potassium (K) fertilizer (100 kg K ha−1) in 1992 on 137Cs uptake in a forest ecosystem in central Sweden. 137Cs activity concentrations were determined in three low-growing perennial shrubs, heather (Calluna vulgaris), lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), and in four wild fungal species (Cortinarius semisanguineus, Lactarius rufus, Rozites caperata and Suillus variegatus). Uptake of 137Cs by plants and fungi growing on K-fertilized plots 17 years after application of the K fertilizer was significantly lower than in corresponding species growing in a non-fertilized control area. The 137Cs activity concentration was 21-58% lower in fungal sporocarps and 40-61% lower in plants in the K-fertilized area compared with the control. Over the study period, this decrease in 137Cs activity concentration was more consistent in plants than in fungi, although the effect was statistically significant and strongly pronounced in all species. The effect of K fertilization in reducing 137Cs activity concentration in fungi and plants decreased over time but was still significant in 2009, 17 years after fertilization. This suggests that application of K fertilizer to forests is an appropriate and effective long-term measure to decrease radiocaesium accumulation in plants and fungi.  相似文献   

14.
During the years after the Chernobyl accident the radioceasium activity concentration in most contaminated aquatic ecosystems decreased markedly. Lakes with no permanent inflows and outflows (closed lakes), however, still present a radioecological problem which is expected to continue for some time. In this paper, a mechanistic model for the long-term prediction of radiocaesium behaviour in closed lakes is developed. The model of Prokhorov (Radiokhimiya (Radiochemistry) 11 (1969) 317) was modified to describe the effects of bottom sediment bioturbation, surface runoff from the catchment and suspended solids formation and sedimentation. The model input parameters are the effective diffusion coefficient in bottom sediments, depth of the completely mixed layer, the distribution coefficient in the sediment-water system, the runoff coefficient, sedimentation rate, and deposition density. Values of all these parameters can be independently estimated or measured in a short-term experiment. Given negligible runoff and sedimentation, the dynamics of radiocaesium in lake water is described by a simple equation with only one unknown parameter. This allows us to make long-term predictions on the basis of a series of measurements carried out during the relatively short period. The model was tested against 137Cs activity concentrations measured between 1993 and 1999 in Svyatoe lake in the Bryansk region of Russia. Calculated and measured activity concentrations are in good agreement.  相似文献   

15.
The amount and vertical distribution of Chernobyl-derived 137Cs in the bottom sediments of some Finnish lakes were studied. Sediment and surface water samples were taken in 2000 and 2003 from 12 stations in nine lakes and the results were compared with those obtained in corresponding surveys carried out in 1969, 1978, 1988 and 1990. Each of the five deposition categories of Chernobyl fallout in Finland were represented. The depth profiles of 137Cs in the sediments showed considerable variety in the lakes studied. The peak values varied between 1.5 and 46 kBq kg(-1) dry wt. The size and shape of the peak did not always correlate with the amount of deposition in the area, but on the other hand, reflected differences in sedimentation processes in different lakes. In some of the lakes the peak still occurred in the uppermost (0-2 cm) sediment layer, but in an extreme case the peak occurred at a depth of 22-23 cm corresponding to a sedimentation rate of 16 mm year(-1) during the 14 years after the Chernobyl accident. The total amounts of 137Cs in sediments varied from 15 to 170 kBq m(-2) at the sampling stations studied. Since 1990, the amounts have continued to increase slightly in two lakes, but started to decrease in the other lakes. In most of the lakes, the total amounts of 137Cs in sediments were about 1.5-2 times higher than in local deposition. In two lakes, the ratio was below 1, but in one case 3.2. Compared with the total amounts of 137Cs at the same stations in the late 1960s and 1970s, the values were now at their highest, at about 60-fold. The most important factors affecting 137Cs values in sediments were the local amount of deposition and the type of the lake and the sediment, but in addition, there were a number of other factors to be considered.  相似文献   

16.
The feasibility of willow short rotation coppice (SRC) for energy production as a revaluation tool for severely radiocaesium-contaminated land was studied. The effects of crop age, clone and soil type on the radiocaesium levels in the wood were assessed following sampling in 14 existing willow SRC fields, planted on radiocaesium-contaminated land in Sweden following Chernobyl deposition. There was only one plot where willow stands of different maturity (R6S2 and R5S4: R, root age and S, shoot age) and clone (Rapp and L78183 both of age category R5S4) were sampled and no significant differences were found. The soils differed among others in clay fraction (3-34%), radiocaesium interception potential (515-6884 meq kg(-1)), soil solution K (0.09-0.95 mM), exchangeable K (0.58-5.77 meq kg(-1)) and cation exchange capacity (31-250 meq kg(-1)). The soil-to-wood transfer factor (TF) of radiocaesium differed significantly between soil types. The TF recorded was generally small (0.00086-0.016 kg kg(-1)), except for willows established on sandy soil (0.19-0.46 kg kg(-1)). Apart from the weak yet significant exponential correlation between the Cs-TF and the solid/liquid distribution coefficient (R2 = 0.54) or the radiocaesium interception potential, RIP (R2 = 0.66), no single significant correlations between soil characteristics and TF were found. The wood-soil solution 137Cs concentration factor (CF) was significantly related to the potassium concentration in the soil solution. A different relation was, however, found between the sandy Tr?dje soils (CF = 1078.8 x m(K)(-1.83), R2 = 0.99) and the other soils (CF = 35.75 x m(K)(-0.61), R2 =0.61). Differences in the ageing rate of radiocaesium in the soil (hypothesised fraction of bioavailable caesium subjected to fast ageing for Tr?dje soils only 1% compared to other soils), exchangeable soil K (0.8-1.8 meq kg(-1) for Tr?dje soils and 1.5-5.8 meq kg(-1) for the other soils) and the ammonium concentration in the soil solution (0.09-0.31 mM NH4+ for the Tr?dje soils compared to 0.003-0.11 mM NH4+ for the other soils) are put forward as potential factors explaining the higher CF and TF observed for the Tr?dje soils. Though from the dataset available it was not possible to unequivocally predict the Cs-soil-to-wood-transfer, the generally low TFs observed point to the particular suitability for establishment of SRC on radiocaesium-contaminated land.  相似文献   

17.
A dynamic model on (137)Cs in reindeer is presented, taking into consideration short- and long-term mechanisms, including the effect of ground deposition, transfer to vegetation, reindeer diet, feed intake, absorption and depletion of radiocaesium in the reindeer body. The model was optimised to fit measured activity concentrations in Swedish reindeer after the Chernobyl fallout. For comparison, regression analyses were made and aggregated transfer factors and effective ecological half-lives were estimated. The fit of the simulated model to observed activity concentrations was slightly better than the fit obtained by linear regressions. Improved knowledge about radiocaesium in vegetation would make the model more accurate for predictive purposes. Presently, the use of Tag and T(eff) is probably better for predictions, provided that their temporal and geographical limitations are taken into consideration. The dynamic model describes mechanisms better and may explain how changes in the system influence on activity concentrations of radiocaesium in the animal.  相似文献   

18.
Transfer of 137Cs in the soil-plant/lichen-reindeer food chain was studied in central (?stre Namdal) and southern Norway (V?g?) during 2000-2003. Reindeer from these areas have been continuously subjected to countermeasure application since the 1986 Chernobyl accident. In both areas no decline in 137Cs concentrations was detectable in reindeer slaughtered in autumn since 1995, or in reindeer slaughtered in winter since 1998-1999. Seasonal differences in 137Cs concentrations in reindeer have been less pronounced in recent years, with 137Cs concentrations occasionally higher in autumn than in winter. Soil-to-plant 137Cs transfer was significantly higher in ?stre Namdal than in V?g?. Climatic influences on lichen growth and abundance, and on soil properties that influence the availability of 137Cs for plant uptake, are hypothesized to have a larger impact on long-term transfer of radiocaesium in the soil-plant/lichen-reindeer food chain than has been previously observed.  相似文献   

19.
We summarize the patterns of 137Cs activity concentrations and transfer into fish and other biota in four small forest lakes in southern Finland during a twenty-year period following the Chernobyl accident in April 1986. The results from summer 1986 showed fastest accumulation of 137Cs into planktivorous fishes, i.e. along the shortest food chains. Since 1987, the highest annual mean values of 137Cs have been recorded in fish occupying the highest trophic levels, for perch (Perca fluviatilis) 13,600 Bq/kg (ww) and for pike (Esox lucius) 20,700 Bq/kg (ww). At the same time, activity concentrations of 137Cs in crustacean zooplankton and Asellus aquaticus have ranged between 1000 and 19,500 Bq/kg (dw). In 2006, 5-28% of the 1987 137Cs activity concentration levels were still present in perch and pike. Since 1989 their 137Cs activity concentrations in oligohumic seepage lakes have remained significantly higher than in polyhumic drainage lakes due to the increased transfer of 137Cs into fish in the seepage lakes with lower electrolyte concentrations, longer water retention times and lower sedimentation rate.  相似文献   

20.
A dynamic model of radionuclide accumulation in fish is developed. In the model, the fish population is represented by a set of discrete age classes. Each age class is characterized by a specific growth rate, diet and activity of metabolic processes. The model describes all known types of size effect in the contamination of fish with radiocaesium. The detailed dynamics of 137Cs accumulation by fish are demonstrated using the results of the model's application to ichtiofauna in a water body which has a high level of contamination with radiocaesium — namely, the cooling pond of the Chernobyl NPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号