共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高钒酸铋(BiVO4)对盐酸四环素(TC-HCl)在水溶液中的降解效率,以银基材料(Ag/Ag2O)和石墨相氮化碳(g-C3N4)共同改性BiVO4,通过水热法、煅烧法、湿浸渍法、沉淀和热分解法分步制备了Ag/Ag2O/g-C3N4/BiVO4四元复合材料;采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)及紫外-可见漫反射光谱法(UV-vis DRS)等方法对复合材料的形貌结构、元素分布及光学性质进行了表征. 结果表明:①沉积了Ag/Ag2O粒子后,复合材料对TC-HCl的吸附能力显著提高. ②纳米Ag粒子的表面等离子体共振效应(SPR)以及g-C3N4的协同作用拓宽了光响应范围,表现出更好的光催化性能. ③相较于BiVO4、g-C3N4及g-C3N4/BiVO4,该复合材料对TC-HCl的降解效果最佳,降解率可达89.19%,且经过4次循环使用后仍能保持74.8%的降解率. ④UV-vis及XPS分析证明,该复合材料的可见光响应拓展至548 nm,可吸收更多可见光. ⑤体系自由基捕获试验证明,·O2-和h+在光催化降解TC-HCl过程中发挥主要作用,且h+的作用大于·O2-. 研究显示,Ag/Ag2O/g-C3N4/BiVO4是一种高效稳定的复合光催化剂,其在处理TC-HCl抗生素废水方面具有潜在的应用前景. 相似文献
2.
通过水热法制备了g-C3N4掺杂量为13%的g-C3N4/Bi2WO6复合光催化剂,并使用SEM、XRD、XPS、BET、UV-Vis DRS和电化学工作站等对其形貌、结构和光电化学性能进行表征.分析结果表明,g-C3N4均匀负载于Bi2WO6表面,形成了稳定的异质结结构.相比于g-C3N4和Bi2WO6,g-C3N4/Bi2WO6具有更大的比表面积,在40 min的暗反应阶段对水中左氧氟沙星(LEV)的吸附效率为43.7%.g-C3N4/Bi2WO6对LEV的吸附行为符合准二级动力学模型,其初始吸附阶段颗粒内... 相似文献
3.
为了获得高效、低能耗的藻污染控制方法,通过煅烧-沉淀法制备出b-N-TiO2/Ag3PO4复合光催化材料,通过SEM、TEM、XRD、XPS、UV-Vis等表征手段对材料的整体形貌、表面结构和光响应性能进行测试分析.结果表明:①b-N-TiO2均匀分布在Ag3PO4表面,增强了对可见光的响应,并促进了光生电子-空穴对的分离.②b-N-TiO2/Ag3PO4(0.2T/A)复合光催化材料降解铜绿微囊藻(Microcystis aeruginosa)细胞中叶绿素a(Chla)的效果最好,其拟一级动力学方程速率常数分别比纯Ag3PO4和b-N-TiO2高2.73和7.72倍,经过8 h可见光催化后,对Chla的降解率为98.1%,且重复利用3次后降解率仍可达85.4%,具有较高的光催化稳定性.③固定化b-N-TiO2/Ag3PO4复合光催化材料对实际地表水中的藻细胞和藻毒素具有良好的光催化降解性能.因此,b-N-TiO2/Ag3PO4复合光催化材料在未来有害藻类污染的水处理中具有潜在的应用前景. 相似文献
4.
以g-C3N4纳米片为模板,通过水热法原位合成高催化活性的AgInS2/g-C3N4复合光催化材料,采用扫描电子显微镜(SEM)、X射线衍射(XRD),X射线光电子能谱(XPS),荧光光谱(PL)和表面光电压(SPV)等表征手段对材料物理、化学性能进行表征,并以邻二氯苯(o-DCB)为目标污染物研究其光催化性能.结果表明:AgInS2成功负载到g-C3N4纳米片上,其组成的复合材料拓宽了光吸收范围,提高了光生电子-空穴迁移效率且降低了复合率;在可见光照射8h后气相o-DCB的光催化降解效率达到62.7%,动力学参数分别是g-C3N4纳米片和AgInS2的2.13倍和1.76倍.利用原位红外光谱技术和ESR技术推导其反应机理,发现降解过程中产生了超氧自由基活性氧物种,降解的最终产物是二氧化碳、水等. 相似文献
5.
为强化DBD(介质阻挡放电)技术对VOCs(挥发性有机物)的处理效果,采用溶胶凝胶法制备Bi2WO6/NH(NH为天然赤铁矿)复合催化剂,并利用DBD协同催化剂降解EA(ethyl acetate,乙酸乙酯).采用XRD(X射线衍射)仪、BET(比表面积及孔径)分析仪、SEM(扫描电子显微镜)分析仪对催化剂进行表征,对比分析DBD、DBD/Bi2WO6(DBD协同Bi2WO6)、DBD/NH(DBD协同NH)及DBD/Bi2WO6/NH(DBD协同Bi2WO6/NH复合催化剂)4个体系中EA去除率和能量产率随输入功率、初始ρ(EA)及气体停留时间的变化情况,同时探究输入功率和催化剂对ρ(O3)及矿化率的影响,并对降解产物进行分析.结果表明:①在不同工艺参数条件下,EA去除率和能量产率均表现为DBD/Bi2WO6/NH体系> DBD/NH体系> DBD/Bi2WO6体系> DBD体系.②EA去除率随输入功率的升高和气体停留时间的延长而增加,随初始ρ(EA)的升高而降低;但能量产率随输入功率的升高和气体停留时间的延长而降低,随初始ρ(EA)的升高而增加.③在输入功率为84 W、初始ρ(EA)为0.40 mg/L、气体流量为1.0 m3/h的条件下,相较于DBD体系,DBD/Bi2WO6/NH体系中EA去除率和矿化率分别提高了19.16%和14.44%,而ρ(O3)降低了74.47%.④DBD降解EA的最终产物主要为CO2、H2O及微量的CH4、CH3CH2OH及CH3COOH等小分子有机化合物.研究显示,DBD协同Bi2WO6/NH复合催化剂能够高效去除EA. 相似文献
6.
本文采用水热合成法制备ZnIn2S4/g-C3N4复合催化剂应用于水中痕量药物卡马西平(CBZ)的太阳光催化降解,探究实际河水中固体颗粒(SS),无机盐(IS)和溶解性有机物(DOM)对催化剂活性的影响以及ZnIn2S4/g-C3N4/浮石负载型催化剂光催化CBZ效果.结果表明,质量比为20:1 ZnIn2S4/g-C3N4的光催化活性高于ZnIn2S4,ZnIn2S4与g-C3N4异质结构加速了电子-空穴对的分离并抑制其复合、ZnIn2S4/g-C3N4中孔的增多和比表面积的增加有效提高了催化剂活性.水质参数对催化剂活性的影响顺序为DOM>IS>SS,过滤后河水中CBZ的光催化速率常数比原水提高了13倍;125mg/L催化剂投加量和太阳光照射240min后,100μg/L的CBZ被完全降解.动态试验中CBZ的光催化效率随水流速度的增大而下降;流速5mL/min下循环4次,ZnIn2S4/g-C3N4/浮石光催化降解与矿化CBZ的效率分别为86.4%和43.9%. 相似文献
7.
以自制的g-C3N4和氧化石墨烯(GO)及TiO2为原料,通过静电吸附组装、水热还原等反应过程制备以还原氧化石墨烯(rGO)为光生电子传输介质的g-C3N4/rGO/TiO2光催化材料,并通过冷场发射扫描电镜(SEM)、X射线衍射光谱(XRD)、紫外-可见光漫反射光谱(UV-Vis-DRS)、光电流密度测试等方法对催化剂形貌结构和光学性能进行了表征.选择含氮浓度为50mg/L的氨氮溶液作为模拟原水,调节氨氮溶液的pH值至9~10,研究了该光催化材料在氙灯照射下的氨氮去除效果.结果表明,g-C3N4/rGO/TiO2光催化材料的SEM照片显示其为TiO2包覆结构,复合材料的XRD图谱同时出现了TiO2和g-C3N4的衍射峰,DRS光谱则体现出复合材料在可见光区的光吸收能力明显增强;对氨氮的去除实验表明原材料GO:g-C3N4=1:10的复合光催化材料有较好的光催化降解氨氮的性能,氨氮平均去除率为97%.通过采用电子顺磁共振(EPR)测定反应过程中的活性自由基,推测降解机理为:复合光催化剂在氙灯照射下生成的超氧阴离子自由基和羟基自由基直接在材料表面对吸附的NH3进行氧化,而rGO则作为光催化材料的传输介质起到了传导光生电荷的作用. 相似文献
8.
以自制的g-C3N4和氧化石墨烯(GO)及TiO2为原料,通过静电吸附组装、水热还原等反应过程制备以还原氧化石墨烯(rGO)为光生电子传输介质的g-C3N4/rGO/TiO2光催化材料,并通过冷场发射扫描电镜(SEM)、X射线衍射光谱(XRD)、紫外-可见光漫反射光谱(UV-Vis-DRS)、光电流密度测试等方法对催化剂形貌结构和光学性能进行了表征.选择含氮浓度为50mg/L的氨氮溶液作为模拟原水,调节氨氮溶液的pH值至9~10,研究了该光催化材料在氙灯照射下的氨氮去除效果.结果表明,g-C3N4/rGO/TiO2光催化材料的SEM照片显示其为TiO2包覆结构,复合材料的XRD图谱同时出现了TiO2和g-C3N4的衍射峰,DRS光谱则体现出复合材料在可见光区的光吸收能力明显增强;对氨氮的去除实验表明原材料GO:g-C3N4=1:10的复合光催化材料有较好的光催化降解氨氮的性能,氨氮平均去除率为97%.通过采用电子顺磁共振(EPR)测定反应过程中的活性自由基,推测降解机理为:复合光催化剂在氙灯照射下生成的超氧阴离子自由基和羟基自由基直接在材料表面对吸附的NH3进行氧化,而rGO则作为光催化材料的传输介质起到了传导光生电荷的作用. 相似文献
9.
全氟辛酸(perfluorooctanoic acid,PFOA)以其分布广泛性、生物蓄积性、生物毒性强而成为全球关注的一种新型持久性有机污染物.采用化学还原法制备钯掺二氧化钛(Pd-Ti O2)催化剂,利用XRD、FESEM、UV-vis DRS对催化剂进行表征,并考察其在365 nm紫外光照射下对PFOA的光催化降解效果.结果表明,化学还原的制备方法使Ti O2粒径减小、比表面积增大且对紫外光的吸收性能增大,但并不引起PFOA光催化效果的改变.而Pd掺杂后大大增强了PFOA的降解效果,反应7 h后溶液中氟离子浓度为6.62 mg·L-1,是Ti O2(P25)的7.3倍.投加俘获剂与通入氮气的实验证明,在PFOA的降解过程中·OH起重要作用,氧气的存在可促进PFOA的降解.采用UPLC-QTOF-MS对产物进行鉴定分析,PFOA的可能降解过程是经h+氧化后发生脱羧基反应,产生的全氟烷烃自由基(·CnF2n+1)被·OH氧化,脱氟生成短链全氟羧酸.Pd能作为电子(e-)捕获剂、加速e-向O2等电子受体的转移,从而缓解e-累积,提高对PFOA的降解效果. 相似文献
10.
水热法制备BiVO4及其可见光催化降解糖蜜酒精废水 总被引:1,自引:0,他引:1
以Bi(NO3)3•5H2O为铋源,NH4VO3为钒源,采用简单的水热法制备了BiVO4 光催化剂,并用X-射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(IR)和紫外-可见光漫反射光谱(UV-vis)对产品进行了结构表征。同时,在BiVO4光催化降解糖蜜酒精废水反应中考察了催化剂用量、通氧量、溶液pH值、双氧水用量及光照强度对糖蜜酒精废水脱色率的影响。实验结果表明,水热产品属于单斜晶系BiVO4,其带隙能为2.398 eV,并具有良好的可见光催化活性。当降解经30倍稀释的糖蜜酒精废水,BiVO4添加量为3.0 g•L−1 ,通氧量为120 L•h-1,助氧化剂H2O2添加量为9 %,不改变废水pH值,在400W镝灯离液面11cm照射反应180 min的条件下,糖蜜酒精废水的脱色率为88.60 %,COD去除率为25.84%,而添加5g•L−1的FeSO4•7H2O后其脱色率和COD去除率分别提高到90.90 %和91.26%。单斜晶型BiVO4晶体的可见光催化糖蜜酒精废水过程符合一级动力学反应。 相似文献
11.
通过离子交换法合成了双金属硫化物CoMoS4(CMS),通过活化过一硫酸盐(PMS)降解目标污染物双酚F(BPF)来考察其催化性能,并剖析了其中的反应机理.研究结果表明,CMS具有优异的催化性能,25℃时,50 mg·L-1的CMS和0.5 mmol·L-1的PMS体系在30 min内可以完全降解10 mg·L-1的BPF;CMS抗干扰能力强,在降解过程中受水体中无机阴离子(Cl-、NO3-、HCO3-)和腐殖酸(HA)的影响小;CMS同时具有较好的稳定性,循环使用3次后BPF降解率仍可达60.2%.自由基淬灭实验和电子顺磁共振(EPR)实验证明,硫酸根自由基SO4·-是CMS/PMS体系降解BPF的主要活性氧物种(ROS);并通过液相色谱-质谱仪鉴定BPF降解过程的中间产物,提出了两条主要的降解路径. 相似文献
12.
以五水合硝酸铋与偏钒酸铵为原料,采用水热反应法制备了不同晶体结构的钒酸铋(BiVO 4)光催化剂,分析了该催化剂对废水中高浓度磺胺嘧啶的处理效果。结果显示:BiVO 4光催化剂为单斜白钨矿型和四方锆石型,呈片状结构且颗粒分散性较好;磺胺嘧啶的光催化降解率与BiVO 4投加量、光照强度和反应时间呈正相关性,与磺胺嘧啶的初始浓度呈负相关性,随着BiVO 4合成pH值的增大呈先升高后下降的趋势;采用BiVO 4光催化剂处理磺胺嘧啶的最优条件为磺胺嘧啶初始浓度10 mg/L、合成pH=5,投加量0.25 g/L、10000 lux紫外光照下反应4 h,最优条件下的磺胺嘧啶平均去除率达到90.97%。 相似文献
13.
以紫外灯为光源,考察了自制纳米TiO2在TiO2/H2O2光催化体系中降解海洋石油污染的效率.研究光催化降解催化剂用量、溶液pH值、污染物浓度以及催化时间等因素对光催化降解海洋石油污染的影响。结果表明,纳米TiO2/H2O2光催化体系能有效降解海洋石油污染,且比单独使用纳米TiO2光催化效果好,纳米TiO2光催化/H2O2体系中由于在紫外光的照射下H2O2分解为大量的.OH从而使得降解效率在短时间内大大提高。优化的光催化降解条件为:降解1 L油污染海水的催化剂用量为10 mg、油污染海水的初始浓度为120 mg/L、催化时间为30 min,当pH=6~7时,加入H2O2的体积(质量浓度为60%)为10 mL,油污染海水的降解率可达98.12%。 相似文献
14.
以乙二醇为溶剂,采用溶剂热-煅烧法制备缺陷型BiVO4光催化剂,通过控制溶剂热反应时间调控BiVO4表面氧缺陷以增强对As (III)的光催化氧化性能.同时,借助各种表征手段如XRD、SEM和XPS等分析样品的晶型结构、形貌特征及化学组成等性质,考察其在可见光下对As(III)的光催化氧化性能,并研究其氧化机理.结果表明,溶剂热反应时间对BiVO4的晶粒尺寸和光吸收性能没有影响,但能通过影响比表面积调控BiVO4的表面氧缺陷浓度.经优化得到,反应时间为14 h时制备的BiVO4光催化剂(BiVO-14)对As(III)(6 mg·L-1)的氧化效率高达95.7%,并具有良好的光催化稳定性.BiVO4氧化As (III)的主要途径是光生空穴(h+)的直接氧化作用.表面氧缺陷能增强导电性能,促进电荷分离和迁移,强化h+的氧化作用,从而提高BiVO4的光催化氧化性能.BiVO-14能有效促使As(III)转化为低毒的As(V),在饮用水源As污染去除方面具有广阔应用前景. 相似文献
15.
以尿素和溴化铵分别作为前驱体和溴源,同时利用抗坏血酸对g-C3N4进行改性,通过二次焙烧法成功制备了抗坏血酸改性的Br掺杂g-C3N4-AA-Br纳米片光催化剂.利用XRD、TEM、XPS、UV-Vis DRS、PL、N2吸附-脱附等测试手段对催化剂的结构、形貌、光学性能进行了表征.结果表明g-C3N4-AA-Br具有较大的比表面积、拓宽的可见光吸收范围以及较低的电子-空穴复合率.在可见光下考察了不同催化剂对RhB、甲基橙、活性蓝染料降解的光催化性能,结果表明g-C3N4-AA-Br-2在可见光下在180min内对RhB降解率为72%,其速率常数k=0.00847min-1,是纯g-C3N4的5.6倍.通过活性物种捕获剂实验发现降解RhB的主要活性物种为羟基自由基(·OH)和超氧自由基(·O2-),并推测了可能的反应机理. 相似文献
16.
原水砷污染问题严重威胁饮用水水质安全,随着生活饮用水标准的提高,致使多地饮用水中砷超标问题突显.本研究利用CeO2半导体的光催化活性及CeO2和Fe3O4对As(V)的强亲和力,合成了双组份磁性CeO2-Fe3O4复合材料,并采用SEM、XRD、BET和VSM等手段进行表征,考察复合材料的光催化/吸附除砷效果;研究了初始pH值、共存离子等因素对吸附除砷效果的影响;采用等温吸附模型、吸附动力学模型等手段进行吸附特性研究.实验结果表明,在光催化过程中,·OH和·O2-为主要的活性氧化物种.在紫外照射下,As(Ⅲ)能完全被氧化为毒性较低的As(V),同时将As(V)高效吸附于CeO2-Fe3O4粒子表面.在中性条件下,CeO2-Fe3O4粒子对砷的饱和吸附量为122.19 mg·g-1.共存离子Cl-和SO42-对As(V)的吸附没有显著影响,而CO32-、SiO32-和PO43-与As(V)存在明显的竞争吸附,使As(V)的吸附去除效果明显降低.吸附动力学和吸附等温线模拟分别符合准二级动力学方程和Freundlich吸附等温线,表明As(V)的吸附以化学吸附为主导.CeO2-Fe3O4复合吸附剂可快速实现固液分离,容易再生且重复利用性较好,具有广泛的应用前景. 相似文献
17.
复合催化剂PWn/TiO2光催化降解甲醛反应的研究 总被引:7,自引:1,他引:7
合成了PWn/TiO2(n=11,12)两种复合催化剂,运用FTIR,TG-DTA,BET比表面积,SEM,FL等手段对复合催化剂进行了表征,并将其用于甲醛的光催化氧化降解实验.结果表明,PWn/TiO2复合催化剂中的钛醇基团可在PW11的缺位位置发生化学键合作用,导致复合体系中结构的变化,光催化活性较低;PWn/TiO2复合催化体系中不仅保持了PW12完整的Keggin结构,而且,经350℃焙烧处理后PW12与TiO2形成载流子的有效迁移,使得复合催化剂具有较高的光催化活性,明显优于纯TiO2,2种复合催化剂对甲醛的光催化降解反应遵循L-H机理,符合一级动力学方程,PW12/TiO2(350℃焙烧)和PW11/TiO2(300℃焙烧)为催化剂时,光催化降解的表观反应速率常数分别为0.01243min^-1,0.005214min^-1。 相似文献
18.
19.
采用共沉淀法制备前驱体ZnCr-LDH,并在不同煅烧温度下制备ZnCr混合金属氧化物(ZnCr-MMO).同时,利用XRD、SEM、TEM、XPS、PL、UV-vis等对样品的结构、形貌、光学性能进行表征分析.最后,在模拟太阳光照射下,通过光催化降解双酚A研究材料的光催化活性.结果表明,所制备的混合金属氧化物由ZnO和ZnCr_2O_4组成,煅烧温度越高,结晶度越高;与ZnCr-LDH相比,ZnCr-MMO的紫外-可见吸收光谱在紫外和可见光范围均有较强的吸收;随着煅烧温度的升高,ZnCr-MMO荧光光谱强度先减弱后增强;与ZnCr-LDH相比,ZnCr-MMO的光催化活性明显提高,煅烧温度为700℃时制得的ZnCr-MMO光催化活性最高,对BPA的降解率达到75%;该催化剂适于处理pH为5~9的含BPA的废水. 相似文献
20.
光催化燃料电池(PFC)以太阳光为能源,利用半导体激发产生的活性物种降解污染物,同时将催化过程产生的电子导出获得电能,可有效应对环境污染和能源危机 . 本文采用热蒸汽冷凝和旋转涂膜法制备了以网状氮化碳(g-C3N4)为基底,其上负载 WO3纳米片的电极材料 .在双腔室 H型电解池中,以制备的 g-C3N4/WO3为光阳极、Pt片为阴极,盐酸四环素(TCH)和 Cr(VI)分别为阳极室和阴极室的目标污染物,构建g-C3N4/WO3-Pt PFC 体系 . 光照 240 min 后,TCH 和 Cr(VI)的去除率分别为 79.1% 和 91.3%,电池的最大输出功率密度达到 6.70 μW·cm-2.高活性来源于 3 个方面:(1)g-C3N4和 WO3两种窄带半导体的同时激发,光能利用率增加;(2)g-C... 相似文献