首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dynamic aquatic model (DynA model) was previously developed to predict the fate of a chemical in aquatic scenarios characterized by daily or periodic changes in several input parameters. DynA model is here calibrated with data obtained from the literature in specific unsteady state scenarios, such as those of rice fields. The results obtained for two herbicides (cinosulfuron and pretilachlor) in rice paddy scenarios revealed the capability of the model to accurately predict water and sediment concentrations, as shown by some statistical indicators. Modelling efficiency (EF) values of 0.86-0.99 for the water compartment and of 0.77-0.84 for sediment show the good agreement between predicted and measured concentrations. An "external validation" was performed using measured data for a different herbicide (molinate) applied in a Portuguese paddy rice scenario. A sensitivity analysis for this volatile chemical revealed the influence of some climatic parameters (e.g. temperature) to the model outcomes, such as water and sediment concentrations. This confirmed the capability of DynA model as an efficient tool for the pesticide risk assessment in dynamic scenarios.  相似文献   

2.
This paper describes the modeling of the hydrogeochemical effects of deep well recharge of oxic water into an anoxic pyrite-bearing aquifer. Kinetic expressions have been used for mineral dissolution-precipitation rates and organic matter oxidation. Hydrological and chemical parameters of the model were calibrated to field measurements. The results showed that oxidation of pyrite (FeS(2)) and, to a lesser extent, organic matter dominate the changes in quality of the recharged water during its passage through the aquifer. The recharge leads to the consumption of oxygen and nitrate and the formation of sulfate and ferrihydrite. Complexation reactions, cation exchange and precipitation and dissolution of calcite, siderite and rhodochrosite were also identified through the modeling. Despite problems of non-uniqueness of the calibrated parameters, the model was used successfully to depict the geochemical processes occurring in the aquifer. Non-uniqueness can be avoided by constraining the model as much as possible to measurements and/or data from literature, although they cannot be considered always as fixed values and should be considered as stochastic variables instead.  相似文献   

3.
Transport experiments with colloids and radionuclides in a shear zone were conducted during the Colloid and Radionuclide Retardation experiment (CRR) at Nagra's Grimsel Test Site. Breakthrough curves of bentonite colloids and uranine, a non-sorbing solute, were measured in an asymmetric dipole flow field. The colloid breakthrough is earlier than that of uranine. Both breakthrough curves show anomalously long late time tails and the slope of the late time tails for the colloids is slightly higher. Anomalous late time tails are commonly associated with matrix diffusion processes; the diffusive interaction of solutes transported in open channels with the adjacent porous rock matrix or zones of stagnant water. The breakthrough curves for different colloid size classes are very similar and show no signs of fractionation due to their (size-dependent) diffusivity. It is proposed that tailing of the colloids is mainly caused by the structure of the flow field and that for the colloid transport, matrix diffusion is of minor importance. This has consequences for the interpretation of the uranine breakthrough. Comparisons of experimental results with numerical studies and with the evaluation of the colloid breakthrough with continuous time random theory imply that the tailing in the conservative solute breakthrough in this shear zone is not only caused by matrix diffusion. Part of the tailing can be attributed to advective transport in fracture networks and advection in low velocity regions. Models based on the advection-dispersion equation and matrix diffusion do not properly describe the temporal and spatial evolution of colloid and solute transport in such systems with a consistent set of parameters.  相似文献   

4.
5.
This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, a potential repository site for storing high-level radioactive waste. The study has been conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in the highly heterogeneous, unsaturated fractured porous rock. The modeling approach is based on a dual-continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the proposed repository's system performance using different conceptual models. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed.  相似文献   

6.
Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.  相似文献   

7.
The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches and evaluated the ability of the approach to simulate field experiment.  相似文献   

8.
The present paper discusses the development of a transport phenomena model for the dispersion of heavy gases. It describes the three-dimensional transient dispersion processes of an accidentally released contaminant. The model accounts for heavy gas effects and allows one to explicitly resolve the effect of twodimensional buildings in the ambient flow field. The results of the simulation are compared with those of other calculation procedures for conditions where the different approaches are applicable. In addition, comparisons are made with results from field experiments on heavy gas dispersion.  相似文献   

9.
Biomarkers comprising activities of biotransformation enzymes (ethoxyresorufin-O-deethylase -EROD-, dibenzylfluorescein dealkylase -DBF-, glutathione S-transferase -GST), antioxidant enzymes (glutathione reductase -GR- and glutathione peroxidase -GPX), lipid peroxidation -LPO- and DNA strand breaks were analyzed in the clam Ruditapes philippinarum caged at Cádiz Bay, Santander Bay and Las Palmas de Gran Canaria (LPGC) Port (Spain). Sediments were characterized. Digestive gland was the most sensitive tissue to sediment contamination. In Cádiz Bay, changes in LPO regarding day 0 were related with metals. In LPGC Port, DBF, EROD, and GST activity responses suggested the presence of undetermined contaminants which might have led to DNA damage. In Santander Bay, PAHs were related with EROD activity, organic and metal contamination was found to be associated with GR and GST activities and DNA damage presented significant (p < 0.05) induction. R. philippinarum was sensitive to sediment contamination at biochemical level. Biomarkers allowed chemical exposure and sediment quality assessment.  相似文献   

10.
This study investigated the effects of feedstock additives [polyvinyl chloride (PVC) and NaCl] and spray dryer additives (SiO2, CaCl2, NaHCO3) on heavy metal and fly ash removal efficiencies, and on particle size distribution of heavy metals. A spray dryer with an integrated fabric filter was used as an air pollution control device (APCD). Removal efficiencies for fly ash and heavy metals were greater than 95 and 90%, respectively. When additives of PVC or NaCl were used, the concentration of heavy metals distributed in fly ash apparently varied when the particle diameter was <1 microm. Although the effects of the additives SiO2, CaCl2, and NaHCO3 on the elemental size distribution of Cr were insignificant, these additives did slightly increase concentrations of Cd, Zn, and Pb partitioning in coarser particles (>1 microm).  相似文献   

11.
Addition of trace metals such as cadmium to soils in metal-rich sewage sludge may result in contamination of soil and groundwater. This study addresses the plot-scale transport of Cd derived from sewage sludge in a layered clay soil in an arid region of central Iran. Sewage sludge was enriched by Cd at rates of 38 and 80 mg kg(-1) and applied to experimental soil plots using a complete random block design with three replicates. Cadmium concentration was measured as a function of depth after 185 and 617 days. HYDRUS-1D and MACRO codes were calibrated for Cd transport in the site treated with 80 mg kg(-1) sewage sludge. Model parameters were estimated by inverse modelling using the SUFI-2 procedure. The site treated with 38 mg kg(-1) cadmium was used to test the calibrated models. Both convection-dispersion equation (CDE) and non-equilibrium CDE in HYDRUS-1D produced reasonable calibration results. However, the estimated Freundlich sorption constants were significantly smaller than those measured in a batch study. A site tracer experiment revealed the existence of substantial macropore flow. For this reason we applied MACRO to account for this process. The calibration and test results with MACRO were as good as those obtained by HYDRUS-1D with the difference that adsorption constants were much closer to the measured ones. This indicates that in HYDRUS-1D, the adsorption parameters were underestimated in order to allow a deeper transport of Cd which had actually occurred due to macropore flow. A 20-year simulation scenario depicting the long-term effect of sludge application indicated small risk of groundwater contamination. However, high concentration of Cd near the soil surface raises a concern about the crop Cd uptake which should be further investigated.  相似文献   

12.
Chen XM  Shen QR  Pan GX  Liu ZP 《Chemosphere》2003,50(6):703-706
The characteristics of nitrate horizontal transport in a major paddy soil, Wu Shan soil in the Tai Lake region, were studied. The concentration of nitrate during horizontal movement decreased with the increasing in distance from the tracer source, the change following a logarithmic function. The concentration of the nitrate was strongly correlated with the soil moisture content, as an exponential function. The horizontal transport velocity of nitrate was significantly correlated with the distance of the tracer source as power function. Therefore, the velocity of nitrate horizontal transport was controlled by the concentration gradient of nitrate, and soil water potential gradient from beginning to the 20 cm mark in the horizontal column. However, the velocity of nitrate horizontal was stable beyond 20 cm, where it was controlled by soil matric potential.  相似文献   

13.
14.
Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM10 concentrations above 150 μg m?3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM10 observations during September–November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM10, and 40% of PM10 for days with 24-h average concentrations above 150 μg m?3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.  相似文献   

15.
A semianalytical soil-pesticide transport model is formulated based on a compartmental approach to determine spatial and temporal variations of pesticide residues across a soil profile. The compartmental model is implemented by drawing an analogy between a series of continuous-flow stirred tank reactors and a soil horizon that consists of multiple perfectly mixed compartments. The analogy is strengthened by exploiting a relation between the compartment series and the conventional convective-dispersive equation (CDE) for vertical transport in the soil. Consequently, the number of compartments in the model formulation is not free, but dictated as a function of transport parameters. The model formulation allows consideration of arbitrary boundary value specifications and also, for some cases, spatially varying initial concentration profiles. Sorption kinetics is represented via a two-site model that involves a linear sorption isotherm and a first-order irreversible sorption or a radial diffusive penetrating model. For these three cases, analysis of the compartmental model allows the resultant concentration profiles to be expressed in terms of the Poisson distribution. When a nonlinear kinetic sorption model is used to simulate the sorption processes, an analytical solution is not found and a numerical approach is required.  相似文献   

16.
Building envelopes are usually comprised of several different layers of building materials, which may alternatively act as VOC sources or sinks depending on their emission and sorption potentials and the indoor environmental conditions as well. In this research, a whole room IAQ model consisting of multi-phase emission/sorption model for wall materials and room volume mass balance model catering for practical ventilation schemes was developed. The interactions of VOC and building materials composing different building components can be modeled based on fundamental mass transfer theories. The effects of various construction materials and ventilation strategies on the emission characteristics were investigated. Results show that measures like pre-occupancy flush-out, lead-time ventilation, etc. have substantial impacts on indoor VOC concentration and the model can successfully handle different building scenarios. Although more rigorous validation, in particular more experimental verification, is needed, the proposed model has proven to be valuable in handling different building scenarios. It is useful in analyzing the levels of contaminant buildup that would occur during no ventilation period for intermittent ventilation situations and in determining the amount of outdoor air and the lead-time period required to flush out the contaminants prior to occupancy. It is likely to be a simple routine tool for building owners, designers and operators to attain acceptable indoor VOC concentration level.  相似文献   

17.
Environmental Science and Pollution Research - Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due...  相似文献   

18.
A livestock odor dispersion model (LODM) was developed to predict odor concentration and odor frequency using routine hourly meteorological data input. The odor concentrations predicted by the LODM were compared with the results obtained from other commercial models (Industrial Source Complex Short-Term model, version 3, CALPUFF) to evaluate its appropriateness. Two sets of field odor plume measurement data were used to validate the model. The model-predicted mean odor concentrations and odor frequencies were compared with those measured. Results show that this model has good performance for predicting odor concentrations and odor frequencies.  相似文献   

19.
In atmospheric environment, the layout difference of urban buildings has a powerful influence on accelerating or inhibiting the dispersion of particle matters (PM). In industrial cities, buildings of variable heights can obstruct the diffusion of PM from industrial stacks. In this study, PM dispersed within building groups was simulated by Reynolds-averaged Navier-Stokes equations coupled Lagrangian approach. Four typical street building arrangements were used: (a) a low-rise building block with Height/base H/b = 1 (b = 20 m); (b) step-up building layout (H/b = 1, 2, 3, 4); (c) step-down building layout (H/b = 4, 3, 2, 1); (d) high-rise building block (H/b = 5). Profiles of stream functions and turbulence intensity were used to examine the effect of various building layouts on atmospheric airflow. Here, concepts of particle suspension fraction and concentration distribution were used to evaluate the effect of wind speed on fine particle transport. These parameters showed that step-up building layouts accelerated top airflow and diffused more particles into street canyons, likely having adverse effects on resident health. In renewal old industry areas, the step-down building arrangement which can hinder PM dispersion from high-level stacks should be constructed preferentially. High turbulent intensity results in formation of a strong vortex that hinders particles into the street canyons. It is found that an increase in wind speed enhanced particle transport and reduced local particle concentrations, however, it did not affect the relative location of high particle concentration zones, which are related to building height and layout.

Implications: This study has demonstrated the height variation and layout of urban architecture affect the local concentration distribution of particulate matter (PM) in the atmosphere and for the first time that wind velocity has particular effects on PM transport in various building groups. The findings may have general implications in optimization the building layout based on particle transport characteristics during the renewal of industrial cities. For city planners, the results and conclusions are useful for improving the local air quality. The study method also can be used to calculate the explosion risk of industrial dust for people who live in industrial cities.  相似文献   


20.
A three-dimensional chemical transport model (PMCAMx) is used to simulate PM mass and composition in the eastern United States for a July 2001 pollution episode. The performance of the model in this region is evaluated, taking advantage of the highly time and size-resolved PM and gas-phase data collected during the Pittsburgh Air Quality Study (PAQS). PMCAMx uses the framework of CAMx and detailed aerosol modules to simulate inorganic aerosol growth, aqueous-phase chemistry, secondary organic aerosol formation, nucleation, and coagulation. The model predictions are compared to hourly measurements of PM2.5 mass and composition at Pittsburgh, as well as to measurements from the AIRS and IMPROVE networks. The performance of the model for the major PM2.5 components (sulfate, ammonium, and organic carbon) is encouraging (fractional errors are in general smaller than 50%). Additional improvements are possible if the rainfall measurements are used instead of the meteorological model predictions. The modest errors in ammonium predictions and the lack of bias for the total (gas and particulate) ammonium suggest that the improved ammonia inventory used is reasonable. The significant errors in aerosol nitrate predictions are mainly due to difficulties in simulating the nighttime formation of nitric acid. The concentrations of elemental carbon (EC) in the urban areas are significantly overpredicted. This is a problem related to both the emission inventory but also the different EC measurement methods that have been used in the two measurement networks (AIRS and IMPROVE) and the actual development of the inventory. While the ability of the model to reproduce OC levels is encouraging, additional work is necessary to confirm that that this is due to the right reasons and not offsetting errors in the primary emissions and the secondary formation. The model performance against the semi-continuous measurements in Pittsburgh appears to be quite similar to its performance against daily average measurements in a wide range of stations across the Eastern US. This suggests that the skill of the model to reproduce the diurnal variability of PM2.5 and its major components is as good as its ability to reproduce the daily average values and also the significant value of high temporal resolution measurements for model evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号