共查询到20条相似文献,搜索用时 0 毫秒
1.
Gagné F André C Skirrow R Gélinas M Auclair J van Aggelen G Turcotte P Gagnon C 《Chemosphere》2012,89(5):615-622
Silver (Ag) nanoparticles are used as antimicrobial adjuvant in various products such as clothes and medical devices where the release of nano-Ag could contaminate the environment and harm wildlife. The purpose of this study was to examine the sublethal effects of nano-Ag and dissolved Ag on Oncorhynchus mykiss rainbow trout. Hepatic Ag contents and changes in gene expression were monitored to provide insights on bioavailability and mode of action of both forms of silver. Fish were exposed to increasing concentrations (0.06, 0.6 and 6 μg L−1) of nano-Ag (20 nm) and silver nitrate (AgNO3) for 96 h at 15 °C. A gene expression analysis was performed in the liver using a DNA microarray of 207 stress-related genes followed by a quantitative polymerase chain reaction on a selection of genes for validation. The biochemical markers consisted of the determination of labile zinc, metallothioneins, DNA strand breaks, lipid peroxidation (LPO) and vitellogenin-like proteins. The analysis of total Ag in the aquarium water revealed that nano-Ag was mostly aggregated, with 1% of the total Ag being dissolved. Nevertheless, hepatic Ag content was significantly increased in exposed fish. Indeed, dissolved Ag was significantly more bioavailable than nano-Ag only at the highest concentration with 38 ± 10 and 11 ± 3 ng Ag mg−1 proteins for dissolved and nano-Ag respectively. Exposure to both forms of Ag led to significant changes in gene expression for 13% of tested gene targets. About 12% of genes responded specifically to nano-Ag, while 10% of total gene targets responded specifically to dissolved Ag. The levels of vitellogenin-like proteins and DNA strand breaks were significantly reduced by both forms of Ag, but DNA break levels were lower with nano-Ag and could not be explained by the presence of ionic Ag. Labile zinc and the oxidized fraction of metallothioneins were increased by both forms of Ag, but LPO was significantly induced by nano-Ag only. A discriminant function analysis revealed that the responses obtained by biochemical markers and a selection of ten target genes were able to discriminate completely (100%) the effects of both forms of Ag. Exposure to nano-Ag involved genes in inflammation and dissolved Ag involved oxidative stress and protein stability. Hence, the toxicity of Ag will differ depending on the presence of Ag nanoparticles and aggregates. 相似文献
2.
Transport of silver nanoparticles (AgNPs) in soil 总被引:1,自引:0,他引:1
The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ∼30 nm yielded a stable suspension in water with zeta potential of −39 mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17 cm/min versus 0.66 cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations. 相似文献
3.
The ecotoxicity of silver nanoparticles (Ag-NPs) to wastewater biota, including ammonia oxidizing bacteria (AOB), is gaining increasing interest as the number of products containing Ag-NPs continues to rise exponentially and they are expected to accumulate in wastewater treatment plants. This research demonstrated that the addition order of Ag-NP and the media constituents had a profound influence on the stability of the Ag-NP suspension and the corresponding repeatability of results and sensitivity of Nitrosomonas europaea. N. europaea, a model AOB, was found to be extremely sensitive to ionic silver (Ag+) and two sizes of Ag-NPs (20 and 80 nm). Ag+ exposures resulted in the highest level of toxicity with smaller Ag-NPs (20 nm) being more toxic than larger Ag-NPs (80 nm). The increased sensitivity of N. europaea to smaller Ag-NPs was caused by their higher rates of dissolved silver (dAg) release, via dissolution, due to a greater surface area to volume ratio. dAg was shown to be responsible for the vast majority of the observed Ag-NP toxicity, as determined by abiotic Ag-NP dissolution tests. For the sizes of Ag-NP studied (20 and 80 nm), there appears to be a negligible nanoparticle-specific toxicity. This was further supported by similarities in inhibition mechanisms between Ag+ and Ag-NP, with both causing decreases in AMO activity and destabilization of the outer-membrane of N. europaea. Finally, equal concentrations of total silver were found to be tightly associated to both Ag+ and Ag-NP-exposed cells despite Ag-NP concentrations being five times greater, by mass, than Ag+ concentrations. 相似文献
4.
Ralf Kaegi Brian Sinnet Harald Hagendorfer Roger Vonbank Michael Burkhardt 《Environmental pollution (Barking, Essex : 1987)》2010,158(9):2900-2905
In this study we investigate the release of metallic silver nanoparticles (Ag-NP) from paints used for outdoor applications. A facade panel mounted on a model house was exposed to ambient weather conditions over a period of one year. The runoff volume of individual rain events was determined and the silver and titanium concentrations of 36 out of 65 runoff events were measured. Selected samples were prepared for electron microscopic analysis. A strong leaching of the Ag-NP was observed during the initial runoff events with a maximum concentration of 145 μ Ag/l. After a period of one year, more than 30% of the Ag-NP were released to the environment. Particles were mostly <15 nm and are released as composite colloids attached to the organic binders of the paint. Microscopic results indicate that the Ag-NP are likely transformed to considerably less toxic forms such as Ag2S. 相似文献
5.
Ferric and manganese binary oxide (FMBO) has been successfully used to remediate arsenic-polluted river, but there still lacks sufficient data to evaluate its effects on environments. The release behaviors of iron (Fe), manganese (Mn), and arsenic (As) in different Eh ranges were investigated for As-bearing FMBO sediment after remediating As-polluted DaSha River by FMBO. Under high Eh range (+550 to +400 mV), slight dissolution of Fe and Mn, which corresponded to 12.2% and 25.6%, and less than 5% of As release were observed in 336 h. Under lower Eh range (+50 to −100 mV), elevated extent of the dissolution of Mn and Fe were observed, which corresponded to as high as 61.3% and 70.1%. Under such conditions, the dissolution rate of Mn was higher than that of Fe. Furthermore, from the established relationship of As release and the dissolution of Fe and Mn, the release of As seemed dominated by the dissolution of Fe. X-ray photoelectron spectroscopy (XPS) analysis demonstrated the release of Fe, Mn, As(III), and As(V) after sodium ascorbate-treatment, and the re-adsorption of As(V), as indicated from the increased binding energy of As 3d from 44.78 to 45.83 eV. Surface element composition analysis indicated significant decrease of Mn from 3.22% to 0.54%, slight increase of Fe from 12.45% to 13.67%, and elevated ratio of As from 0.11% to 0.32% accordingly. The main reactions of Fe and Mn dissolution and the pathways of As release under different Eh ranges were also proposed. 相似文献
6.
Lanceleur L Schäfer J Chiffoleau JF Blanc G Auger D Renault S Baudrimont M Audry S 《Chemosphere》2011,85(8):1299-1305
The Gironde fluvial estuarine system is impacted by historic metal pollution (e.g. Cd, Zn, Hg) and oysters (Crassostrea gigas) from the estuary mouth have shown extremely high Cd concentrations for decades. Based on recent work (Chiffoleau et al., 2005) revealing anomalously high Ag concentrations (up to 65 mg kg−1; dry weight) in Gironde oysters, we compared long-term (∼1955-2001) records of Ag and Cd concentrations in reservoir sediment with the respective concentrations in oysters collected between 1979 and 2010 to identify the origin and historical trend of the recently discovered Ag anomaly. Sediment cores from two reservoirs upstream and downstream from the main metal pollution source provided information on (i) geochemical background (upstream; Ag: ∼0.3 mg kg−1; Cd: ∼0.8 mg kg−1) and (ii) historical trends in Ag and Cd pollution. The results showed parallel concentration-depth profiles of Ag and Cd supporting a common source and transport. Decreasing concentrations since 1986 (Cd: from 300 to 11 mg kg−1; Ag: from 6.7 to 0.43 mg kg−1) reflected the termination of Zn ore treatment in the Decazeville basin followed by remediation actions. Accordingly, Cd concentrations in oysters decreased after 1988 (from 109 to 26 mg kg−1, dry weight (dw)), while Ag bioaccumulation increased from 38 up to 116 mg kg−1, dw after 1993. Based on the Cd/Ag ratio (Cd/Ag ∼ 2) in oysters sampled before the termination of zinc ore treatment (1981-1985) and assuming that nearly all Cd in oysters originated from the metal point source, we estimated the respective contribution of Ag from this source to Ag concentrations in oysters. The evolution over the past 30 years clearly suggested that the recent, unexplained Ag concentrations in oysters are due to increasing contributions (>70% after 1999) by other sources, such as photography, electronics and emerging Ag applications/materials. 相似文献
7.
Jakub Mikiciuk Ewa Mikiciuk Anna Wrońska Arkadiusz Szterk 《Journal of environmental science and health. Part. B》2016,51(4):222-229
The application of nanotechnology in the agriculture and food sector is relatively recent compared to its usage in drug delivery or pharmaceuticals. Therefore, this paper presents a study of the effect of silver nanoparticles on probiotic bacteria based on the example of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Streptococcus thermophilus ST-Y31 isolated from fermented milk products. Probiotic bacteria are one of the most crucial groups of bacteria for the food industry, because of their claimed health-promoting properties. Studies have shown that the type and concentration of silver nanoparticle solutions have a significant impact on the tested probiotic bacteria which are profitable for the digestive system. In the presence of all tested silver nanoparticles, St. thermophilus ST-Y31 growth was inhibited significantly by the dilution method as opposed to the disk-diffusion method. Both the disk-diffusion and the dilution methods showed no significant differences between L. acidophilus LA-5 and B. animalis subsp. lactis BB-12. The concentrations 2 μg mL?1 and 0.25 μg mL?1 had the highest antibacterial activity and statistically significant impacts on the tested probiotic strains. To our knowledge, this is the first report on potential antimicrobial effect of nanosilver against the health-promoting probiotic bacteria L. acidophilus LA-5, B. animalis subsp. lactis BB-12 and St. thermophilus ST-Y31 isolated from fermented milk products. 相似文献
8.
Levels and distribution of polybrominated diphenyl ethers (PBDEs) in marine fishes from Chinese coastal waters 总被引:4,自引:0,他引:4
Concentrations of polybrominated diphenyl ethers (PBDEs) in yellow croakers (Pseudosciaena crocea) and silver pomfrets (Pampus argenteus) collected from nine coastal cities along the eastern China coastline were investigated. PBDE congeners with mono- to hexa-brominated substitutions were detected in the samples, indicating their ubiquitous distribution in the marine environment of China. The total PBDE concentration averaged 3.04 ng g−1 lipid wt, a level that was relatively lower than in other regions of the world, especially North America where Penta-BDE was extensively used. Geographically, the highest concentration of PBDEs was found in Xiamen, and the PBDE levels in yellow croakers were significantly higher than those in pomfrets in most of the selected cities, a pattern which may be related to the different feeding habits of the two species. The congener profiles of PBDEs were found to be different from the commonly detected pattern in fishes from other regions of the world (i.e., BDE47 > BDE99, BDE100 > BDE153, BDE154). BDE47 and BDE154 were the predominant congeners in both species, accounting for more than 60% of the total PBDE concentrations. The reasons for the relatively high proportion of BDE154 may be due to the debromination of higher brominated congeners such as BDE183 and BDE209 by these two species. 相似文献
9.
In the Ag(II)/Ag(I) based mediated electrochemical oxidation (MEO) process, the spent waste from the electrochemical cell, which is integrated with the scrubber columns, contains high concentrations of precious silver as dissolved ions in both the anolyte and the catholyte. This work presents an electrochemical developmental study for the recovery of silver from simulated waste water from Ag(II)/Ag(I) based MEO process. Galvanostatic method of silver deposition on Ti cathode in an undivided cell was used, and the silver recovery rate kinetics of silver deposition was followed. Various experimental parameters, which have a direct bearing on the metal recovery efficiency, were optimized. These included studies with the nitric acid concentration (0.75-6M), the solution stirring rate (0-1400 rpm), the inter-electrode distance between the anode and the cathode (2-8 cm), the applied current density (29.4-88.2 mA cm(-2)), and the initial Ag(I) ion concentration (0.01-0.2M). The silver recovered by the present electrodeposition method was re-dissolved in 6M nitric acid and subjected to electrooxidation of Ag(I) to Ag(II) to ascertain its activity towards Ag(II) electrogeneration from Ag(I), which is a key factor for the efficient working of MEO process. Our studies showed that the silver metal recovered by the present electrochemical deposition method could be reused repeatedly for MEO process with no loss in its electrochemical activity. Some work on silver deposition from sulfuric acid solution of different concentrations was also done because of its promising features as the catholyte in the Ag(II) generating electrochemical cell used in MEO process, which include: (i) complete elimination of poisonous NO(x) gas liberation in the cathode compartment, (ii) reduced Ag(+) ion migration across Nafion membrane from anolyte to catholyte thereby diminished catholyte contamination, and (iii) lower cell voltage and hence lesser power consumption. 相似文献
10.
Pasqualini S Tedeschini E Frenguelli G Wopfner N Ferreira F D'Amato G Ederli L 《Environmental pollution (Barking, Essex : 1987)》2011,159(10):2823-2830
Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O3) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O3 fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O3 fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O3, determined from the mRNA levels of the major allergens. We conclude that O3 can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. 相似文献
11.
Corn leaves homogenates were found to release bound (nonextractable) 14C residues from the aerial portion of matured corn plants. The 22,000 g pellet and 10,000 g supernatant fractions were the most active in releasing the bound 14C residues. The released 14C residues comprised mainly 2-OH analogues of the -monodealkylated analogues of atrazine. It is suggested that the enzymatic system in plants may cause metabolic conversion of bound residues. 相似文献
12.
Joseph R. Roscioli Scott C. Herndon Tara I. Yacovitch W. Berk Knighton Daniel Zavala-Araiza Matthew R. Johnson 《Journal of the Air & Waste Management Association (1995)》2018,68(7):671-684
Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical “fingerprint” associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions.
Implications: Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government’s goal of reducing methane emissions by 40–45% below 2012 levels within 8 yr. 相似文献
13.
M. P. Garcia-Pareja M. Monteoliva-Sanchez A. M. Garcia de la Paz E. Corominas M. L. Perez A. Ramos-Cormenzana 《Chemosphere》1987,16(10-12)
A total of 168 bacterial strains isolated from soil of the La Laguna area (Tenerife Island, Spain) were characterized and assayed for phenol-oxidase enzymes (as an indicator of lignolytic capability). 相似文献
14.
Hodson ME Valsami-Jones E Cotter-Howells JD Dubbin WE Kemp AJ Thornton I Warren A 《Environmental pollution (Barking, Essex : 1987)》2001,112(2):233-243
Metal-contaminated soil may be remediated in situ by the formation of highly insoluble metal phosphates if an appropriate phosphorus (P) source can be found. Leaching column experiments have been carried out to assess the suitability of bone meal as such a source. Bone meal additions reduced metal release from a contaminated soil, increased soil and leachate pH and decreased soil leachate toxicity. Minimal P leaching occurred from the soil. The data are consistent with a proton consuming bone meal (calcium phosphate) dissolution reaction followed by the formation of metal phosphates. Although, no metal phosphates were observed to form using X-ray diffraction of scanning electron microscopy this could be due to their low concentration. Relatively low (1:50 bone meal:soil) concentrations of fine (90-500 microns) bone meal would appear to be an effective treatment for metal-contaminated soils. 相似文献
15.
环境中抗生素的出现及其引起的危害正受到越来越多的关注。以高压汞灯为光源,选用较为广泛的抗生素土霉素(OTC)为处理对象。考察了初始质量浓度、反应过程中光照、催化剂投加量、溶液起始pH、溶液中DOM和NO-3对光催化降解的影响,研究了其光降解动力学。结果表明,TiO2光催化氧化法能够有效去除水中半微量的OTC,OTC的光降解过程符合一级反应动力学模型;UV/TiO2联用工艺对TOC也有很好的去除效果,反应90 min,TOC去除率可达74%;OTC的初始浓度从30 mg/L增大到90 mg/L,反应速率从0.0619 min-1降低到0.0130 min-1;随着光催化剂投加量的增大,光降解速率常数先增大后减小;增加溶液的pH值,速率常数逐渐减小;溶液中的DOM和NO-3也可以影响光降解效率。 相似文献
16.
为模拟自然生境下风生流对浅水湖泊沉积物的扰动并研究沉积物释放溶解性有机磷的特征,选取了某浅水湖泊沉积物为研究对象,对其人工污染溶解性有机磷,利用室内循环直流水槽的顶盖驱动流模拟湖泊风生流,考察静态和模拟风生流条件下,沉积物中溶解性有机磷释放特征。实验结果表明,静态条件下,沉积物中溶解性有机磷在实验初始释放量较大,0~10 h内释放浓度由0 mg·L-1达到0.12 mg·L-1,其后释放量缓慢增加,在152 h达到最大释放浓度0.35 mg·L-1后保持动态平衡。相对静态条件,模拟风生流作用下沉积物中溶解性有机磷释放速率明显增大,驱动流速为20 cm·s-1和38 cm·s-1的实验在起始时间段内,有机磷释放量是静态的2倍和3倍,释放达到平衡所需时间约是静态的1/10和1/24。但静态和动态条件下沉积物溶解性有机磷最终的释放平衡浓度相差不大,三者上覆水释放平衡浓度分别为:0.350、0.350和0.375 mg·L-1。暗示顶盖驱动流促进沉积物溶解性有机磷释放速率增大,并不能显著增加释放总量。动态实验条件下,不同驱动流速时,黏性层和紊流的上覆水中溶解性有机磷浓度变化不同。0~5 h实验期间,黏性层溶解性有机磷浓度与近底流速呈正相关性,中层紊流区域的浓度则与近底流速呈负相关性。 相似文献
17.
主要研究了2种沉积物粒径(35 μm和130 μm)及底床微地形对沉积物中内源溶解性有机磷释放的影响。选取某浅水湖泊沉积物为研究对象,对其人工污染溶解性有机磷,利用室内循环直流水槽顶盖驱动流模拟风生流,考察静态和风生流作用下,不同粒径沉积物及底床微地形对溶解性有机磷释放的影响。实验结果表明:在20 cm·s-1及38 cm·s-1 2种驱动流速条件下,35 μm粒径沉积物实验组中沉积物有机磷释放速率均大于130 μm实验组。对于35 μm粒径沉积物实验组,在20 cm·s-1驱动水流扰动下,沉积物有机磷的平衡释放量为0.44 mg·L-1,在38 cm·s-1驱动水流扰动下为0.49 mg·L-1;对于130 μm粒径沉积物实验组,在20 cm·s-1和38 cm·s-1 2种扰动下的沉积物有机磷平衡释放量分别为0.29 mg·L-1、0.30 mg·L-1;驱动流速的提高促使达到平衡状态时的释放量提高,小粒径沉积物,提高驱动流速更利于平衡释放量的提高,且高驱动流速缩短达到释放平衡所需的时间。在底床微地形(对地形的描述采用y=0.1sin2πx)实验中发现,静态条件下,波峰处上覆水有机磷浓度首先逐渐降低至0.18 mg·L-1,其后升高至0.40 mg·L-1并达到平衡,而波谷处则不断上升至极大值0.87 mg·L-1,其后下降至0.77 mg·L-1并达到平衡;而在20 cm·s-1的驱动水流扰动下,波峰波谷处上覆水有机磷浓度变化较为一致,均逐渐增长至极大值0.39 mg·L-1和0.45 mg·L-1后达到平衡状态。此外,在静态和动态条件下,波谷处上覆水中有机磷含量始终高于波峰处。 相似文献
18.
The stock of the catadromous European eel (Anguilla anguilla L.) continues to decline and there is growing evidence that poor health status due to contaminants might be a key element in this decrease. Organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) belong to the major threats to yellow eel in their growth habitat and their metabolites are detectable in the bile. Starting the silvering process eels undergo physiological and morphological changes including cessation of feeding and downstream migration back to their spawning grounds. Reduced feed intake results in a diminishment of bile production and induces accumulation of e.g. PAH-metabolites in bile. Therefore, the aim of the present study was to demonstrate the impact of silvering on biliary PAH metabolite concentrations and to utilize normalization procedures to overcome silvering related accumulation effects of PAH-metabolites in eel bile. We investigated the hydroxyl-metabolites of pyrene (1-OH Pyr) and phenantrene (1-OH Phen) in the bile of different maturation stages of eels (silvering index I-V) from nine German rivers. We detected increasing absolute PAH metabolite levels in bile during the silvering process. The highest rise could be observed at the transition from pre migration stage III to the migrating stage IV, suggesting the onset of cessation of feeding at this stage. A cessation bias in PAH metabolite measurement could be diminished by normalization of absolute values against bile pigments (A380, biliverdin). In conclusion, we demonstrated the impact of silvering on PAH metabolite concentrations in eel bile and present suitable normalization procedures to overcome silvering related accumulation effects. Thus, for a future eel monitoring we recommend (1) to regularly monitor PAH metabolites in bile, (2) to determine silvering index of eel and (3) to normalize PAH metabolite values in bile based on maturation/silvering stages. The knowledge of the silvering stage is mandatory for an unbiased evaluation of PAH contamination of European eel towards an international harmonized eel monitoring program. 相似文献
19.
The role of detrital quantity and quality in forest floor N leaching was investigated in a litter manipulation experiment at a deciduous forest under chronic N deposition. Dissolved inorganic nitrogen (DIN) comprised the bulk of nitrogen leaching from the control except a short period following autumn litterfall. The dominance of DIN was strengthened by litter exclusion, whereas the addition of glucose or fresh litter led to a small increase in dissolved organic nitrogen (DON) and either a temporary or gradual reduction in NO(3)(-) release, respectively. Changes in soluble organic C and microbial C in the forest floor implied that increased availability of C sources might have enhanced microbial immobilization of DIN, either temporarily following glucose application or over the longer term following litter addition. The results suggest that detrital quantity and quality can play a crucial role in determining the balance between DIN and DON in N-enriched forest soils. 相似文献
20.
水葫芦对滇池底泥氮磷营养盐释放的影响 总被引:1,自引:0,他引:1
为了探讨水葫芦对富营养湖泊底泥氮磷营养盐释放的影响,通过原位采集滇池柱状底泥,以蒸馏水为上覆水,进行了25d的室内静态模拟实验。实验比较了水葫芦处理组和空白对照组底泥氨氮(NH4-N)、硝态氮(NO3^-N)、溶解性总氮(DTN)、正磷酸盐(PO4^3--P)等的释放特征。结果表明,与对照组相比,水葫芦处理组上覆水溶解氧、pH显著性降低,而PO4^3-P浓度显著性升高;在实验前2d,水葫芦处理组上覆水NH4^+N和DTN浓度显著性高于对照组,而在5~25d时,其显著性低于对照组。根据上覆水营养盐浓度、水葫芦植株吸收营养盐总量,推算底泥氮磷营养盐释放的平均速率,表明水葫芦加速了滇池底泥氮、磷营养盐的释放速率,处理组氮、磷释放速率分别为对照组的5.3~170.2和1.5~21.6倍。 相似文献