首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Migrating feeding aggregations (or fronts) of sea urchins can dramatically alter subtidal seascapes by destructively grazing macrophytes. While direct effects of urchin fronts on macrophytes (particularly kelps) are well documented, indirect effects on associated fauna are largely unknown. Secondary aggregations of predators and scavengers form around fronts of Strongylocentrotus droebachiensis in Nova Scotia. We recorded mean densities of the sea stars Asterias spp. (mainly A. rubens) and Henricia sanguinolenta of up to 11.6 and 1.7 individuals 0.25 m−2 along an urchin front over 1 year. For Asterias, mean density at the front was 7 and 15 times greater than in the kelp bed and adjacent barrens, respectively. There was strong concordance between locations of peak density of urchins and sea stars (Asterias r = 0.98; H. sanguinolenta r = 0.97) along transects across the kelp–barrens interface, indicating that sea star aggregations migrated along with the urchin front at rates of up to 2.5 m per month. Size–frequency distributions suggest that Asterias at the front were drawn from both the barrens (smaller individuals) and the kelp bed (larger individuals). These sea stars fed intensively on mussels on kelp holdfasts and in adjacent patches. Urchin grazing may precipitate aggregations of sea stars and other predators or scavengers by incidentally consuming or damaging mussels and other small invertebrates, and thereby releasing a strong odor cue. Consumption of protective holdfasts and turf algae by urchins could facilitate feeding by these consumers, which may obtain a substantial energy subsidy during destructive grazing events.  相似文献   

2.
The capacity for long-distance dispersal is an important factor in determining the spread of invasive species. For algae, positive buoyancy generally is correlated with increased dispersal potential, and the light environment has been previously identified as a possible determinant of buoyancy in several species. We examined the effect of light intensity on the buoyancy of fragments of the invasive green alga Codium fragile ssp. fragile. Under natural and controlled conditions, the buoyancy of samples taken from the thallus tip was higher than those from near the holdfast. Both laboratory and field experiments also showed that buoyancy was dynamic and switched from positive to negative under reduced light intensity, but this change required several days. We also observed seasonal changes in buoyancy, presumably due to natural variations in light intensity, with the buoyancy of fragments washed up on the shore highest in mid-summer. These results show that buoyancy is a dynamic property of the C. fragile ssp. fragile thallus and suggest that buoyant fragments contribute to long-range dispersal and accelerated regional spread of this invader. This finding suggests that dispersal is more likely during conditions of high light intensity and illustrates the need to understand how variations in the natural environment can affect the dispersal potential of invasive species.  相似文献   

3.
Although dimethylsulfoniopropionate (DMSP) has a variety of functions in marine macroalgae including that of a cryoprotectant, an osmolyte, a way to remove excess sulfur and energy, an antioxidant, and an allelopathic precursor, the latter two functions are believed to be the most important in Ulva lactuca L. (=U. fenestrata) in intertidal populations on the coast of Washington state, USA. The present study found significant variation in DMSP concentrations among U. lactuca collected in May 2005 from six sites ranging from 47°54.45′N (Possession Point, Whidbey Island, WA, USA) to 48°30.55′N (Shannon Point Beach, Anacortes, WA, USA), and also among individuals within sites, and among tissues (basal tissues near the holdfast, middle of the blades, and tips). Concentrations ranged from 37 to 224 μmol g−1 fresh mass (FM). In several 10-day experiments between July 2001 and August 2004 with U. lactuca collected from several places on the coast of Washington, the effects of nutrient level (DIN), light intensity and wavelength, and grazing by the herbivorous gastropod Lacuna vincta, were examined. None of these manipulations resulted in DMSP concentrations that differed significantly from controls, and variance in DMSP concentrations within each experiment was very low. Although DMSP concentrations in U. lactuca may be affected by factors not tested in these experiments, it is also possible that the observed spatial differences reflect constitutive genotypic or phenotypic differences among geographically separated U. lactuca populations or among cryptic Ulva species. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

4.
While qualitative observations of jellyfish intraguild predation abound in the literature, there are only few rate measurements of these interactions. We quantified predation rates among two common jellyfish in northern boreal waters, Cyanea capillata and its prey Aurelia aurita, both of which also feed on crustacean zooplankton and fish larvae. A series of incubation experiments using a wide range of prey concentrations (0.38–3.8 m−3) in large containers (2.6 m3) was carried out. By replenishing the prey continuously as they were captured we maintained a nearly constant prey concentrations. Ingestion rates increased linearly up to prey concentrations of 1.92 m−3, yielding maximum clearance rates of ∼2.37 ± 0.39 m3 predator−1 h−1 for C. capillata predators 16 ± 2.3 cm in diameter. Mean ingestion rate at saturated prey concentrations (1.92–3.85 m−3) was 4.01 ± 0.78 prey predator−1 h−1. Behavioral observations suggested that predators did not alter their swimming behavior during meals, and thus that feeding rates were generally handling limited rather than encounter limited. Predators captured more prey than needed, and semi-digested prey was often discarded when fresh prey was encountered.  相似文献   

5.
Grapsoid crabs of the genera Planes and Plagusia are commonly referred to as “rafting crabs” due to their propensity to live on flotsam and pelagic marine animals. Planes minutus and Planes major (=Planes cyaneus) are epibionts of sea turtles. Occurrences of grapsoid crabs in the genera Planes and Plagusia were evaluated on a total of 27 olive ridley sea turtles, Lepidochelys olivacea, from the eastern tropic Pacific (1998–2001) and the Hawaiian Islands (2002) captured in July–December each year. This is the first report of Planes marinus and Plagusia squamosa on sea turtles, and of P. major, P. marinus, and P. squamosa in sympatry on a confined substrate. Stomach content analyses showed P. major and P. marinus consumed a variety of neuston and marine vegetation, with the former consuming considerably more animal material. Epibiotic P. squamosa consumed mostly plant material. The three Planes species had distinctive differences in gastric mill tooth morphology. The versatile mouthparts of P. marinus are described and resemble those of their congeners. Most female P. major and P. marinus collected were ovigerous and present in all survey months.  相似文献   

6.
Morphology, elemental content and isotopic composition of leaves of the seagrasses Posidonia oceanica and Cymodocea nodosa were highly variable across the Illes Balears, a Spanish archipelago in the western Mediterranean, and varied seasonally at one site in the study area. The data presented in this paper generally expand the reported ranges of nitrogen, phosphorus, iron and arsenic content and δ13C and δ15N for these species. Nitrogen and phosphorus content of P. oceanica leaves also showed significant seasonal variability; on an annual basis, P. oceanica leaves averaged 1.55% N and 0.14% P at this monitoring site. Both N and P were more concentrated in the leaves in winter than in summer, with winter maxima of 1.76% N and 0.17% P and summer minima of 1.34% N and 0.11% P. There was no significant annual pattern observed in the δ13C of P. oceanica leaves, but there was a repeated 0.6‰ seasonal fluctuation in δ15N. Mean annual δ15N was 4.0‰; δ15N was lowest in May and it increased through the summer and autumn to a maximum in November. Over the geographic range of our study area, there were interspecific differences in the carbon, nitrogen and phosphorus content of the two species. Posidonia oceanica N:P ratios were distributed around the critical value of 30:1 while the ratios for C. nodosa were lower than this value, suggesting P. oceanica we collected was not consistently limited by N or P while C. nodosa tended toward nitrogen limitation. Nutrient content was significantly correlated to morphological indicators of plant vigor. Fe content of P. oceanica leaves varied by a factor of 5×, with a minimum of 31.1 μg g−1 and a maximum of 167.7 μg g−1. Arsenic was present in much lower tissue concentrations than Fe, but the As concentrations were more variable; the maximum concentration of 1.60 μg g−1 was eight times as high as the minimum of 0.20 μg g−1. There were interspecific differences in δ13C of the two species; C. nodosa was consistently more enriched (δ13C = −7.8 ± 1.7‰) than P. oceanica (−13.2 ± 1.2‰). The δ13C of both species decreased significantly with increasing water depth. Depth related and regional variability in the δ13C and δ15N of both species were marked, suggesting that caution needs to be exercised when applying stable isotopes in food web analyses.  相似文献   

7.
Short-term (3 h) changes in concentration of chlorophylls and their derivatives in stage V Pseudodiaptomus euryhalinus and their fecal material were followed by HPLC during a 24 h experiment. Copepodites were fed with the prasinophyte Tetraselmis suecica. Intact chlorophyll a and b were found in animals and fecal material and had similar dynamics of accumulation over time. The extent of transformation of chlorophyll a and b to colorless compounds was different with chlorophyll a being more extensively degraded. Additionally, several chlorophyll derivatives (pheophytin and pyropheophytin-like pigments) were found. Pyropheophytin a was the most abundant followed by pheophytin b, pheophytin a, and pheophorbide a. Relative amounts of pheopigments were different in copepodites and fecal material, and pheophytin a, pheophorbide a, and pheophytin b concentrations were low and variable. The amount of ingested chlorophyll recovered as chlorophyll a and its derivatives in fecal and copepodite pools was generally low (<5%), with one exception occurring after 9 h, when it accounted for >70%. These data suggest individual pheopigments are produced at different rates and that chemical or enzymatic mechanisms in the gut of copepodites act on the two chlorophylls in different ways.  相似文献   

8.
Corals harbouring genetically mixed communities of endosymbiotic algae (Symbiodinium) often show distribution patterns in accordance with differences in light climate across an individual colony. However, the physiology of these genetically characterised communities is not well understood. Single stranded conformation polymorphism (SSCP) and real time quantitative polymerase chain reaction (qPCR) analyses were used to examine the genetic diversity of the Symbiodinium community in hospite across an individual colony of Acropora valida at the spatial scale of single polyps. The physiological characteristics of the polyps were examined prior to sampling with a combined O2 microelectrode with a fibre-optic microprobe (combined sensor diameter 50–100 μm) enabling simultaneous measurements of O2 concentration, gross photosynthesis rate and photosystem II (PSII) quantum yield at the coral surface as a function of increasing irradiances. Both sun- and shade-adapted polyps were found to harbour either Symbiodinium clade C types alone or clades A and C simultaneously. Polyps were grouped in two categories according to (1) their orientation towardps light, or (2) their symbiont community composition. Physiological differences were not detected between sun- and shade-adapted polyps, but O2 concentration at 1,100 μmol photons m−2 s−1 was higher in polyps that harboured both clades A and C symbionts than in polyps that harboured clade C only. These results suggest that the acclimatisation of zooxanthellae of individual polyps of an A. valida colony to ambient light levels may not be the only determinant of the photosynthetic capacity of zooxanthellae. Here, we found that photosynthetic capacity is also likely to have a strong genetic basis and differs between genetically distinct Symbiodinium types.  相似文献   

9.
The photosynthetic functionality in chloroplasts in the two sacoglossan molluscs Placida dendritica and Elysia viridis from the Trondheim fjord in Norway was studied. P. dendritica and E. viridis with no functional chloroplasts in their digestive system were introduced to the green macroalgae Codium fragile. Our results showed that P. dendritica was not able to retain functional (photosynthetic) chloroplasts. Transmission electron microscopy (TEM) showed that chloroplasts were directly digested when phagocytosed into the digestive cells. Four stages of chloroplast degradation were observed. A corresponding operational quantum yield of chl a fluorescence (ΦPSII ~ 0) indicated autofluorescence, and the presence of highly degraded chl a supported these observations. In contrast, E. viridis was able to retain functional chloroplasts. For this species it took only 1 week for the chloroplasts inside the digestive cells to acquire the same ΦPSII and light utilisation coefficient (α) as C. fragile kept under the same light conditions. Data for 8 days showed a 2–6-fold increase in the maximum photosynthetic rate (P max) and light saturation index (E k) relative to C. fragile. This increase in available light was probably caused by a reduced package effect in the digestive gland of E. viridis relative to C. fragile, resulting in a partial photoacclimation response by reducing the turnover time of electrons (τ). Isolated pigments from C. fragile compared to E. viridis showed the same levels of photosynthetic pigments (chl a and b, neoxanthin, violaxanthin, siphonaxanthin, siphonein and β,ε-carotene) relative to μg chl a (w:w), indicating that the chloroplasts in E. viridis did not synthesise any new pigments. After 73 days of starvation, it was estimated that chloroplasts in E. viridis were able to stay photosynthetic 5–9 months relative to the size of the slugs, corresponding to an RFC of level 8 (a retention ability to retain functional chloroplasts (RFC) for more than 3 months). The reduction in ΦPSII, P max and α as a function of time was caused by a reduction in chloroplast health and number (chloroplast thylakoid membranes and PSII are degraded). These observations therefore conclude that chloroplasts from C. fragile cannot divide or synthesise new pigments when retained by E. viridis, but are able to partially photoacclimate by decreasing τ as a response to more light. This study also points to the importance of siphonaxanthin and siphonein as chemotaxonomic markers for the identification of algal sources of functional chloroplasts.  相似文献   

10.
Fernando Gómez 《Marine Biology》2007,151(5):1899-1906
The morphology and distribution of the diatoms Chaetoceros tetrastichon and Ch. dadayi as epiphytes on the loricae of the tintinnids Eutintinnus apertus and E. pinguis investigated in the open waters of the Pacific Ocean. The Eutintinnus–Chaetoceros consortia was encountered in 38 of the 52 sampling stations from 34°N to 33°S, and together were among represented the most wide-spread species. The abundance was low with a maximum of 32 consortia l−1 and E. apertus was often the most abundant species of the genus. The free-living Eutintinnus congeneric species showed a wider vertical distribution, whereas E. apertus–Chaetoceros tended to be near the surface. The success of E. apertus in consortium with Chaetoceros may be due to increase of the clearance rate and/or the lower susceptibility to predation. Chaetoceros modifies its morphology to adapt the epiphytic life, especially Ch. dadayi. The shorter curved setae may facilitate the transfer to the lorica of the daughter tintinnid after the cell division. The free-living Ch. tetrastichon and Ch. dadayi are very rare and Chaetoceros remained attached to empty loricae or encysted tintinnid cells. This suggests that the Eutintinnus–Chaetoceros consortium is obligate for the success of the diatom and renders the tintinnid more competitive versus congeneric species.  相似文献   

11.
To better understand sublethal effects of harmful algal blooms (HABs) on fish, mummichog, Fundulus heteroclitus (L.), were exposed in the laboratory to varying, environmentally relevant densities of Pfiesteria shumwayae (Glasgow et Burkholder, CCMP 2089, dinoflagellate) and Chaetoceros concavicornis (Mangin, CCMP 169, diatom). Two experiments were conducted during the spring of 2003 and 2004 to quantitatively examine the effects of acute (2 h) P. shumwayae and C. concavicornis algal exposure on mummichog brain activity using c-Fos expression as a marker of altered neuronal activity. Brains from HAB-exposed fish were removed, sectioned, and stained using immunocytochemistry prior to quantifying neuronal c-Fos expression. Fish exposed to P. shumwayae and C. concavicornis showed increased c-Fos expression compared to unexposed control fish. A significant dose-response relationship was observed, with increased labeling in brains of fish exposed to higher cell densities for both HAB species tested (P ≤ 0.01). Increased labeling was found in the telencephalon, optic lobes, midbrain, and portions of the medulla. The greatest increases in expression were observed in the telencephalon of P. shumwayae-exposed fish, and in the telencephalon and optic lobes of C. concavicornis-exposed fish (P ≤ 0.01). These increases in c-Fos expression are consistent with other physical and chemical stress exposures observed in fish. Neuronal stress, evidenced by c-Fos expression, demonstrates a sublethal effect of exposure and changes in brain activity in fish exposed to HAB species.  相似文献   

12.
The euphausiids Thysanoessa inermis (Kroyer 1846), Thysanoessa spinifera (Holmes 1900), and Euphausia pacifica (Hansen 1911) are key pelagic grazers and also important prey for many commercial fish species in the Gulf of Alaska (GOA). To understand the role of the euphausiids in material flows in this ecosystem their growth rates were examined using the instantaneous growth rate (IGR) technique on the northern GOA shelf from March through October in 2001–2004. The highest mean molting increments (over 5% of uropod length increase per molt) were observed during the phytoplankton bloom on the inner shelf in late spring for coastal T. inermis, and on the outer shelf in summer for T. spinifera and more oceanic E. pacifica, suggesting tight coupling with food availability. The molting rates were higher in summer and lower in spring, for all species and were strongly influenced by temperature. Mean inter-molt periods calculated from the molting rates, ranged from 11 days at 5°C to 6 days at 8°C, and were in agreement with those measured directly during long-term laboratory incubations. Growth rate estimates depended on euphausiid size, and were close to 0 in early spring, reaching maximum values in May (0.123 mm day−1 or 0.023 day−1 for T. inermis) and July (0.091 mm day−1 or 0.031 day−1 for T. spinifera). The growth rates for E. pacifica remained below 0.07 mm day−1 (0.016 day−1) throughout the season. The relationship between T. inermis weight specific growth rate (adjusted to 5°C) and ambient chlorophyll-a concentration fit a Michaelis–Menten curve (r 2 = 0.48) with food saturated growth rate of 0.032 day−1 with half saturation occurring at 1.65 mg chl-a m−3, but such relationships were not significant for T. spinifera or E. pacifica.  相似文献   

13.
The maternally inherited bacterium Wolbachia pipientis generates strong reproductive incompatibilities between uninfected females and infected males (cytoplasmic incompatibility), significantly reducing both female and male reproductive success. Such fitness costs are thought to place selective pressure on hosts to evolve pre-copulatory preferences for mating with compatible mates, thereby enabling them to avoid the reproductive incompatibilities associated with Wolbachia. Therefore, uninfected females are predicted to prefer mating with uninfected males, whereas infected males are predicted to prefer mating with infected females. Despite these predictions, previous investigations of pre-copulatory mate preferences in Wolbachia-manipulated Drosophila have not found evidence of female preference for uninfected or compatible males. However, none of these studies utilised a design where focal individuals are provided with a simple choice in a relatively non-competitive situation. We examined both female and male pre-copulatory mate preference based on mate infection status in Drosophila simulans and D. melanogaster using simple choice assays involving between 30–50 replicates per treatment. Although we found no evidence of female pre-copulatory mate preferences in either species, male D. simulans exhibited some preference for mating with females of the same infection status. However, this preference was not evident when we repeated the experiment to confirm this finding. Consequently, we conclude that neither male nor female D. melanogaster and D. simulans exhibit significant Wolbachia-associated pre-copulatory mate preferences.  相似文献   

14.
This study investigated the response of cyprids of the barnacle Amphibalanus amphitrite to 23 strains of laboratory cultured periphytic diatoms isolated from microbial biofilms that formed on glass slides immersed in Tachibana bay, Nagasaki, and those from mass-production tanks in the Fisheries Center of Nagasaki City, Japan. In addition, periphytic diatoms were subjected to various treatments, in order to investigate the nature of the chemical cue in periphytic diatoms. Cyprids of A. amphitrite responded differently to the 23 different periphytic diatom strains and settled in high percentages on Cocconeis sp. and Navicula ramosissima strain A. On the other hand, nine strains of diatoms significantly inhibited settlement. The settlement inducing activity of N. ramosissima strain A increased linearly with diatom density, and its activity was enhanced by culturing the diatom under a bacteria-free condition, suggesting that specific diatom species, i.e., N. ramosissima strain A, may play an important role on larval settlement of the barnacle. Subjecting N. ramosissima strain A biofilm to hydrochloric acid (HCl) and ethanol (EtOH) treatments or heating it at 100°C did not inactivate the film, indicating that the settlement cue was a stable surface bound compound that did not decompose from the above treatments. Moreover, of the various lectins, enzymes, and drugs [H5IO6 and sodium dodecyl sulfate or (SDS)] used, only Lentil Agglutinin (LCA) treatment of N. ramosissima strain A biofilm resulted in the reduction its settlement inducing activity. A positive correlation was observed between the settlement inducing activity and the amount of LCA conjugated fluorescein isothiocyanate (FITC-LCA) of N. ramosissima strain A. On the other hand, subjecting biofilms of N. ramosissima strain B, an inactive strain, to various types of treatments resulted in the induction of A. amphitrite larval settlement but LCA treatment also reduced the activity of these treated N. ramosissima strain B biofilms. These findings suggest that a cue containing an LCA-binding sugar chain is present in both A and B strains of N. ramosissima but the large amount of mucous substance covering N. ramosissima strain B biofilm probably makes the sugar chain containing active subunit in strain B unavailable to A. amphitrite cyprids. In conclusion, periphytic diatoms such as N. ramosissima play an important role in larval settlement of the barnacle A. amphitrite. The cue in the diatom was an LCA-binding sugar chain(s) compound that may have similarities to the settlement inducing protein complex (SIPC) from adult shell of the barnacle.  相似文献   

15.
The venomous striped eel catfish Plotosus lineatus was first recorded in the Mediterranean in 2002. Within 1–3 years, it has spread throughout the entire Israeli coast. We have studied its spatiotemporal distribution patterns via trawl surveys in order to determine the scale and extent of this invasion. Findings indicate that a population explosion has occurred, and the catfish now inhabits all sandy and muddy substrates up to ca 80 m. P. lineatus was found to recruit in autumn in the Mediterranean and displays similar or improved growth patterns and condition factor compared to those found in its native habitat. We discuss the possible ecological mechanisms responsible for its success: Benthic invaders are among its main prey items, suggesting an invasional meltdown process. We also point to the decline of indigenous species using its trophic and behavioral–ecological niche and hypothesize that they might be outcompeted and displaced by the catfish.  相似文献   

16.
Summary. For butterflies to be efficient foragers, they need to be able to recognize rewarding flowers. Flower signals such as colours and scents assist this recognition process. For plant species to attract and keep butterflies as pollinators, species-specific floral signals are crucial. The aim of this study is to investigate foraging responses to floral scents in three temperate butterfly species, Inachis io L. (Nymphalidae), Aglais urticae L. (Nymphalidae), and Gonepteryx rhamni L. (Pieridae), in behavioural choice bioassays. The butterflies were allowed to choose bet-ween flower models varying in scent and colour (mauve or green). Flowers or vegetative parts from the plants Centaurea scabiosa L. (Asteraceae), Cirsium arvense (L.) (Asteraceae), Knautia arvensis (L.) (Dipsacaceae), Buddleja davidii Franchet (Loganicaeae), Origanum vulgareL. (Lamiaceae), Achillea millefolium L. (Asteraceae), and Philadelphus coronarius L. (Hydrangiaceae) were used as scent sources. All visits to the models — those that included probing and those that did not — were counted, as was the duration of these behaviours. Both flower-naive and flower-experienced (conditioned to sugar-water rewards, the colour mauve, and specific floral scents) butterflies were tested for their preference for floral versus vegetative scents, and to floral scent versus colour. The butterflies were also tested for their ability to switch floral scent preferences in response to rewards. Flower-naive butterflies demonstrated a preference for the floral scent of the butterfly-favourable plants C. arvense and K. arvensis over the floral scent of the non-favourable plants Achillea millefolium (Asteraceae), and Philadelphus coronarius cv. (Hydrangiaceae). Most of the butterflies that were conditioned to floral scents of either C. arvense, K. arvensis, or B. davidii readily switched theirfloral scent preferences to the one most recently associated with reward, thus demonstrating that floral scent constancy is a result from learning. These findings suggest that these butterflies use floral scent as an important cue signal to initially identify and subsequently recognize and distinguish among rewarding plants. Received 2 September 2001; accepted 9 September 2002.  相似文献   

17.
Juvenile Pacific giant lions-paw scallops Nodipecten subnodosus were fed the toxic dinoflagellate Gymnodinium catenatum, a producer of paralytic shellfish poison (PSP), supplied with Isochrysis galbana (a nontoxic microalgae). Short-term (<24 h) experiments were performed to determine clearance and ingestion rates of G. catenatum. Kinetics of PSP was examined in longer-term experiments (>2 days). At high food concentrations, juvenile scallops showed production of pseudofeces, partial shell valve closure, and reduction in feeding. According to HPLC analysis, the only toxins present in the dinoflagellate G. catenatum and in the scallops were the gonyautoxins (GTXs), except in the labial palps and digestive gland, where trace amounts of saxitoxin (STX) were present in scallops. These tissues could play an important role in toxin biotransformation. The ranking of toxin concentration in tissues was: digestive gland > labial palps > intestine > gills > mantle > adductor muscle, where the total contribution of viscera was more than 80% of the total toxin body burden. Juvenile scallops exhibited no apparent detrimental physiological responses during the long-term feeding experiment. The dinoflagellate may contribute nutrients to the scallop, in addition to the microalgae I. galbana. The dinoflagellate may enhance cell uptake and byssus production. Once PSP accumulated during the first 12 days, it was slowly eliminated. The limited capacity for accumulating toxins in the adductor muscle favors domestic marketing of scallops.  相似文献   

18.
After its introduction, the green alga Codium fragile (Sur.) Hariot ssp. tomentosoides (van Goor) Silva has spread widely on several temperate-zone, rocky shores where non-weedy conspecific subspecies occur (N.E. Atlantic, N.E. Pacific, S. Pacific). To determine how phenologically and morphologically distinctive the invasive alga was relative to native subspecies, I compared marine intertidal populations of C. fragile ssp. tomentosoides and the native C. fragile ssp. novaezelandiae (J. Ag.) Silva (hereafter referred to as ssp. tomentosoides and ssp. novae-zelandiae respectively on New Zealand shores in 1992, 1993 and 1995. On the North Island, the invasive ssp. tomentosoides is sparsely distributed on low intertidal benches on wave-protected shores in the Hauraki Gulf (east coast) in spring and summer, and thalli die back to the perennial holdfast in autumn. In contrast, the native ssp. novaezelandiae forms dense beds within the low intertidal mussel zone on wave-swept shores of Maori Bay (west coast), and fronds are perennial. Whereas ssp. tomentosoides has only a few fronds arising from the spongy basal hold-fast, ssp. novae-zelandiae thalli are composed of many fronds. The ssp. tomentosoides from the Hauraki Gulf is significantly more branched than comparably sized native conspecifics from Maori Bay. These phenological and morphological differences were used to predict the subspecific identity of C. fragile from three other locations on the North Island, two locations on the South Island, and four locations on S.E. Australian shores; microscopic examination of utricles was used to check the predictions. Seasonality and number of fronds per thallus are the most reliable characters for field identification of native vs invasive subspecies: perennial intertidal thalli with large numbers of fronds are indicative of native subspecies for different geographic regions.  相似文献   

19.
Fine-scale movement patterns in penaeid prawns are rarely observed in situ, but are essential in understanding habitat use, foraging, and anti-predator behaviour. Acoustic telemetry was applied to examine the activity, space utilization, and habitat use of the eastern king prawn Penaeus (Melicertus) plebejus, at small temporal and spatial scales. Tracking of sub-adult P. plebejus (n = 9) in Wallagoot Lake (36.789°S, 149.959°E; 23 April–12 May 2009) and calculation of a minimum activity index (MAI) revealed high variation in activity rates across diel periods and in different habitats. Elevated activity rates and movement indicated foraging in unvegetated habitats during the night. Areas within the 95 and 50% space utilization contours averaged 2,654.1 ± 502.0 and 379.9 ± 103.9 m2, respectively, and there was a significant negative relationship between these areas and prawn activity rates in unvegetated habitats. This study provides the first estimates of prawn activity rates and space utilization in the field. Application of acoustic telemetry can increase knowledge of prawn movements and their interactions with other marine species in different habitats.  相似文献   

20.
Hydrodynamic forces are an important determinant of subtidal community structure, particularly when they limit the distribution and foraging ability of mobile consumers. We examined the effect of wave action on the rate of movement and destructive grazing of a kelp bed by the green sea urchin (Strongylocentrotus droebachiensis) under field conditions. We measured density and rate of advance at fixed intervals along ∼100 m of a grazing front over 1 year, and quantified individual movement rates in the barrens 5–10 m behind the urchin front using a time-lapse videography. Seasonal variation in the mean rate of advance of the front (range: 0–4 m month−1) was explained by changes in urchin density at the front (120–360 individuals m−2), which in turn varied inversely with significant wave height (0.5–2 m). Water temperature (0.8–17.6°C) had no effect on the rate of advance or on urchin density (aggregation) at the front, except when temperature exceeded 17°C. Movement of individual urchins also was affected by wave action: we observed a significant decrease in speed and displacement of urchins with increasing significant wave height. Wave action had no effect on the proportion of urchins moving or the degree of linearity of their movements. We propose that the decrease in urchin density at the front associated with increased wave action, results from de-aggregation, which reduces the risk of dislodgement, combined with a reduction in urchin movement in barrens, which supplies new urchins to the front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号