首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Honey bee foragers specialize on collecting pollen and nectar. Pollen foraging behavior is modulated by at least two stimuli within the nest: the presence of brood pheromone and young larvae and the quantity of stored pollen. Genetic variation in pollen foraging behavior has been demonstrated repeatedly. We used selected high and low pollen-hoarding strains of bees that differ dramatically in the quantity of pollen collected to determine if the observed differences in foraging could be explained by differential responses to brood stimuli. Workers from the high and low pollen-hoarding strains and wild-type bees were co-fostered in colonies with either brood or no brood. As expected based on previous studies, returning high pollen-hoarding foragers collected heavier pollen loads and lighter nectar loads than low pollen-hoarding bees. Effects of brood treatment were also observed; bees exposed to brood collected heavier pollen loads and initiated foraging earlier than those from broodless colonies. More specifically, brood treatment resulted in increased pollen foraging in high pollen-hoarding bees but did not affect pollen foraging in low pollen-hoarding bees, suggesting that high pollen-hoarding bees are more sensitive to the presence of brood. However, response to brood stimuli does not sufficiently explain the differences in foraging behavior between the strains since these differences persisted even in the absence of brood.  相似文献   

2.
Two-way selection for quantities of stored pollen resulted in the production of high and low pollen hoarding strains of honey bees (Apis mellifera L.). Strains differed in areas of stored pollen after a single generation of selection and, by the third generation, the high strain colonies stored an average 6 times more pollen than low strain colonies. Colony-level organizational components that potentially affect pollen stores were identified that varied genetically within and between these strains. Changes occurred in several of these components, in addition to changes in the selected trait. High strain colonies had a significantly higher proportion of foragers returning with loads of pollen, however, high and low strain colonies had equal total numbers of foragers Colony rates of intake of pollen and nectar were not independent. Selection resulted in an increase in the number of pollen collectors and a decrease in the number of nectar collectors in high strain colonies, while the reciprocal relationship occurred in the low strain. High and low strain colonies also demonstrated different diurnal foraging patterns as measured by the changing proportions of returning pollen foragers. High strain colonies of generation 3 contained significantly less brood than did low strain colonies, a consequence of a constraint on colony growth resulting from a fixed nest volume and large quantities of stored pollen. These components represent selectable colony-level traits on which natural selection can act and shape the social organization of honey bee coloniesCommunicated by R.F.A. Moritz  相似文献   

3.
Summary Allozyme analyses of honey bee workers revealed significant differences in the intracolonial subfamily composition of groups of nectar foragers, pollen foragers, and nest-site scouts. These differences demonstrate that colony genetic structure influences the division of labor among older foraging-age bees just as it does for younger workers. The maintenance of genetic variability for the behavior of individual workers and its possible effects on the organization of colonies are discussed.  相似文献   

4.
This study examines factors that affect foraging rate of free-flying bumblebees, Bombus terrestris, when collecting nectar, and also what factors determine whether they collect pollen or nectar. We show that nectar foraging rate (mass gathered per unit time) is positively correlated with worker size, in accordance with previous studies. It has been suggested that the greater foraging rate of large bees is due to their higher thermoregulatory capacity in cool conditions, but our data suggest that this is not so. Workers differing in size were not differentially affected by the weather. Regardless of size, naïve bees were poor foragers, often using more resources than they gathered. Foraging rate was not maximised until at least 30 trips had been made from the nest. Foraging rates were positively correlated with humidity, perhaps because nectar secretion rates were higher or evaporation of nectar lower at high humidity. Temperature, wind speed and cloud cover did not significantly influence foraging rate, within the summertime range that occurred during the study. Weather greatly influenced whether bees collected pollen or nectar. Pollen was preferably collected when it was warm, windy, and particularly when humidity was low; and preferably during the middle of the day. We suggest that bees collect pollen in dry conditions, and avoid collecting pollen when there is dew or rain-water droplets on the vegetation, which would make grooming pollen into the corbiculae difficult. Availability of sufficient dry days for pollen collection may be an important factor determining the success of bumblebee colonies.Communicated by M. Giurfa  相似文献   

5.
Multiple mating by honeybee queens results in colonies of genotypically diverse workers. Recent studies have demonstrated that increased genetic diversity within a honeybee colony increases the variation in the frequency of tasks performed by workers. We show that genotypically diverse colonies, each composed of 20 subfamilies, collect more pollen than do genotypically similar colonies, each composed of a single subfamily. However, genotypically similar colonies collect greater varieties of pollen than do genotypically diverse colonies. Further, the composition of collected pollen types is less similar among genotypically similar colonies than among genotypically diverse colonies. The response threshold model predicts that genotypic subsets of workers vary in their response to task stimuli. Consistent with this model, our findings suggest that genotypically diverse colonies likely send out fewer numbers of foragers that independently search for pollen sources (scouts) in response to protein demand by the colony, resulting in a lower variety of collected pollen types. The cooperative foraging strategy of honeybees involves a limited number of scouts monitoring the environment that then guide the majority of foragers to high quality food sources. The genetic composition of the colony appears to play an important role in the efficiency of this behavior.  相似文献   

6.
The concept of a suite of foraging behaviors was introduced as a set of traits showing associative directional change as a characterization of adaptive evolution. I report how naturally selected differential sucrose response thresholds directionally affected a suite of honey bee foraging behaviors. Africanized and European honey bees were tested for their proboscis extension response thresholds to ascending sucrose concentrations, reared in common European colonies and, captured returning from their earliest observed foraging flight. Race constrained sucrose response threshold such that Africanized bees had significantly lower sucrose response thresholds. A Cox proportional hazards regression model of honey bee race and sucrose response threshold indicated that Africanized bees were 29% (P<0.01) more at risk to forage over the 30-day experimental period. Sucrose response threshold organized age of first foraging such that each unit decrease in sucrose response threshold increased risk to forage by 14.3% (P<0.0001). Africanized bees were more likely to return as pollen and water foragers than European foragers. Africanized foragers returned with nectar that was significantly less concentrated than European foragers. A comparative analysis of artificial and naturally selected populations with differential sucrose response thresholds and the common suite of directional change in foraging behaviors is discussed. A suite of foraging behaviors changed with a change in sucrose response threshold that appeared as a product of functional ecological adaptation.Communicated by R.F.A. Moritz  相似文献   

7.
Foraging behavior and the mechanisms that regulate foraging activity are important components of social organization. Here we test the hypothesis that brood pheromone modulates the sucrose response threshold of bees. Recently the honeybee proboscis extension response to sucrose has been identified as a ”window” into a bee’s perception of sugar. The sucrose response threshold measured in the first week of adult life, prior to foraging age, predicts forage choice. Bees with low response thresholds are more likely to be pollen foragers and bees with high response thresholds are more likely to forage for nectar. There is an associated genetic component to sucrose response thresholds and forage choice such that bees selected to hoard high quantities of pollen have low response thresholds and bees selected to hoard low quantities of pollen have higher response thresholds. The number of larvae in colonies affects the number of bees foraging for pollen. Hexane-extractable compounds from the surface of larvae (brood pheromone) significantly increase the number of pollen foragers. We tested the hypothesis that brood pheromone decreases the sucrose response threshold of bees, to suggest a pheromone- modulated sensory-physiological mechanism for regulating foraging division of labor. Brood pheromone significantly decreased response thresholds as measured in the proboscis extension response assay, a response associated with pollen foraging. A synthetic blend of honeybee brood pheromone stimulated and released pollen foraging in foraging bioassays. Synthetic brood pheromone had dose-dependent effects on the modulation of sucrose response thresholds. We discuss how brood pheromone may act as a releaser of pollen foraging in older bees and a primer pheromone on the development of response thresholds and foraging ontogeny of young bees. Received: 24 May 2000 / Revised: 26 September 2000 / Accepted: 15 October 2000  相似文献   

8.
Effects of colony food shortage on behavioral development in honey bees   总被引:1,自引:0,他引:1  
Three experiments were conducted to explore the effects of severe food shortage on the control of two important and interrelated aspects of temporal division of labor in colonies of the honey bee (Apis mellifera): the size and age distribution of a colony's foraging force. The experiments were conducted with single-cohort colonies, composed entirely of young bees, allowing us to quickly distinguish the development of new (precocious) foragers from increases in activity of bees already competent to forage. In experiment 1, colony food shortage caused an acceleration of behavioral development; a significantly greater proportion of bees from starved colonies than from fed colonies became precocious foragers, and at significantly younger ages. Temporal aspects of this starvation effect were further explored in experiment 2 by feeding colonies that we initially starved, and starving colonies that we initially fed. There was a significant decrease in the number of new foragers in starved colonies that were fed, detected 1 day after feeding. There also was a significant increase in the number of new foragers in fed colonies that were starved, but only after a 2-day lag. These results suggest that colony nutritional status does affect long-term behavioral development, rather than only modulate the activity of bees already competent to forage. In experiment 3, we uncoupled the nutritional status of a colony from that of the individual colony members. The behavior of fed individuals in starved colonies was indistinguishable from that of bees in fed colonies, but significantly different from that of bees in starved colonies, in terms of both the number and age distribution of foragers. These results demonstrate that effects of starvation on temporal polyethism are not mediated by the most obvious possible worker-nest interaction: a direct interaction with colony food stores. This is consistent with previous findings suggesting the importance of worker-worker interactions in the regulation of temporal polyethism in honey bees as well as other social insects. Received: 17 April 1997 / Accepted after revision: 26 December 1997  相似文献   

9.
Honey bee foragers may collect nectar, pollen, water, or propolis, and their foraging specialization has been associated with several behavioral traits. By conditioning of the proboscis extension response (PER), we compared the performance of foragers that collected nectar, pollen, both nectar and pollen, or water in several learning and choice assays. Foragers were first tested in a three-trial olfactory associative learning assay. For further tests, we selected only good learners that responded in two out of three conditioning trials. One group was tested in an additional olfactory associative learning assay involving different reward volumes and concentrations. Another group was tested for risk sensitivity in a two-alternative forced-choice PER procedure and then in a latent inhibition (LI) assay. Levels of acquisition in olfactory associative learning were highest in pollen and water foragers, and better acquisition was associated with collection of heavier pollen loads and smaller and lighter nectar loads of lower sugar concentration. Among the good learners, pollen foragers still showed better acquisition than nectar foragers when rewarded with several volumes and concentrations of sucrose solution. Pollen and nectar foragers were equally risk averse, preferring a constant reward to a variable one, and choice was not affected by pollen load weight. Contrary to a previous study, pollen and nectar foragers were similarly affected by LI. We discuss possible explanations for the discrepancy between the two studies. Overall, our results suggest that differences between foraging groups in sensitivity to various stimuli may not correspond to differences in choice behavior.  相似文献   

10.
Summary A honey bee colony can skillfully choose among nectar sources. It will selectively exploit the most profitable source in an array and will rapidly shift its foraging efforts following changes in the array. How does this colony-level ability emerge from the behavior of individual bees? The answer lies in understanding how bees modulate their colony's rates of recruitment and abandonment for nectar sources in accordance with the profitability of each source. A forager modulates its behavior in relation to nectar source profitability: as profitability increases, the tempo of foraging increases, the intensity of dancing increases, and the probability of abandoning the source decreases. How does a forager assess the profitability of its nectar source? Bees accomplish this without making comparisons among nectar sources. Neither do the foragers compare different nectar sources to determine the relative profitability of any one source, nor do the food storers compare different nectar loads and indicate the relative profitability of each load to the foragers. Instead, each forager knows only about its particular nectar source and independently calculates the absolute profitability of its source. Even though each of a colony's foragers operates with extremely limited information about the colony's food sources, together they will generate a coherent colonylevel response to different food sources in which better ones are heavily exploited and poorer ones are abandoned. This is shown by a computer simulation of nectar-source selection by a colony in which foragers behave as described above. Nectar-source selection by honey bee colonies is a process of natural selection among alternative nectar sources as foragers from more profitable sources survive (continue visiting their source) longer and reproduce (recruit other foragers) better than do foragers from less profitable sources. Hence this colonial decision-making is based on decentralized control. We suggest that honey bee colonies possess decentralized decision-making because it combines effectiveness with simplicity of communication and computation within a colony. Offprint requests to: T.D. Seeley  相似文献   

11.
The regulation of protein collection through pollen foraging plays an important role in pollination and in the life of bee colonies that adjust their foraging to natural variation in pollen protein quality and temporal availability. Bumble bees occupy a wide range of habitats from the Nearctic to the Tropics in which they play an important role as pollinators. However, little is known about how a bumble bee colony regulates pollen collection. We manipulated protein quality and colony pollen stores in lab-reared colonies of the native North American bumble bee, Bombus impatiens. We debut evidence that bumble bee colony foraging levels and pollen storage behavior are tuned to the protein quality (range tested: 17–30% protein by dry mass) of pollen collected by foragers and to the amount of stored pollen inside the colony. Pollen foraging levels (number of bees exiting the nest) significantly increased by 55%, and the frequency with which foragers stored pollen in pots significantly increased by 233% for pollen with higher compared to lower protein quality. The number of foragers exiting the nest significantly decreased (by 28%) when we added one pollen load equivalent each 5 min to already high intranidal pollen stores. In addition, pollen odor pumped into the nest is sufficient to increase the number of exiting foragers by 27%. Foragers directly inspected pollen pots at a constant rate over 24 h, presumably to assess pollen levels. Thus, pollen stores can act as an information center regulating colony-level foraging according to pollen protein quality and colony need. An erratum to this article can be found at  相似文献   

12.
A honey bee (Apis mellifera) queen mates with about ten haploid drones, thus producing colonies composed of about ten subfamilies of super-sisters. An increasing but controversial body of literature supports the views that: (1) Members of each subfamily within a colony can recognise each other, and distinguish supersisters from half-sisters. (2) Members of each subfamily use this recognition information and increase the reproductive fitness of their own subfamily at the expense of half-sisters through behaviour termed nepotism. A mathematical model is developed that shows that task specialisation by subfamilies, and bees that repeatedly undertake the behaviour within subfamilies, can influence the numbers of interactions among super-sisters, relative to the numbers of interactions between half-sisters. The model is then evaluated using a data set pertaining to trophallaxis behaviour in a two-subfamily colony. It is concluded that with this data set, task specialisation and subfamily recognition were indeed confounded, suggesting that the apparent subfamily recognition could easily have been an artefact of task specialisation. Correspondence to: B.P. Oldroyd  相似文献   

13.
We conducted experiments designed to examine the distribution of foraging honey bees (Apis mellifera) in suburban environments with rich floras and to compare spatial patterns of foraging sites used by colonies located in the same environment. The patterns we observed in resource visitation suggest a reduced role of the recruitment system as part of the overall colony foraging strategy in habitats with abundant, small patches of flowers. We simultaneously sampled recruitment dances of bees inside observation hives in two colonies over 4 days in Miami, Florida (1989) and from two other colonies over five days in Riverside, California (1991). Information encoded in the dance was used to determine the distance and direction that bees flew from the hive for pollen and nectar and to construct foraging maps for each colony. The foraging maps showed that bees from the two colonies in each location usually foraged at different sites, but occasionally they visited the same patches of flowers. Each colony shifted foraging effort among sites on different days. In both locations, the mean flight distances differed between colonies and among days within colonies. The flight distances observed in our study are generally shorter than those reported in a similar study conducted in a temperate deciduous forest where resources were less dense and floral patches were smaller.  相似文献   

14.
Reproduction by worker honey bees (Apis mellifera L.)   总被引:2,自引:0,他引:2  
Summary Genetic markers were used to study the reproductive behavior of worker honey bees. Five experiments were conducted that demonstrate the significance of worker reproduction. Biases were found in the egg-laying success of workers belonging to different subfamilies within queenless colonies, however, members of all subfamilies laid eggs. These biases were probably not a consequence of direct reproductive competition among subfamily members but most likely represent genetic variability for the timing of the onset of oviposition. Workers preferentially oviposit in drone-sized cells, demonstrating a caste-specific adaptation for oviposition behavior. Drone brood production is highly synchronous within colonies and can result in the production of more than 6000 drones before colonies die. Workers reproduce in queenright colonies but at a very low frequency.  相似文献   

15.
Division of labor, where thousands of individuals perform specific behavioral acts repeatedly and non-randomly, is the hallmark of insect societies. Virtually nothing is known about the underlying neurophysiological processes that direct individuals into specific behavioral roles. We demonstrate that sensory-physiological variation in the perception of sucrose in honeybees measured when they are 1 week old correlates with their foraging behavior 2–3 weeks later. Workers with the lowest response thresholds became water foragers, followed with increasing response thresholds by pollen foragers, nectar foragers, bees collecting both pollen and nectar, and finally those returning to the colony empty (water<pollen<nectar<both<empty). Sucrose concentrations of nectar loads were positively correlated with response thresholds measured on 1-week-old bees. These results demonstrated how the variable response thresholds of a sensory-physiological process, the perception of sucrose, is causally linked to the division of labor of foraging. Received. 28 June 1999 / Received in revised form: 2 November 1999 / Accepted: 20 November 1999  相似文献   

16.
Colony energy requirements affect the foraging currency of bumble bees   总被引:1,自引:0,他引:1  
Summary This study examines whether the foraging behavior of worker bumble bees (Bombus: Apidae) collecting nectar on inflorescences of seablush (Plectritis congesta: Valerianaceae) is affected by colony energetic requirements, which were experimentally manipulated either by adding sucrose solution to honey pots or by removing virtually all available nectar from the pots. The competing hypotheses tested were: (1) no change; energetic requirements do not affect behavior, since there is a single best way to collect food in a given environment; (2) energetic currency; the energetic currency maximized by foragers changes according to colony energetic condition, with nectar-depletion causing a shift from maximizing long-term productivity to maximizing immediate energetic gain, thereby de-emphasizing energetic costs; and (3) predation; foragers devalue risk of predation as risk of starvation increaes, with colony nectar-depletion causing foragers to be less predation riskaverse in order to increase immediate energetic gain. Relative to when their colony energy reserves were enhanced, foragers from nectar-depleted colonies selected smaller inflorescences, visited fewer flowers per inflorescence, probed flowers at a higher rate while on each inflorescence, and walked between inflorescences less often, thereby spending a greater proportion of their foraging trip in flight. These behaviors increased a bee's energetic costs while foraging, and should also have increased its immediate energetic gains, allowing rejection of the no change hypothesis. Predictions of the predation hypothesis were generally not supported, and our results best support the energetic currency hypothesis. Foraging currency of bumble bees therefore appears to be a function of colony energetic state. Offprint requests to: R.V. Cartar  相似文献   

17.
There has now been an abundance of research conducted to explore genetic bases that underlie learning performance in the honey bee (Apis mellifera). This work has progressed to the point where studies now seek to relate genetic traits that underlie learning ability to learning in field-based foraging problems faced by workers. Accordingly, the focus of our research is to explore the correlation between laboratory-based performance using an established learning paradigm and field-based foraging behavior. To evaluate learning ability, selected lines were established by evaluating queens and drones in a proboscis extension reflex (PER) conditioning procedure to measure learning in a laboratory paradigm—latent inhibition (LI). Hybrid queens were then produced from our lines selected for high and low levels of LI and inseminated with semen from many drones chosen at random. The genetically diverse worker progeny were then evaluated for expression of LI and for preference of pollen and/or nectar during foraging. Foragers from several different queens, and which had resulted from fertilization by any of several different drone fathers, were collected as they returned from foraging flights and analyzed for pollen and nectar contents. They were subsequently evaluated for expression of LI. Our research revealed that pollen foragers exhibited stronger learning, both in the presence (excitatory conditioning) and absence (LI) of reinforcement. The heightened overall learning ability demonstrated by pollen foragers suggests that pollen foragers are in general more sensitive to a large number of environmental stimuli. This mechanism could contribute toward explanations of colony-level regulation of foraging patterns among workers.Communicated by R. Page  相似文献   

18.
The influence of 63 dietary allelochemicals (alkaloids, terpenes, glycosides,etc.) on the feeding behaviour of bees (Apis mellifera) was tested in terms of deterrency and attraction. For 39 compounds a deterrent (mostly alkaloids, coumarins and saponins) and for 3 compounds an attractive response (mostly terpenes) was obtained in choice tests, which allowed the calculation of respective ED50-values. Under no-choice conditions, 17 out of 29 allelochemicals caused mortality at concentrations between 0.003 and 0.6%. Especially toxic were alkaloids, saponins, cardiac glycosides and cyanogenic glycosides. These data show that bees which are confronted with plant allelochemicals in nectar and pollen, are not especially adapted (i.e. insensitive) to the plants' defence chemistry. GLC and GLS-MS data are given on the alkaloid composition of nectar and pollen ofBrugmansia aurea, Atropa belladonna andLupinus polyphyllus.  相似文献   

19.
Pollen is the sole source of protein for honey bees, most importantly used to rear young. Honey bees are adept at regulating pollen stores in the colonies based on the needs of the colony. Mechanisms for regulation of pollen foraging in honey bee are complex and remain controversial. In this study, we used a novel approach to test the two competing hypothesis of pollen foraging regulation. We manipulated nurse bee biosynthesis of brood food using a protease inhibitor that interferes with midgut protein digestion, significantly decreasing the amount of protein extractable from hypopharyngeal glands. Experimental colonies were given equal amounts of protease inhibitor-treated and untreated pollen. Colonies receiving protease inhibitor treatment had significantly lower hypopharyngeal gland protein content than controls. There was no significant difference in the ratio of pollen to nonpollen foragers between the treatments. Pollen load weights were also not significantly different between treatments. Our results supported the pollen foraging effort predictions generated from the direct independent effects of pollen on the regulation of pollen foraging and did not support the prediction that nurse bees regulate pollen foraging through amount of hypopharyngeal gland protein biosynthesis.  相似文献   

20.
Individual and colony-level foraging behaviors were evaluated in response to changes in the quantity or nutritional quality of pollen stored within honeybee (Apis mellifera L.) colonies. Colonies were housed in vertical, three-frame observation hives situated inside a building, with entrances leading to the exterior. Before receiving treatments, all colonies were deprived of pollen for 5 days and pollen foragers were marked. In one treatment group, colony pollen reserves were quantitatively manipulated to a low or high level, either by starving colonies of pollen or by providing them with a fully provisioned frame of pollen composed of mixed species. In another treatment group, pollen reserves were qualitatively manipulated by removing pollen stores from colonies and replacing them with low- or high-protein pollen supplements. After applying treatments, foraging rates were measured four times per day and pollen pellets were collected from experienced and inexperienced foragers to determine their weight, species composition, and protein content. Honeybee colonies responded to decreases in the quantity or quality of pollen reserves by increasing the proportion of pollen foragers in their foraging populations, without increasing the overall foraging rate. Manipulation of pollen stores had no effect on the breadth of floral species collected by colonies, or their preferences for the size or protein content of pollen grains. In addition, treatments had no effect on the weight of pollen loads collected by individual foragers or the number of floral species collected per foraging trip. However, significant changes in foraging behavior were detected in relation to the experience level of foragers. Irrespective of treatment group, inexperienced foragers exerted greater effort by collecting heavier pollen loads and also sampled their floral environment more extensively than experienced foragers. Overall, our results indicate that honeybees respond to deficiencies in the quantity or quality of their pollen reserves by increasing the gross amount of pollen returned to the colony, rather than by specializing in collecting pollen with a greater protein content. Individual pollen foragers appear to be insensitive to the quality of pollen they collect, indicating that colony-level feedback is necessary to regulate the flow of protein to and within the colony. Colonies may respond to changes in the quality of their pollen stores by adjusting the numbers of inexperienced to experienced foragers within their foraging populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号