首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The study is directed to the use of non-metallic powders obtained from comminuted recycled paper-based printed circuit boards (PCBs) as an additive to polyvinyl chloride (PVC) substrate. The physical properties of the non-metallic PCB (NMPCB) powders were measured, and the morphological, mechanical and thermal properties of the NMPCB/PVC composite material were investigated. The results show that recycled NMPCB powders, when added below a threshold, tended to increase the tensile strength and bending strength of PVC. When 20 wt% NMPCB powders (relative to the substrate PVC) of an average diameter of 0.08 mm were added, the composite tensile strength and bending strength reached 22.6 MPa and 39.83 MPa, respectively, representing 107.2% and 123.1% improvement over pure PVC. The elongation at break of the composite material reached 151.94% of that of pure PVC, while the Vicat softening temperature of the composite material did not increase significantly compared to the pure PVC. The above results suggest that paper-based NMPCB powders, when used at appropriate amounts, can be effective for toughening PVC. Thus, this study suggests a new route for reusing paper-based NMPCB, which may have a significant beneficial environmental impact.  相似文献   

2.
Throughfall was measured during 1978–79 beneath the canopies of adjacent stands of four major southern pine species, all on identical soil type and topography in the Stephen F. Austin Experimental Forest. Observations from 44 storms in a randomized network of 15, 5.08 cm PVC gages in a 0.4 ha plot of each species showed that throughfall expressed as percent of storm precipitation, is greatest under longleaf pine and least under loblolly pine; throughfall under shortleaf and slash pine did not differ significantly. Generally, through-fall decreased with storm size and intensity, with distance from the nearest tree stem, and is greater during summer half-year (May–October). Canopy drips, apparently accounting for the greater throughfall for the gage position closer to the stems, were more numerous than reported elsewhere. The 5.08 cm PVC gages proved to be acceptable substitutes for standard nonrecording gages in measuring throughfall. A network of 15 such gages was sufficient to sample throughfall data with 90 percent accuracy in each of the four southern pine plantations.  相似文献   

3.
The goal of this research was to provide information for choosing appropriate materials for studying gas-phase concentrations of propargyl bromide (3BP) and 1,3-dichloropropene (1,3-D) in laboratory experiments. Several materials were tested and found to sorb both gas-phase chemicals in the following order: stainless steel (SS) < Teflon polytetrafluoroethylene (PTFE-FEP) approximately flexible polyvinyl chloride (PVC) approximately acrylic < low-density polyethylene (PE) < vinyl approximately silicone < polyurethane foam (PUF). Sorption of SS was insignificant and PUF sorbed all the fumigant that was applied. For the other materials, linear sorption coefficients (Kd) for 3BP ranged from 3.0 cm3 g(-1) for PVC to 215 cm3 g(-1) for silicone. Freundlich sorption coefficients for 1,3-D ranged from 11.5 to 371 cm3 g(-1). First-order desorption rate constants in an open system ranged from 0.05 to 1.38 h(-1) for 3BP and from 0.07 to 1.73 h(-1) for 1,3-D. In a closed system, less than 2% of sorbed fumigant desorbed from vinyl while up to 99% desorbed from PVC within 24 h when equilibrated at the highest headspace concentration. Sorption of both fumigants was linearly related to the square root of time except for vinyl and silicone. This may indicate non-fickian diffusion of fumigant into the polymer matrix. Vinyl, silicone, PE, and PUF should be avoided for quantitative study of organic gases, except possibly as a trapping medium. Use of PTFE, PVC, and acrylic may require correction for sorption-desorption and diffusion.  相似文献   

4.
With the onset of social life, humans have considered waste disposal as essential, and they have been able to repel it through brick and clay channels. Checking sewage pipes for energy consumption and a longer lifetime than other sewage system components is important. Climate change and exploitation of industrial resources have made environmental impacts, which are important factors in decision making. The purpose of this study was to introduce the most suitable type of sewage pipe considering environmental protection. Therefore, we applied the environmental life cycle assessment (LCA) method, using Sima Pro 8.2.3 software for the one-kilometer length of concrete pipes (300 mm in diameter), Polyvinyl chloride (PVC), and polyethylene (PE) (315 mm in diameter). Also, the BEES method and sensitivity analysis were used to validate the results. The comparison between three types of municipal wastewater pipes indicated that PE pipes are a more environmentally friendly option than PVC, and concrete pipes in pipe recycling, reducing extraction from untapped resources, and inefficient extraction of resources. Electricity, diesel fuel, and sulfate resistance cement consumption for concrete production are the most pollution elements in the LCA of concrete pipes. Usage of PVC granular, sanitary landfill of PVC pipes, and using hydraulic drill in LCA of PVC pipes are the most elements of generating pollution. The usage of PE granules, PE pipes landfilling, hydraulic excavator, and electricity consumption in the LCA of the PE pipes are the greatest polluting parameters.  相似文献   

5.
Cheng, Chuntian, Jianjian Shen, Xinyu Wu, and Kwok-wing Chau, 2012. Short-Term Hydroscheduling with Discrepant Objectives Using Multi-step Progressive Optimality Algorithm. Journal of the American Water Resources Association (JAWRA) 48(3): 464-479. DOI: 10.1111/j.1752-1688.2011.00628.x Abstract: With increase in the number and total capacity of hydropower plants in power systems, optimality algorithms with a single objective are not suitable for optimizing the operation of complex hydropower systems to meet complex demands. Hydropower plants should prioritize discrepant objectives, such as peak regulation and maximizing generation during solving of optimal operation problems of hydropower systems. In this article, we present a multi-step progressive optimality algorithm (MSPOA) for the short-term hydroscheduling (STHS) problem to improve the quality of optimal solutions and enhance the convergence speed of progressive optimality algorithm (POA). In MSPOA, the original problem is first decomposed into a sequence of problems with the longer time steps. Next, the problem with the longest time step is solved, and the optimal solution is used as the initial solution for the problem with the second longest time step. This process proceeds until the original problem with the shortest time step is solved. The proposed discrepant-objective method and solution technique are tested for two types of hydroelectric systems. The results show that MSPOA can give better solutions and cost less time than POA due to enlarging feasible range of decision variables and reducing the number of computational stages. Discrepant objectives among hydropower plants can express the operation characteristics of complex hydropower systems more accurately than unique objective or multiple objectives.  相似文献   

6.
The problems faced by authorities in Saudi Arabia in managing the large numbers of pilgrims visiting Muna during a brief period each year has led to experiments with aerial photography and computer techniques. This paper describes briefly the new method initiated in 1981 emphasising the remarkably short time available for information assembly and interpretation and concludes with pointers towards the development of the techniques for Third World urbanisation studies.  相似文献   

7.
In China, the rapid development of the polyvinylchloride (PVC) industry will inevitably lead to various environmental problems. This paper studies the PVC metabolism further by (1) constructing dynamic models based on material flow analysis (MFA), (2) introducing calculation on detailed lifetime distribution of different types of products and recycling, and (3) obtaining the performances of waste emissions and accumulation as a function of raw material input and time. Based on system evolution theory and population development models, the developing trend of the PVC industry is studied, and annual consumptions in future years are predicted. The annual emission and accumulation after metabolism can be calculated by tracking the amount of raw material input, existing form and process flow for a single year (2003), as well as over a longer period (from 1958 to 2048) in China. Analysis indicates that over 0.6 billion tons of PVC waste will have accumulated in the environment by the end of 2050. In this scenario analysis, the effects of product structure, lifetime distribution, mechanical recycling, chemical recycling and incineration on waste output are all taken into consideration. The product metabolism process can be decelerated by changing these factors appropriately. However, mechanical recycling and chemical recycling are the most effective solutions.  相似文献   

8.
Polyvinyl chloride (PVC) or vinyl is a recyclable material. It can be used as a chlorinating and a reducing agent. Two tests of chlorination and reduction of two different samples of jarosite and hematite were realized using PVC, results are presented in this paper. The chlorination test shows that the HCl gas produced from PVC and heated at ≈250°C can be used as a chlorine source to recover as chlorinated compounds the valuable metals such as Zn, Pb contained in jarosite. The XRD reveals the presence of lead and zinc chlorides in the condensates obtained. The second test of reduction was conducted using a mixture of PVC and hematite treated in a nitrogen atmosphere between 200 and 1000°C. The results show that at low temperature, PVC produces HCl and with kinetic consideration, no reactions can be observed with hematite. However, at high temperature, the weight of the hematite sample decreases by ≈15%, due to the reduction of hematite to iron metal.  相似文献   

9.
在分散成若干片区、地形复杂的工业城市进行空气监测优化布设时,应先确定测点所在的片区。优化时必须考虑地形和气象特点、污染源的分布和片区的功能特征。再根据片区内主要污染物及源分布确定决策团子。优化时再考虑片区内的污染气象条件,采用适当的空气扩散模式和动态模拟的方法。经过夏、秋两季实测结果证明,优化的测点代表性良好。  相似文献   

10.
ABSTRACT: A dynamic programming procedure for the planning and operation of a wastewater treatment plant over a long period of time is presented. In order to meet increased demands for wastewater treatment in the future, the expansion of existing plants must be considered. Dynamic programming is employed to determine the optimal schedule of expansion at each plant, simultaneously determining an optimal operating policy (treatment level). The optimal schedule of expansion at each plant depends on the following: (1) the shape of the projected wastewater demand function; (2) the interest rate used; (3) the locations and capacities of the facilities available; and (4) the rates of increase of the costs of construction, labor, chemicals, and electric power. An example illustrating the use of the procedure is presented.  相似文献   

11.
Primarily due to environmental concerns and legislative mandates, the disposition of end-of-life (EOL) electronics products has attracted much attention. Advanced recycling fees (ARFs) and government subsidies may play important roles in encouraging or curtailing the flows of recycled items. We present a Stackelberg-type model to determine ARFs and socially optimal subsidy fees in decentralized reverse supply chains where each entity independently acts according to its own interests. The model consists of one leader (the government) and two followers (a group of manufacturers, importers, and sellers (MISs) and a group of recyclers). To maximize social welfare, the government determines the ARFs paid by MIS and the subsidy fees for recyclers when MIS sells new products and recyclers process EOL products. We find that MIS and recyclers behave at the equilibrium status by choosing optimal selling quantity in the market and optimal reward money for customers bringing EOL products to recyclers. Under this approach the two fees achieve the maximum of social welfare at the equilibrium status, while both MIS and recyclers gain the maximum of profits. For comparative purposes, we also develop a conceptual model describing the current practice by which ARFs and the subsidy fees are determined on the basis of fund balance between revenues and costs along with recycling operations. We conclude that our results outperform current practice.  相似文献   

12.
ABSTRACT: An heuristic iterative technique based upon stochastic dynamic programming is presented for the analysis of the operation of a three reservoir ‘Y’ shaped hydroelectric system. The technique is initiated using historical inflow data for the downstream reservoir. At each iteration the optimal policies for the downstream hydroelectric generating unit are used to provide relative weightings or targets for operation of upstream reservoirs. New input inflows to the downstream reservoir are then obtained by running the historical streamflow record through the optimal policies for the upstream reservoirs. These flows are then used to develop a new operating policy for the downstream reservoir and hence new targets for the upstream reservoirs. The process is continued until the operating policies for each reservoir provide the same overall system benefit for two successive iterations. Results obtained from the procedure are compared to the results obtained by historical operation of the system. The procedure is shown to develop operating policies which give benefits which are as close to the historical benefits as can be expected given the choice of the number of storage state variables.  相似文献   

13.
High-pressure, near-critical liquids were used as float-sink separation media for the microsortation of polyolefin mixtures and PET/PVC mixtures. Near-critical carbon dioxide was used for the refinement of the polyolefins, and sulfur hexafluoride was used to separate post-consumer PVC from PET. Preliminary experiments indicated that there was no overlap in the density ranges of post-consumer HDPE, LDPE and PP containers. There was no overlap in the PET and PVC densities, with the exception of a single PVC packaging material with a density in the PET range. These initial results indicated that a float-sink separation was a viable means of microsortation. Separations of 91% LDPE (1/8′ beads)/9% PP (1/8′ chopped strands) resin mixtures and mixed post-consumer polyolefin flakes were then conducted in a laboratory-scale, 1-I batch apparatus. This apparatus not only permitted the observation of the separation, but also enabled the separated fractions to be removed from the high-pressure environment. The results indicated that LDPE purity of greater than 98.9% was obtained in 3 min or less if (a) the fluid density was 0.018 g/cm3 greater than the PP density and only 0.002 g/cm3 less than the LDPE density, thereby providing the greatest buoyancy force for the removal of the PP, (b) the fluid was recirculated upward through the bed of mixed plastics, facilitating the upward movement of the PP, and (c) the loading was kept at levels below 40% by volume. HDPE purity of 99% was also attained with clean, dry, post-consumer mixed plastic flakes. The loadings for these separations were very low, however, due to the difficulty in agitating the mixed bed of plastics using fluid recirculation. An economic analysis of these microsortation processes indicated that the value of the sorted plastics relative to the mixed feed must increase by approx. $0.08/lb for the CO2-based separation and approx. $0.27/lb for the SF6-based separation to justify the implementation of these high-pressure processes.  相似文献   

14.
The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view.  相似文献   

15.
This research analyses the application of spatially explicit sensitivity and uncertainty analysis for GIS (Geographic Information System) multicriteria decision analysis (MCDA) within a multi-dimensional vulnerability assessment regarding flooding in the Salzach river catchment in Austria. The research methodology is based on a spatially explicit sensitivity and uncertainty analysis of GIS-CDA for an assessment of the social, economic, and environmental dimensions of vulnerability. The main objective of this research is to demonstrate how a unified approach of uncertainty and sensitivity analysis can be applied to minimise the associated uncertainty within each dimension of the vulnerability assessment. The methodology proposed for achieving this objective is composed of four main steps. The first step is computing criteria weights using the analytic hierarchy process (AHP). In the second step, Monte Carlo simulation is applied to calculate the uncertainties associated with AHP weights. In the third step, the global sensitivity analysis (GSA) is employed in the form of a model-independent method of output variance decomposition, in which the variability of the different vulnerability assessments is apportioned to every criterion weight, generating one first-order (S) and one total effect (ST) sensitivity index map per criterion weight. Finally, in the fourth step, an ordered weighted averaging method is applied to model the final vulnerability maps. The results of this research demonstrate the robustness of spatially explicit GSA for minimising the uncertainty associated with GIS-MCDA models. Based on these results, we conclude that applying the variance-based GSA enables assessment of the importance of each input factor for the results of the GIS-MCDA method, both spatially and statistically, thus allowing us to introduce and recommend GIS-based GSA as a useful methodology for minimising the uncertainty of GIS-MCDA.  相似文献   

16.
There is an increasing need for the accurate delineation of wetlands for planning and conservation purposes. We propose a method based on vegetation zonation which requires three steps. The first step is to examine transects crossing the transition zone from marsh to upland. In each transect the uppermost occurrence of each plant species is located relative to a fixed survey point. The second step is to determine which of these species are hydrophytes (wetland plants). This is assessed using the presence or absence of morphological and physiological adaptations for growing in wet environments. Alternatively, a literature search using botanical manuals may suffice. The third step determines the upper limit of the wetland by finding the upper limit of the uppermost hydrophyte in each transect, and taking the mean value of these over all transects. This mean defines the boundary of the wetland. The method is illustrated using two marshes along the north shore of the St. Lawrence River in Ontario.  相似文献   

17.
The study of the optimal expansion of existing water resources systems is of continuing importance because of the rising demand and limited supply of water in many areas of the world, particularly in the southwestern part of the United States of America. This study is concerned with the investigation of the optimal expansion of a realistic water resources system to meet an increasing demand for municipal and industrial use, irrigation, energy, and recreation over a planning horizon of T years. A number of possible dam sites are available for the further regulation of river (canal) flows in the basin and/or the regulation of imported waters into the basin. To maximize, over the set of alternative projects, the sum of discounted present value of net earnings subject to the demands and various institutional, physical and budgetary limits, an optimization problem (Problem I) was formed as a 0-1 mixed integer programming problem and was decomposed into the set of all feasible combinations (Problem II). The economic return was determined for each combination (Problem III). Problem II was solved by a branch and bound procedure which selected each feasible combination of dams while the optimal return for each such combination (Problem III) was found by a network analysis code.  相似文献   

18.
The feasibility of recycling spent foundry sand in clay bricks was assessed in laboratory, pilot line and industrial trials, using naturally occurring sand as a reference. Raw materials were analyzed by X-ray fluorescence, X-ray diffraction, particle size distribution, and leaching and combined to produce bodies containing up to 35% wt. sand. The extrusion, drying and firing behaviour (plasticity, drying sensitivity, mechanical strength, bulk density, water absorption, and shrinkage) were determined. The microstructure, phase composition, durability and leaching (EN 12457, granular materials, end-life step, European Waste Landfill Directive; NEN 7345, monolithic materials, use-life step, Dutch Building Material Decree) were evaluated for bricks manufactured at optimal firing temperature. These results demonstrate that spent foundry sand can be recycled in clay bricks. There are no relevant technological drawbacks, but the feasibility strongly depends on the properties of the raw materials. Spent foundry sand may be introduced into bricks up to 30% wt. Most of the hazardous elements from the spent foundry sand are inertized during firing and the concentrations of hazardous components in the leachates are below the standard threshold for inert waste category landfill excepting for chromium and lead; however, their environmental risk during their use-life step can be considered negligible.  相似文献   

19.
Data on the performance of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor subjected to step increases of organic loading rates (OLR) and to organic shock loads (OSL) are presented and discussed. The tubular reactor (100 cm long and 5 cm diameter) with a useful volume of 1995 mL was filled with polyurethane foam cubic matrices holding immobilized biomass and fed with synthetic wastewater. The reactor was operated at the controlled temperature of 30+/-1 degrees C and hydraulic retention time of 7 h. After about 15 days, the HAIB reactor attained operating stability. Thereafter, it was subjected to step increases of the applied OLR that ranged from 6.8 to 18.8 kg COD/m(3)d. After steady state had been achieved at each step, OSL corresponding to approximately three times the operating OLR were applied for 7 h. No disturbance was observed due to the step increase in OLR. An increase in effluent chemical oxygen demand (COD) and volatile fatty acids (VFA) concentrations and a decrease in the percentage of methane in the biogas were observed due to OSL applications. However, stability of the monitoring parameters was always restored approximately 17 h after the application of OSL for all conditions tested.  相似文献   

20.
ABSTRACT: A general methodology to study the economics of dual water systems (defined here as a separate distribution system for untreated low quality local surface Water for outdoor municipal water supply) is summarized and the application of the method to a rapidly growing city is presented. In the first step, a cost-benefit criterion for evaluating dual systems is developed. The criterion is then extended to a dynamic case where the population to be served increases with time and where the dual system is allowed to expand. The optimal investment time to introduce the dual water supply project is obtained by maximizing social welfare. The model is applied to the city of West Jordan, Utah, where a dual system is currently being proposed. Model results indicate that for the city as a whole dual supply is not economically feasible. However, when the model is applied to a part of the city, it is found feasible and the optimal time to initiate the project would be in the year 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号