首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A fuel-based assessment of off-road diesel engine emissions   总被引:1,自引:0,他引:1  
The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed. Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 x 10(9) kg NOx and 1.2 x 10(8) kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including agriculture, construction, logging, and mining equipment, but not locomotives or marine vessels) was responsible for 10% of mobile source NOx emissions nationally, whereas on-road diesel vehicles contributed 33%.  相似文献   

2.
ABSTRACT

The use of diesel engines in off-road applications is a significant source of nitrogen oxides (NOx) and particulate matter (PM10). Such off-road applications include railroad locomotives, marine vessels, and equipment used for agriculture, construction, logging, and mining. Emissions from these sources are only beginning to be controlled. Due to the large number of these engines and their wide range of applications, total activity and emissions from these sources are uncertain. A method for estimating the emissions from off-road diesel engines based on the quantity of diesel fuel consumed is presented. Emission factors are normalized by fuel consumption, and total activity is estimated by the total fuel consumed.

Total exhaust emissions from off-road diesel equipment (excluding locomotives and marine vessels) in the United States during 1996 have been estimated to be 1.2 × 109 kg NOx and 1.2 x 108 kg PM10. Emissions estimates published by the U.S. Environmental Protection Agency are 2.3 times higher for both NOx and exhaust PM10 emissions than estimates based directly on fuel consumption. These emissions estimates disagree mainly due to differences in activity estimates, rather than to differences in the emission factors. All current emission inventories for off-road engines are uncertain because of the limited in-use emissions testing that has been performed on these engines. Regional- and state-level breakdowns in diesel fuel consumption by off-road mobile sources are also presented. Taken together with on-road measurements of diesel engine emissions, results of this study suggest that in 1996, off-road diesel equipment (including  相似文献   

3.
A grid-based, bottom-up method has been proposed by combining a vehicle emission model and a travel demand model to develop a high-resolution vehicular emission inventory for Chinese cities. Beijing is used as a case study in which the focus is on fuel consumption and emissions from hot-stabilized activities of light-duty gasoline vehicles (LGVs) in 2005. The total quantity of emissions, emission intensity, and spatial distribution of emissions at 1- by 1-km resolution are presented and compared with results from other inventory methods commonly used in China. The results show that the total daily fuel consumption and vehicular emissions of carbon dioxide, carbon monoxide, hydrocarbons, and oxides of nitrogen from LGVs in the Beijing urban area in 2005 were 1.95 x 10(7) L, 4.28 x 10(4) t, 1.97 x 10(3) t, 0.28 x 10(3) t, and 0.14 x 10(3) t, respectively. Vehicular fuel consumption and emissions show spatial variations that are consistent with the traffic characteristics. The grid-based inventory developed in this study reflects the influence of traffic conditions on vehicle emissions at the microscale and may be applied to evaluate the effectiveness of traffic-related measures on emission control in China.  相似文献   

4.
This study reports on the analysis of emissions and fuel consumption from motor vehicles using a modal approach. The four standard driving modes are idling, accelerating, cruising, and decelerating. On-road data were collected using instrumented test vehicles traveling many times through the urban areas of Hong Kong. A model was developed for estimating vehicular fuel consumption and emissions as a function of instantaneous speed and driving mode. Piecewise interpolation functions were proposed for each nonidling driving mode. Idling emission and fuel consumption rates were estimated as negative exponential functions of idling time. Preliminary modeling results showed good agreements for the test vehicles and indicated that the on-road measurements are feasible for the development of modal emission and fuel consumption models.  相似文献   

5.
Regional and global air pollution from marine transportation is a growing concern. In discerning the sources of such pollution, researchers have become interested in tracking where along the total fuel life cycle these emissions occur. In addition, new efforts to introduce alternative fuels in marine vessels have raised questions about the energy use and environmental impacts of such fuels. To address these issues, this paper presents the Total Energy and Emissions Analysis for Marine Systems (TEAMS) model. TEAMS can be used to analyze total fuel life cycle emissions and energy use from marine vessels. TEAMS captures "well-to-hull" emissions, that is, emissions along the entire fuel pathway, including extraction, processing, distribution, and use in vessels. TEAMS conducts analyses for six fuel pathways: (1) petroleum to residual oil, (2) petroleum to conventional diesel, (3) petroleum to low-sulfur diesel, (4) natural gas to compressed natural gas, (5) natural gas to Fischer-Tropsch diesel, and (6) soybeans to biodiesel. TEAMS calculates total fuel-cycle emissions of three greenhouse gases (carbon dioxide, nitrous oxide, and methane) and five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with aerodynamic diameters of 10 microm or less, and sulfur oxides). TEAMS also calculates total energy consumption, fossil fuel consumption, and petroleum consumption associated with each of its six fuel cycles. TEAMS can be used to study emissions from a variety of user-defined vessels. This paper presents TEAMS and provides example modeling results for three case studies using alternative fuels: a passenger ferry, a tanker vessel, and a container ship.  相似文献   

6.
Abstract

This study reports on the analysis of emissions and fuel consumption from motor vehicles using a modal approach. The four standard driving modes are idling, accelerating, cruising, and decelerating. On‐road data were collected using instrumented test vehicles traveling many times through the urban areas of Hong Kong. A model was developed for estimating vehicular fuel consumption and emissions as a function of instantaneous speed and driving mode. Piecewise interpolation functions were proposed for each nonidling driving mode. Idling emission and fuel consumption rates were estimated as negative exponential functions of idling time. Preliminary modeling results showed good agreements for the test vehicles and indicated that the on‐road measurements are feasible for the development of modal emission and fuel consumption models.  相似文献   

7.
Abstract

A grid-based, bottom-up method has been proposed by combining a vehicle emission model and a travel demand model to develop a high-resolution vehicular emission inventory for Chinese cities. Beijing is used as a case study in which the focus is on fuel consumption and emissions from hot-stabilized activities of light-duty gasoline vehicles (LGVs) in 2005. The total quantity of emissions, emission intensity, and spatial distribution of emissions at 1- by 1-km resolution are presented and compared with results from other inventory methods commonly used in China. The results show that the total daily fuel consumption and vehicular emissions of carbon dioxide, carbon monoxide, hydrocarbons, and oxides of nitrogen from LGVs in the Beijing urban area in 2005 were 1.95 × 107 L, 4.28 × 104 t, 1.97 × 103 t, 0.28 × 103 t, and 0.14 × 103 t, respectively. Vehicular fuel consumption and emissions show spatial variations that are consistent with the traffic characteristics. The grid-based inventory developed in this study reflects the influence of traffic conditions on vehicle emissions at the microscale and may be applied to evaluate the effectiveness of traffic-related measures on emission control in China.  相似文献   

8.
A comprehensive, spatially resolved (0.25°×0.25°) fossil fuel consumption database and emissions inventory was constructed, for India, for the first time. Emissions of sulphur dioxide and aerosol chemical constituents were estimated for 1996–1997 and extrapolated to the Indian Ocean Experiment (INDOEX) study period (1998–1999). District level consumption of coal/lignite, petroleum and natural gas in power plants, industrial, transportation and domestic sectors was 9411 PJ, with major contributions from coal (54%) followed by diesel (18%). Emission factors for various pollutants were derived using India specific fuel characteristics and information on combustion/air pollution control technologies for the power and industrial sectors. Domestic and transportation emission factors, appropriate for Indian source characteristics, were compiled from literature. SO2 emissions from fossil fuel combustion for 1996–1997 were 4.0 Tg SO2 yr−1, with 756 large point sources (e.g. utilities, iron and steel, fertilisers, cement, refineries and petrochemicals and non-ferrous metals), accounting for 62%. PM2.5 emitted was 0.5 and 2.0 Tg yr−1 for the 100% and the 50% control scenario, respectively, applied to coal burning in the power and industrial sectors. Coal combustion was the major source of PM2.5 (92%) primarily consisting of fly ash, accounting for 98% of the “inorganic fraction” emissions (difference between PM2.5 and black carbon+organic matter) of 1.6 Tg yr−1. Black carbon emissions were estimated at 0.1 Tg yr−1, with 58% from diesel transport, and organic matter emissions at 0.3 Tg yr−1, with 48% from brick-kilns. Fossil fuel consumption and emissions peaked at the large point industrial sources and 22 cities, with elevated area fluxes in northern and western India. The spatial resolution of this inventory makes it suitable for regional-scale aerosol-climate studies. These results are compared to previous studies and differences discussed. Measurements of emission factors for Indian sources are needed to further refine these estimates.  相似文献   

9.
To improve the accuracy and applicability of vehicular emission models, this study proposes a speed and vehicle-specific power (VSP) modeling method to estimate vehicular emissions and fuel consumption using data gathered by a portable emissions monitoring system (PEMS). The PEMS data were categorized into discrete speed-VSP bins on the basis of the characteristics of vehicle driving conditions and emissions in Chinese cities. Speed-VSP modal average rates of emissions (or fuel consumption) and the time spent in the corresponding speed-VSP bins were then used to calculate the total trip emissions (or fuel consumption) and emission factors (or fuel economy) under specific average link speeds. The model approach was validated by comparing it against measured data with prediction errors within 20% for trip emissions and link-speed-based emission factors. This analysis is based on the data of light-duty gasoline vehicles in China; however, this research approach could be generalized to other vehicle fleets in other countries. This modeling method could also be coupled with traffic demand models to establish high-resolution emissions inventories and evaluate the impacts of traffic-related emission control measures.  相似文献   

10.
This paper reports on the analysis of on-road vehicle speed, emission, and fuel consumption data collected by four instrumented vehicles. Time-, distance-, and fuel-based average fuel consumption, as well as CO, HC, NOx, and soot emission factors, were derived. The influences of instantaneous vehicle speed on emissions and fuel consumption were studied. It was found that the fuel-based emission factors varied much less than the time- and distance-based emission factors as instantaneous speed changed. The trends are similar to the results obtained from laboratory tests. The low driving speed contributed to a significant portion of the total emissions over a trip. Furthermore, the on-road data were analyzed using the modal approach. The four standard driving modes are acceleration, cruising, deceleration, and idling. It was found that the transient driving modes (i.e., acceleration and deceleration) were more polluting than the steady-speed driving modes (i.e., cruising and idling) in terms of g/km and g/sec. These results indicated that the on-road emission measurement is feasible in deriving vehicle emissions and fuel consumption factors in urban driving conditions.  相似文献   

11.
A method has been developed that allows reporting of the fuel consumption and carbon dioxide (CO2) emissions for in-use vehicles from a fast-pass transient (IM240) inspection. The major technical obstacle to reporting CO2 emission rate and fuel consumption is that inspection and maintenance tests do not all use a standardized test duration or test method. The method is able to project full-duration fuel consumption from IM240 tests that actually fast-passed as early as just 30 sec from starting the test. It is based on basic considerations of the work done in driving the inspection cycle, with additional empirical adjustments. The initial application examined the differences between passing and failing inspections, and this did confirm that there are significant differences.  相似文献   

12.
ABSTRACT

Cooperative adaptive cruise control (CACC) vehicles need vehicle-to-vehicle (V2 V) communication to achieve CACC function. When a CACC vehicle follows a manual-driven vehicle (MDV) without V2 V communication, it needs degenerate to adaptive cruise control (ACC). By using real experiments, California PATH program indicated that ACC vehicles are apt to be unstable, which may have negative influence on fuel consumption and traffic emissions. Hence, this paper studies the impacts of the mixed CACC-MDV traffic on fuel consumption and emissions, by taking into consideration partial degenerations from stable CACC vehicles to unstable ACC vehicles. To deal with this, microscopic simulations were adopted by using car-following models. Then, an appropriate emission model was used for evaluating the emission impacts under different CACC market penetration rates (MPRs). In order to obtain reliable evaluation results, the models validated by PATH program using real experimental data were employed as the CACC and ACC car-following models. In addition, we also analytically investigated stability of the mixed traffic flow under different CACC MPRs, in order to explore its relationship with the emission impacts. The results show that the fuel consumption and emissions firstly increase and then decrease with the increase of the CACC MPR. This means the mixed traffic under some ranges of CACC MPRs will produce more fuel consumption and emissions, compared with the full MDVs traffic. It indicates that stability situations of the mixed traffic qualitatively influence the impact trend of CACC MPRs on fuel consumption and emissions. Then, V2 V communication equipments on MDVs are not only encouraging but also essential to avoid the deterioration of fuel consumption and emissions of the mixed traffic flow.  相似文献   

13.
ABSTRACT

This paper reports on the analysis of on-road vehicle speed, emission, and fuel consumption data collected by four instrumented vehicles. Time-, distance-, and fuel-based average fuel consumption, as well as CO, HC, NOx, and soot emission factors, were derived. The influences of instantaneous vehicle speed on emissions and fuel consumption were studied. It was found that the fuel-based emission factors varied much less than the time- and distance-based emission factors as instantaneous speed changed. The trends are similar to the results obtained from laboratory tests. The low driving speed contributed to a significant portion of the total emissions over a trip. Furthermore, the on-road data were analyzed using the modal approach. The four standard driving modes are acceleration, cruising, deceleration, and idling. It was found that the transient driving modes (i.e., acceleration and deceleration) were more polluting than the steady-speed driving modes (i.e., cruising and idling) in terms of g/km and g/ sec. These results indicated that the on-road emission measurement is feasible in deriving vehicle emissions and fuel consumption factors in urban driving conditions.  相似文献   

14.
A study design was developed and demonstrated for deployment of a portable emission measurement system (PEMS) for excavators. Excavators are among the most commonly used vehicles in construction activities. The PEMS measured nitric oxide, carbon monoxide, hydrocarbons, carbon dioxide, and opacity-based particulate matter. Data collection, screening, processing, and analysis protocols were developed to assure data quality and to quantify variability in vehicle fuel consumption and emissions rates. The development of data collection procedures was based on securing the PEMS while avoiding disruption to normal vehicle operations. As a result of quality assurance, approximately 90% of the attempted measurements resulted in valid data. On the basis of field data collected for three excavators, an average of 50% of the total nitric oxide emissions was associated with 29% of the time of operation, during which the average engine speed and manifold absolute pressure were significantly higher than corresponding averages for all data. Mass per time emission rates during non-idle modes (i.e., moving and using bucket) were on average 7 times greater than for the idle mode. Differences in normalized average rates were influenced more by intercycle differences than intervehicle differences. This study demonstrates the importance of accounting for intercycle variability in real-world in-use emissions to develop more accurate emission inventories. The data collection and analysis methodology demonstrated here is recommended for application to more vehicles to better characterize real-world vehicle activity, fuel use, and emissions for nonroad construction equipment.  相似文献   

15.

This study investigates the impact of urbanization and nonrenewable energy consumption on carbon emissions. The context of the analysis is 54 African Union countries from 1996 to 2019. For estimation, we use panel quantile regression (PQR) and fully modified ordinary least squares (FMOLS). Our regression results demonstrate that there is a positive correlation between urbanization and CO2 emission. Further, our empirical results confirmed that nonrenewable energy consumption increases environmental pollution in African Union countries. The outcomes demonstrate the EKC hypothesis because at the initial stage of development, when economic growth increases, environmental pollution increases; after a threshold point, environmental pollution decreases as economic growth increases. It can find an inverted U-shaped relationship between economic growth and CO2 emission. The findings also show that urbanization should be planned; otherwise, it can lead to environmental degradation in the long run. Africa continent takes strict action and builds a blueprint for efficient and effective energy production and consumption. The only solution to achieve green growth in Africa is to shift from fossil fuel energy supply to renewable energy supply.

  相似文献   

16.
This paper discusses the use of the fuels propane and butane–propane (80:20) in a four-stroke engine made to function with gasoline (petrol). The experiment covered gas emissions, emissions temperature and fuel consumption. It was observed that gas emissions were reduced compared with gasoline. The reduction for carbon monoxide emissions was greater when butane–propane was used. The same was true for hydrocarbon emissions when the electrical load was below 1500 W, but above 1500 W propane performed better. Higher emissions temperatures were observed with both alternative fuels. Under unloaded conditions the emissions from propane combustion have higher temperature, whereas under full load conditions the emissions from the combustion of the butane–propane mixture have higher temperature. The consumption of propane is lower than that of the mixture.  相似文献   

17.
Abstract

As part of the National Park Service’s Temporary Winter Use Plans Environmental Assessment, the University of Denver has been collecting in-use tailpipe emissions data from snowcoaches and snowmobiles in Yellowstone National Park. During the winter of 2006, using a portable emissions monitoring system, tailpipe data were collected from 10 snowcoaches and 2 four-stroke snowmobiles. These vehicles were operated over a standard route within the park, and the snowcoaches all carried identical passenger loads. These snowcoaches were newer in age with more advanced fuel management technology than those studied earlier, and average emissions were lower as a result (120, 1.7, and 11 g/mi for carbon monoxide [CO], hydrocarbons [HC], and oxides of nitrogen [NOx]). Large emissions variability was still observed despite using a standardized route and equal passenger loading. A comparison between five nearly identically equipped snow-coaches that had CO emissions ranging between 12 and 310 g/mi suggests that snow and road conditions are the most important factors behind the large emissions variability observed between modern snowcoaches. The first comprehensive emission measurements, using a portable emissions measurement system, on two snowmobiles showed that computer-controlled fuel management systems have increased fuel economy (>25 mpg) and are a major reason that emissions from these winter vehicles have dropped so dramatically. Using all of the tailpipe emissions data collected to date shows that the two primary winter vehicles in Yellowstone National Park are now very similar in their per-passenger emissions.  相似文献   

18.
Edwards RD  Smith KR  Zhang J  Ma Y 《Chemosphere》2003,50(2):201-215
Residential energy use in developing countries has traditionally been associated with combustion devices of poor energy efficiency, which have been shown to produce substantial health-damaging pollution, contributing significantly to the global burden of disease, and greenhouse gas (GHG) emissions. Precision of these estimates in China has been hampered by limited data on stove use and fuel consumption in residences. In addition limited information is available on variability of emissions of pollutants from different stove/fuel combinations in typical use, as measurement of emission factors requires measurement of multiple chemical species in complex burn cycle tests. Such measurements are too costly and time consuming for application in conjunction with national surveys. Emissions of most of the major health-damaging pollutants (HDP) and many of the gases that contribute to GHG emissions from cooking stoves are the result of the significant portion of fuel carbon that is diverted to products of incomplete combustion (PIC) as a result of poor combustion efficiencies. The approximately linear increase in emissions of PIC with decreasing combustion efficiencies allows development of linear models to predict emissions of GHG and HDP intrinsically linked to CO2 and PIC production, and ultimately allows the prediction of global warming contributions from residential stove emissions. A comprehensive emissions database of three burn cycles of 23 typical fuel/stove combinations tested in a simulated village house in China has been used to develop models to predict emissions of HDP and global warming commitment (GWC) from cooking stoves in China, that rely on simple survey information on stove and fuel use that may be incorporated into national surveys. Stepwise regression models predicted 66% of the variance in global warming commitment (CO2, CO, CH4, NOx, TNMHC) per 1 MJ delivered energy due to emissions from these stoves if survey information on fuel type was available. Subsequently if stove type is known, stepwise regression models predicted 73% of the variance. Integrated assessment of policies to change stove or fuel type requires that implications for environmental impacts, energy efficiency, global warming and human exposures to HDP emissions can be evaluated. Frequently, this involves measurement of TSP or CO as the major HDPs. Incorporation of this information into models to predict GWC predicted 79% and 78% of the variance respectively. Clearly, however, the complexity of making multiple measurements in conjunction with a national survey would be both expensive and time consuming. Thus, models to predict HDP using simple survey information, and with measurement of either CO/CO2 or TSP/CO2 to predict emission factors for the other HDP have been derived. Stepwise regression models predicted 65% of the variance in emissions of total suspended particulate as grams of carbon (TSPC) per 1 MJ delivered if survey information on fuel and stove type was available and 74% if the CO/CO2 ratio was measured. Similarly stepwise regression models predicted 76% of the variance in COC emissions per MJ delivered with survey information on stove and fuel type and 85% if the TSPC/CO2 ratio was measured. Ultimately, with international agreements on emissions trading frameworks, similar models based on extensive databases of the fate of fuel carbon during combustion from representative household stoves would provide a mechanism for computing greenhouse credits in the residential sector as part of clean development mechanism frameworks and monitoring compliance to control regimes.  相似文献   

19.
Abstract

A study design was developed and demonstrated for deployment of a portable emission measurement system (PEMS) for excavators. Excavators are among the most commonly used vehicles in construction activities. The PEMS measured nitric oxide, carbon monoxide, hydrocarbons, carbon dioxide, and opacity-based particulate matter. Data collection, screening, processing, and analysis protocols were developed to assure data quality and to quantify variability in vehicle fuel consumption and emissions rates. The development of data collection procedures was based on securing the PEMS while avoiding disruption to normal vehicle operations. As a result of quality assurance, approximately 90% of the attempted measurements resulted in valid data. On the basis of field data collected for three excavators, an average of 50% of the total nitric oxide emissions was associated with 29% of the time of operation, during which the average engine speed and manifold absolute pressure were significantly higher than corresponding averages for all data. Mass per time emission rates during non-idle modes (i.e., moving and using bucket) were on average 7 times greater than for the idle mode. Differences in normalized average rates were influenced more by intercycle differences than intervehicle differences. This study demonstrates the importance of accounting for intercycle variability in real-world in-use emissions to develop more accurate emission inventories. The data collection and analysis methodology demonstrated here is recommended for application to more vehicles to better characterize real-world vehicle activity, fuel use, and emissions for nonroad construction equipment.  相似文献   

20.
An updated assessment of fine particle emissions from light- and heavy-duty vehicles is needed due to recent changes to the composition of gasoline and diesel fuel, more stringent emission standards applying to new vehicles sold in the 1990s, and the adoption of a new ambient air quality standard for fine particulate matter (PM2.5) in the United States. This paper reports the measurement of emissions from vehicles in a northern California roadway tunnel during summer 1997. Separate measurements were made of uphill traffic in two tunnel bores: one bore carried both light-duty vehicles and heavy-duty diesel trucks, and the second bore was reserved for light-duty vehicles. Ninety-eight percent of the light-duty vehicles were gasoline-powered. In the tunnel, heavy-duty diesel trucks emitted 24, 37, and 21 times more fine particle, black carbon, and sulfate mass per unit mass of fuel burned than light-duty vehicles. Heavy-duty diesel trucks also emitted 15–20 times the number of particles per unit mass of fuel burned compared to light-duty vehicles. Fine particle emissions from both vehicle classes were composed mostly of carbon; diesel-derived particulate matter contained more black carbon (51±11% of PM2.5 mass) than did light-duty fine particle emissions (33±4%). Sulfate comprised only 2% of total fine particle emissions for both vehicle classes. Sulfate emissions measured in this study for heavy-duty diesel trucks are significantly lower than values reported in earlier studies conducted before the introduction of low-sulfur diesel fuel. This study suggests that heavy-duty diesel vehicles in California are responsible for nearly half of oxides of nitrogen emissions and greater than three-quarters of exhaust fine particle emissions from on-road motor vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号