首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 275 毫秒
1.
Previous studies on solids/liquid (S-L) separation for odor control from swine manure indicated that the practice might not technically be feasible because of the complexity of removing the fine particles, which are usually the major source of the odor problems. This study coupled S-L separation by sedimentation with an aeration treatment to quickly break down the fine as well as dissolved solids. Results showed that S-L separation of manure prior to aeration, at the same level of aeration, took only 1.5 days compared to 3 days needed for the control, to bring down volatile fatty acids (VFAs) to the "threshold of unacceptable level". In addition, it took 2.3 and 5 aeration-days for VFAs to reach the "acceptable level" for the separated liquid manure and the control, respectively. Results also showed that within the three weeks of post-aeration storage, the VFAs in the separated liquid manure consistently stayed 13.5 folds below the acceptable level. In the unseparated manure, the VFAs gradually increased upwards from 2.2 folds below acceptable level achieved at the end of aeration treatment, to 1.38 folds below the acceptable level at the end of the third week of storage and looked poised to definitely rise above the acceptable level in a matter of days. A strong relationship (R=0.99) between pH and the VFAs in the manure suggested that; degradation of VFAs rendered manure more basic as shown by the increase in pH. After only three days of aeration, the oxidation reduction potential (ORP) in the separated liquid manure stabilized at a much higher level of -15 mV, while the ORP in unseparated manure stabilized at a much lower level of -200 mV. The S-L separation treatment thus significantly improves the oxygen transfer efficiency, which in turn significantly reduces the aeration power needed to maintain adequate ORP if prolonged aeration is desired.  相似文献   

2.
Real-time control of aeration tank operation is key to high-efficiency pollutant removal and energy savings. One of the aims of this study was to examine the potential for using redox potential (oxidation-reduction potential [ORP]) to indicate wastewater quality online in aeration tanks treating medium (chemical oxygen demand [COD] of 70 to 150 mg/L) and low (COD of 15 to 30 mg/L) pollutant-concentration wastewaters. The field-scale data provide a good relationship between ORP values and nutrient removal along the length of the aeration tanks. The ORP values increased dramatically as organic matter was removed along the aeration tanks, indicating the improvement of the bulk liquor redox status. Dissolved oxygen higher than 1.0 mg/L was necessary for good biodegradation and improvement of the liquid redox status. Nitrification occurred at higher ORP values (380 to 420 mV) than was the case for organic substrate oxidation (250 to 300 mV). The microprofiles obtained from microelectrode measurements substantiate the heterogeneity of the microbial processes inside activated sludge flocs. Because of microbial oxygen utilization, the aerobic region in the activated sludge floc was limited to the top layer (0.1 to 0.2 mm) of the activated sludge aggregate present in medium-strength wastewater, with an anoxic zone dominating inside the flocs. When dissolved oxygen in the bulk water was higher than 4.0 mg/L, the anoxic zone inside the floc disappeared. At low wastewater pollutant concentrations, the ORP and dissolved oxygen inside the activated sludge aggregates were higher than those from medium-strength wastewater. The prospect of using ORP as an online control approach for aeration tank operation and the potential reasons for activated sludge floc size varying with pollutant strengths are also discussed.  相似文献   

3.
固定化氧化还原介体加速亚硝酸盐生物反硝化作用   总被引:4,自引:0,他引:4  
考察了利用循环伏安法所制备的固定化氧化还原介体(AQS/PPy/ACF)加速亚硝酸盐生物反硝化的特性,及其降解过程中pH和氧化还原电位(ORP)的变化特征。结果表明,AQS/PPy/ACF可显著地加速亚硝酸盐的生物降解;在不考虑各因子间交互作用的条件下,AQS/PPy/ACF加速亚硝酸盐降解的最佳条件为温度35℃,pH=8和碳氮比为6;AQS/PPy/ACF加速亚硝酸盐生物反硝化过程中pH的变化趋势与传统的亚硝酸盐生物反硝化过程中pH的变化趋势相似;AQS/PPy/ACF的加入可使亚硝酸盐生物反硝化过程中的ORP降低约45 mV;AQS/PPy/ACF具有较好的催化稳定性。本研究可为亚硝酸盐的生物降解提供新的技术途径,并为该技术的实际应用提供理论基础。  相似文献   

4.
为了实现脉冲SBR深度脱氮的实时控制,以某污水处理厂市政污水为处理对象,考察了脉冲SBR在深度脱氮过程中pH及ORP的变化规律.试验结果表明,pH及ORP的变化规律与脉冲SBR有机物去除、硝化与反硝化过程存在较好的相关关系.可以根据pH和ORP变化曲线上的特征点对脉冲SBR进行实时控制.并考察了污水C/N(COD/NH4 -N)对pH及ORP的变化规律的影响.在硝化过程中,C/N对pH及ORP曲线变化点的出现没有影响;在反硝化过程中,应结合pH值"硝酸盐峰"和ORP"硝酸盐膝"来判断低C/N污水反硝化的终点.在该试验中,出水TN低于2 mg/L,TN去除率可达到96%以上.  相似文献   

5.
Simultaneous nitrification and denitrification (SND or SNdN) may occur at low dissolved oxygen concentrations. In this study, bench-scale (approximately 6 L) bioreactors treating a continuous feed of synthetic wastewater were used to evaluate the effects of solids retention time and low dissolved oxygen concentration, under cyclic aeration, on the removal of organics, nitrogen, and phosphorus. The cyclic aeration was carried out with repeated cycles of 1 hour at a higher dissolved oxygen concentration (HDO) and 30 minutes at a lower (or zero) dissolved oxygen concentration (LDO). Compared with aeration at constant dissolved oxygen concentrations, the cyclic aeration, when operated with proper combinations of HDO and LDO, produced better-settling sludge and more complete nitrogen and phosphorus removal. For nitrogen removal, the advantage resulted from the more readily available nitrate and nitrite (generated by nitrification during the HDO period) for denitrification (during the LDO period). For phosphorus removal, the advantage of cyclic aeration came from the development of a higher population of polyphosphate-accumulating organisms, as indicated by the higher phosphorus contents in the sludge solids of the cyclically aerated systems. Nitrite shunt was also observed to occur in the LDO systems. Higher ratios of nitrite to nitrate were found in the systems of lower HDO (and, to less dependency, higher LDO), suggesting that the nitrite shunt took place mainly because of the disrupted nitrification at lower HDO. The study results indicated that the HDO used should be kept reasonably high (approximately 0.8 mg/L) or the HDO period prolonged, to promote adequate nitrification, and the LDO kept low (< or =0.2 mg/L), to achieve more complete denitrification and higher phosphorus removal. The above findings in the laboratory systems find strong support from the results obtained in full-scale plant implementation. Two plant case studies using the cyclic low-dissolved-oxygen aeration for creating and maintaining SND are also presented.  相似文献   

6.
问歇曝气周期对低C/N比污水生物脱氮的影响   总被引:5,自引:0,他引:5  
研究了间歇曝气生物脱氮工艺中,曝气周期和污水的c/N比对脱氮效率的影响,以及氧化还原电位(ORP)变化规律.中试试验结果表明,TN污泥负荷为0.05 kg/(kg MLVSS.d)时,间歇曝气系统的硝化反应所需曝气时间与总反应时间比至少要在0.5以上,一周期内搅拌时间不宜超过1 h;反硝化过程中难以找到ORP曲线突变点,因此,在低c/N比污水生物脱氮中ORP难以作为工程控制参数;由于原水的碳氮比太低,TN去除率只有35%~40%左右,为提高脱氮效率有必要投入外加碳源.  相似文献   

7.
Two two-stage sequencing batch reactors (TSSBR), one attached-growth and one suspended-growth, were operated under three levels of wastewater concentration (approximately 4,000, 2,000 and 500 TOC mg/L), respectively, to compare the pH and ORP (oxidation-reduction potential) patterns and system performance. In both TSSBR systems, the pH and ORP profiles varied with organic loading yet exhibited consistent patterns with distinctive features suitable for real-time control. For all runs at the three levels of influent, both systems achieved similar levels of treatment for BOD5, TOC and TSS of over 97.5, 93.4, and 97.3%, respectively. The attached-growth system out performed the suspended-growth system in achieving the same levels of treatment at much shorter aeration cycle times. The treatment efficiency for NO3(-)-N and PO4(-3) was greatly affected by the carbon content in the wastewater, and the best treatment was achieved during the TOC approximately 4,000 mg/L runs with final effluent at 4.0 and 21.3 mg/L, respectively.  相似文献   

8.
Nitric oxide (NO) is an intermediate of denitrification process and can be produced by denitrifiers, nitrifiers and other bacteria. In our experiments we measured the dynamic flow of NO depending on oxidation reduction potential (ORP). Different ORP-ranges were related to various carbon loading stages in the wastewater treatment pilot plant. Nitrification and denitrification were achieved by a sequence of aeration and non-aeration periods. Our measurements show that different carbon loading conditions (low feed, balanced and overloaded conditions) did not change the range of the mixing ratio of NO emissions when the aeration conditions like air-flow and temperature were kept constant. Minimum and maximum NO mixing ratios were 34.7 and 91.8 ppbv; 52.3 and 91.3 ppbv; 57.6 and 109 ppbv for low feed, balanced and overloaded conditions, respectively. The curve of the NO graph relied on nitrification/denitrification dynamics. The dependence of NO release on different ORP and CO2-release during the various conditions are shown. Longer aeration times resulted in an increased release of gaseous NO. The net-release of NO g(-1) nitrogen removed was between 0.014% and 0.028%. The NO fluxes to the air were observed between 8.3 and 14.9 mg m(-2) d(-1) NO. The major release occurred during high aeration periods whereas the concentration of dissolved [NOaq] in the wastewater was less than 0.05% of the gaseous release due to very low solubility of the NO.  相似文献   

9.
采用海藻酸钠—壳聚糖—活性炭(SA-CA-PAC)生物微胶囊包埋优势降解菌用于生物流化床处理邻二氯苯废水。比较了微囊化菌和悬浮菌对废水的降解效果,同时考察了初始浓度、接种量、pH值、温度和曝气量对降解率的影响。结果表明,微囊化菌比悬浮菌拥有更适宜的生长环境,具有更好的pH稳定性和热稳定性。微囊化菌的降解效果优于悬浮菌,处理150 mg/L的邻二氯苯废水的最佳接种量为10%,最适pH为7.5,最适温度为30℃。  相似文献   

10.
同步硝化反硝化工艺中DO浓度对N2O产生量的影响   总被引:1,自引:0,他引:1  
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响.控制溶解氧浓度恒定在1、2、2.5和3 mg/L.结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%.DO为2 mg/L时,...  相似文献   

11.
A laboratory scale two-stage sequencing batch reactor (TSSBR) was used to study the effectiveness of pH as a real-time control parameter in swine wastewater treatment. A Ringlace media was inserted into the A/O (Anoxic/Oxic) reactor for bacteria immobilization. The TSSBR was subjected to three levels of organic loading. The pH and ORP (Oxidation Reduction Potential) patterns obtained were consistent with distinct features, enabling the real-time control strategy to effectively set a flexible aeration time pending on influent concentration, hence resulting in flexible cycle time and HRT (Hydraulic Retention Time) for the system. The real-time process ensured a removal efficiency of over 99% and 95%, respectively, for ammonia and TOC (Total Organic Carbon). For NO3(-)-N and PO4(-3), the run with influent TOC = 4,000 mg/L yielded the most efficient removal of 61% and 95%, respectively. Test results suggest that pH can be a viable tool for on-line real-time control of a biological treatment process.  相似文献   

12.
Anaerobically digested sewage sludges were treated for heavy metal removal through a biological solubilization process called bacterial leaching (bioleaching). The solubilization of copper and zinc from these sludges is described in this study: using continuously stirred tank reactors with and without sludge recycling at different mean hydraulic residence times (1, 2, 3 and 4 days). Significant linear equations were established for the solubilization of zinc and copper according to relevant parameters: oxygen reduction potential (ORP), pH and residence time (t). Zinc solubilization was related to the residence time with a r2 (explained variance) of 0.82. Considering only t=2 and 3 days explained variance of 0.31 and 0.24 were found between zinc solubilization as a function of ORP and pH indicating a minor importance of those two factors for this metal in the range of pH and ORP experimented. Cu solubilization was weakly correlated to mean hydraulic residence time (r2=0.48), while it was highly correlated to ORP (r2=0.80) and pH (r2=0.62) considering only t of 2 and 3 days in the case of pH and ORP. The ORP dependence of Cu solubilization has been clearly demonstrated in this study. In addition to this, the importance of the substrate concentration for Cu solubilization has been confirmed. The hypothesis of a biological solubilization of Cu by the indirect mechanism has been supported. The results permit, under optimum conditions, the drawing of linear equations which will allow prediction of metal solubilization efficiencies from the parameters pH (Cu), ORP (Cu) and residence time (Cu and Zn), during the treatment. The linear regressions will be a useful tool for routine operation of the process.  相似文献   

13.
Anaerobic granular sludge, obtained from an upflow anaerobic sludge bed reactor at a brewery waste treatment station, was cultured for 3 months under aeration conditions until the diameter of sludge was in the range 1.8 to 2.6 mm. The aerobic granular sludge gathered acquired the ability of catalyzing simultaneous nitrification and denitrification (SND) and was applied in the study of the process of nitrogen removal in a bioreactor. The ratio between chemical oxygen demand (COD) and ammonium-nitrogen (NH4(+)-N) concentration in the influent was found to be an important factor influencing the process of SND. The final percentage removal of NH4(+)-N reached 100% under the optimal condition of 500 mg/L COD and 0.39 NH4(+)-N/COD. Intermediate products, such as nitrite-nitrogen and nitrate-nitrogen, were also analyzed to clarify the SND process with the aerobic granular sludge.  相似文献   

14.
Two low level aeration schemes (intermittent vs. continuous) were investigated on a laboratory scale, in conjunction with swine manure pH adjustment using sodium hydroxide (1.0 M), for manure phosphorus (P) removal. According to the data, an 80% reduction in soluble P was observed when the manure pH was increased to 8. Both intermittent and continuous aeration treatments could raise manure pH above 8 with an airflow rate of 1 L/minute in a period of 15 days. A drastic increase in pH (about 1 unit) was observed for both aeration schemes within the first day of test, resulting in a 76% reduction in soluble P concentration in the liquid. It appeared that there is no difference in terms of P removal between the two aeration programs, suggesting that the intermittent aeration be preferred to save energy while still achieving the same level of P removal.  相似文献   

15.
优化控制SBR工艺处理养猪废水中试研究   总被引:2,自引:1,他引:1  
采用优化控制SBR工艺对北京某种猪场的养殖粪尿污水进行了中试处理研究。所建立的自控系统通过ORP实时曲线上的“硝酸盐膝点”和pH实时曲线上的“氨谷点”分别对碳源投加和曝气时间进行优化控制,实现根据水质变化适当补充所需碳源,并有效节省曝气能耗。中试反应器10个月的连续运行结果表明,系统对于氨氮和COD的去除率分别达到97%和95%。  相似文献   

16.
人工湿地中的SND机理以及DO、pH对其的影响   总被引:11,自引:0,他引:11  
人工湿地中的水生植物向系统中输送大量的DO,并为系统中的微生物提供栖息地,使得系统中连续同时发生硝化和反硝化(SND)反应。DO的高低直接影响到人工湿地系统SND的效果,根据SND的发生机理,可采用复合植物床(系统前端栽种泌氧能力强、后端泌氧能力稍弱的水生植物)和间歇运行的的方式来改善整个系统的脱氮能力。pH过高或过低都会抑制人工湿地系统的SND作用,最适宜值为7.0,据此可以选择适当pH的湿地填料来提高系统的SND作用。  相似文献   

17.
采用高温烧结型微电解填料预处理煤制油废水,通过正交实验研究了初始pH、微电解时间及曝气强度等对废水的预处理影响。结果表明,微电解影响因素从大到小依次为:微电解时间pH曝气强度;微电解预处理煤制油废水的最佳工艺参数为:初始pH 4.0,微电解90 min,气水比3∶1充氧曝气;通过平行实验,COD平均去除率及出水水质分别为54.7%和1 773 mg/L,废水生物毒性指标EC50由原水12.5%的高毒性转化成48.3%的中毒性,为后续生化系统的正常运行提供了有利条件,是预处理煤制油废水的有效方法之一。  相似文献   

18.
以养猪场废水作为研究对象,采用序列间歇式活性污泥法SBR,通过实验研究了供气量、pH、排泥量、原水稀释倍数、水力停留时间(HRT)对SBR出水水质的影响。结果表明,供气量为375 L/(min·m3)、pH为8.0,并添加排泥100 mL的操作,可使SBR处理效果明显提高,COD、磷和凯氏氮去除率最高分别可达96.37%、94.14%、99.38%。逐步降低进水稀释倍数有利于培养出处理高浓度有机养猪废水的活性污泥,可将平均COD、磷和凯氏氮含量高达9 161.24、33.41和1 502.77 mg/L的养猪废水处理至出水的490.11、5.35和17.84 mg/L。降低HRT对SBR去除率影响不大。  相似文献   

19.
水体pH和曝气方式对藻类生长的影响   总被引:9,自引:0,他引:9  
利用水族箱微宇宙研究了藻类在不同pH和曝气条件下的生长和种类变化.使用天然湖水,一组试验每天调节pH,使其分别保持在8.0、8.5、9.0和9.5;另一组试验是设定不同的曝气方式,分别为不曝气、完全曝气、昼间曝气和夜间曝气,定期测定水体叶绿素a和藻类组成.pH试验结果显示,在pH 8.0~9.5范围内,pH 8.5下藻类生长状况最好,pH 9.5下生长最差,人为改变pH使其远离8.5能够抑制藻类生长.曝气试验结果显示,曝气不能抑制水体中藻类的生长,昼间曝气甚至还有明显的促进作用.  相似文献   

20.
Abstract

A laboratory scale two‐stage sequencing batch reactor (TSSBR) was used to study the effectiveness of pH as a real‐time control parameter in swine wastewater treatment. A Ringlace media was inserted into the A/O (Anoxic/Oxic) reactor for bacteria immobilization. The TSSBR was subjected to three levels of organic loading. The pH and ORP (Oxidation Reduction Potential) patterns obtained were consistent with distinct features, enabling the real‐time control strategy to effectively set a flexible aeration time pending on influent concentration, hence resulting in flexible cycle time and HRT (Hydraulic Retention Time) for the system. The real‐time process ensured a removal efficiency of over 99% and 95%, respectively, for ammonia and TOC (Total Organic Carbon). For NO3 ‐N and PO4 ‐3, the run with influent TOC = 4,000 mg/L yielded the most efficient removal of 61% and 95%, respectively. Test results suggest that pH can be a viable tool for on‐line real‐time control of a biological treatment process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号