首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas–aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl, NO2, NO3, SO42−, Na+, NH4+, K+, Mg2+ and Ca2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m−3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.  相似文献   

2.
Vertical extinction profiles and columnar optical properties (optical depth, Angstrom exponent, lidar ratio, and particle depolarization) of aerosols were obtained by simultaneous measurements with a depolarization lidar and a sunphotometer at Taipei, Taiwan from February 2004 to January 2006. Columnar optical depths are high in Feb–Apr (0.61–0.75) by sunphotometer measurements. Lidar measurements show the contribution of aerosols in the free atmosphere on columnar optical depths are about 44–50% in Feb–Apr and about 26–37% in other months. Back-trajectory analyses and depolarization measurements show almost all of non-spherical aerosols originated from Northwest China which indicate Asian dusts frequently transported to Taipei from dust source regions in the free atmosphere. Aerosols with depolarization lower than 5% are found mostly originated from South China or Southeast Asia. Good correlations between columnar lidar ratio, particle depolarization, and Angstrom exponent are found for cases that columnar water vapor less than 1.5 cm. The effect of water vapor on particle depolarization is briefly discussed.  相似文献   

3.
Chang SY  Fang GC  Chou CC  Chen WN 《Chemosphere》2006,65(5):792-801
Continuous measurements of hourly PM10 soluble ions were performed by the in situ IC technology in order to assess the impact of Asian outflows on local air quality. The intensive aerosol observation was carried in Taipei from 11 February 22:00 to 7 April 19:00, 2004. Concentrations of the water-soluble ions (Cl(-), NO(-)(2), NO(-)(3), SO(2-)(4), Na(+), NH(+)(4), K(+), and Ca(2+)) were measured in a total of 3,300 samples. The characteristics of air pollutant events in Taipei Basin were classified as frontal dust, dust, northeast monsoon, south wind and sea/land breeze according to the hourly meteorology and air pollutant concentrations. Factor analysis was conducted based on hourly data for 13 variables to find the group of variables with similar behavior. According to the source characteristics of high loading species, the possible sources of PM10 aerosols in each group were identified. Three to four factors were identified for each event. The total variances of frontal dust, dust, northeast trade, south wind, and sea/land breeze events were explained about 85%, 86%, 76%, 77%, and 80%, respectively, indicating that the identified factors were satisfactory.  相似文献   

4.
Asia is one of the major sources of not only mineral dust but also anthropogenic aerosols. Continental air masses associated with the East Asian winter monsoon always contain high contents of mineral dust and anthropogenic species and transported southeastward to Taiwan, which have significant influences on global atmospheric radiation transfer directly by scattering and absorbing solar radiation in each spring. However, few measurements for the long-range transported aerosol and its optical properties were announced in this area, between the Western Pacific and the southeastern coast of Mainland China. The overall objective of this work is to quantify the optical characteristics of different aerosol types in the Eastern Asian. In order to achieve this objective, meteorological parameters, concentrations of PM10 and its soluble species, and optical property of atmospheric scattering coefficients were measured continuously with 1 h time-resolved from 11 February to 7 April 2004 in Taipei Basin (25°00′N, 121°32′E). In this work, the dramatic changes of meteorological parameters such as temperature and winds were used to determine the influenced period of each air mass. Continental, strong continental, marine, and stagnant air masses defined by the back-trajectory analysis and local meteorology were further characterized as long-range transport pollution, dust, clean marine, and local pollution aerosols, respectively, according to the diagnostic ratios. The aerosol mass scattering efficiency of continental pollution, dust, clean marine, and local pollution aerosols were ranged from 1.3 to 1.6, 0.7 to 1.0, 1.4 and 1.4 to 2.3 m2 g−1, respectively. Overall, there are two distinct populations of aerosol mass scattering efficiencies, one for an aerosol chemical composition dominated by dust (<1.0 m2 g−1) and the other for an aerosol chemical composition dominated by anthropogenic pollutants (1.3–2.3 m2 g−1), which were similar to the previous measurements with high degree of temporal resolution.  相似文献   

5.
Metropolitan Taipei, which is located in the subtropical area, is characterized by high population and automobile densities. For convenience, most primary schools are located near major roads. This study explores the exposure of acid aerosols for schoolchildren in areas in Taipei with different traffic densities. Acid aerosols were collected by using a honeycomb denuder filter pack sampling system (HDS). Experimental results indicated that the air pollutants were significantly correlated with traffic densities. The ambient air NO2, SO2, HNO3, NO3, SO42−, and aerosol acidity concentrations were 31.3 ppb, 4.7 ppb, 1.3 ppb, 1.9 μg m−3, 18.5 μg m−3, and 49.5 nmol m−3 in high traffic density areas, and 6.1 ppb, 1.8 ppb, 0.9 ppb, 0.7 μg m−3, 8.8 μg m−3 and 14.7 nmol m−3 in low traffic density areas. The exposure levels of acid aerosols for schoolchildren would be higher than the measurements because the sampling height was 5 m above the ground. The SO2 levels were low (0.13–8.03 ppb) in the metropolitan Taipei. However, the SO42− concentrations were relatively high, and might be attributed to natural emissions of sulfur-rich geothermal sources. The seasonal variations of acid aerosol concentrations were also observed. The high levels of acidic particles in spring time may be attributed to the Asian dust storm and low height of the mixture layer. We conclude that automobile contributed not only the primary pollutants but also the secondary acid aerosols through the photochemical reaction. Schoolchildren were exposed to twice the acid aerosol concentrations in high traffic density areas compared to those in low traffic density areas. The incidence of allergic rhinitis of schoolchildren in the high traffic density areas was the highest in spring time. Accompanied by high temperature variation and high levels of air pollution in spring, the health risk of schoolchildren had been observed.  相似文献   

6.
An in situ field experiment was conducted in a highway road tunnel in the Taipei City to determine the motor vehicle emission factors (EF) of different kinds of air pollution species. These are carbon monoxide (CO), oxides of nitrogen (NOx), non-methane hydrocarbons (NMHC) and VOCs species. About 56 species of VOCs were sampled by canister sampler and followed by the GC-MS analyzing. Furthermore, the tunnel-drafting rate was determined by SF6 tracer method.The EF for the highway vehicles determined from this experiment are 3.64, 0.90, 0.44 and 0.24 gm km−1 veh−1 for CO, NOx, NMHC and the totally measured VOCs, respectively. A comparison of the EFs from the road tunnel experiment to the estimates by the USEPA MOBILE5b (M5b) and the modified Taiwan EPA MOBILE-TAIWAN2.0 (MT2.0) provides a first-hand evaluation of the model characteristics. M5b and MT2.0 both tend to underpredict CO by 10% and 20%, respectively. While M5b overpredicts NOx and NMHC by 40% and 20%, respectively; MT2.0 has fairly good predictions for these two species. From the GC-MS analysis of the canister samples, it was found that the most abundant species from the traffic-emitted VOCs in Taipei road tunnel are toluene, ethene and 1,2,4-trimethyl-benzene (1,2,4-TMB) by the weight basis. However, ethene, acetylene and toluene are the most abundant in VOCs based on volume. The VOCs’ weight composition in terms of the carbon bond classification is 28% by the paraffins, 33% by the olefins and 39% by the aromatics, respectively. In order to evaluate the ozone formation potential from the typical road emission in Taipei area, the maximum increment reactivity is calculated. It was found that about 1015 mg of O3 is induced by per vehicle per kilometer traveled emission. Among them, ethene, 1,2,4-TMB and propene from the road vehicle's emission contribute most to the ozone-formation reactivity.  相似文献   

7.
The meteorological conditions exert large impacts on ozone concentrations, and may mask the long-term trends in ozone concentrations resulting from precursor emissions. Estimation of long-term trends of ozone concentrations due to the changes in precursor emissions is important for corresponding control strategy. Multiple linear regression (method I), multilayer perceptron (MLP) neural network (method II) and Komogorov-Zurbenko (KZ) filter method plus MLP methodology (method III), are used to estimate the meteorologically adjusted long-term trends of daily maximum ozone concentrations by removing the masking effects of meteorological conditions in this study. The daily maximum ozone concentrations and relative meteorological variables were extracted from six air-monitoring stations in Taipei area from 1994 to 2001. The data collected during 1994–2000 period were used as modeling set and utilized to estimate the meteorologically adjusted trends, and the data of 2001 were used as the validation data. The meteorologically adjusted trends of ozone for these three methods were calculated and compared. The results show that both MLP and KZ filter +MLP models are more suitable than multiple linear regression for estimating the long-term trends of ozone in Taipei, Taiwan. The long-term linear trends of meteorologically adjusted ozone concentrations due to the precursor emissions show an increase trend at all stations, and the percent changes per year range from 1.0% to 2.25% during the modeling period in Taipei area.  相似文献   

8.
Ambient concentrations of n-alkanes with carbon number ranging from 17 to 36 were determined for PM2.5 samples collected in Taipei city during September 1997–February 1998. The measured concentrations of particulate n-alkanes were in the range of 69–702 ng m−3, considerably higher than the concentration levels observed in Los Angeles and Hong Kong. The concentration distributions of n-alkanes homologues obtained in this study exhibited peaks at C19, C24 or C25. This suggests that fossil fuel utilization, such as vehicular exhaust and lubricant residues, was an important contributor to the Taipei aerosol. Source apportionment of PM2.5 was conducted using carbon preference index (CPI, defined as the ratio of the total concentration of particulate n-alkanes with odd carbon number to that with even carbon number) and U : R ratio (the concentration ratio of unresolved components to resolved components obtained from chromatograms). The low CPI value (0.9–1.9) and high U : R ratio (2.6–6.4) for each sample further confirmed that fossil fuel utilization was the major source of n-alkanes in ambient PM2.5 of Taipei city. Estimates from these results showed that 69–93% of the n-alkanes in PM2.5 of the Taipei aerosol originated from vehicular exhaust. The higher concentration level of particulate n-alkanes in the Taipei aerosol was mainly a result of vehicular emissions.  相似文献   

9.
Surface ozone concentration and surface air temperature was measured hourly at three coastal sites, four low elevation inland sites and two high elevation inland sites in southwestern Sweden. Diurnal ozone concentration range (DOR) and diurnal temperature range (DTR) were strongly correlated, both spatially and temporally, most likely because both depended on atmospheric stability. Accumulated ozone exposure above a threshold concentration of x nmol mol1 (AOTx) was estimated from time-integrated ozone concentration (as from diffusive sampling) and measures of ozone concentration variability. Two methods both estimated 24-h AOTx with high accuracy (modelling efficiencies >90% for x ≤ 40 nmol mol−1). Daytime (08:00–20:00) AOTx could not be equally well estimated. Estimates were better for lower AOT thresholds. Diffusive ozone concentration sampling, combined with hourly temperature monitoring, could be a valuable complement to ozone concentration monitoring with continuous instruments.  相似文献   

10.
Analyses of diurnal patterns of PM10 in Taipei City have been performed in this study at different daily ozone maximum concentrations (O3,max) from 1994 to 2003. In order to evaluate secondary aerosol formation at different ozone levels, CO was used as a tracer of primary aerosol, and O3,max was used as an index of photochemical activity. Results show that when O3,max exceeds 120 ppb, the highest photochemical formation of secondary aerosol can be found at 15:00 (local time). The produced secondary aerosol is estimated to contribute 30 μg m−3 (43%) of PM10 concentration, and about 77% of the estimated secondary PM10 is composed of PM2.5. The estimated maximum concentration of secondary aerosol occurs 2–3 h later than the maximum ozone concentration. As revealed in an O3 episode, PM10 and PM2.5 vary consistently with O3 at daytime, which suggests that they are mostly secondary aerosols produced from photochemical reactions. Data collected from Taipei aerosol supersite in 2002 indicates that for all O3 levels, summertime PM2.5 is composed of 23%, 20%, 9%, and 7% of organic carbon, sulfate, nitrate, and elemental carbon, respectively. Aerosol number and volume size spectra are dominated by submicron particles either from pollution transport or photochemical reactions. Secondary PM10 concentrations show increasing tendencies for the time between 15:00 and 19:00 from 1994–1996 to 2001–2003. This reveals that the abatement of secondary PM10 becomes more important after pronounced primary PM10 reduction in a metropolis.  相似文献   

11.
Two methods for measuring aerosol elemental carbon (EC) are compared. Three-hour integrated carbon samples were collected on quartz filters during the summer of 1990 in Uniontown, PA, primarily during episodes of elevated particulate pollution levels. These samples were analyzed for EC and organic carbon (OC) using a thermo/optical reflectance (TOR) method. Aerosol black carbon (BC) was measured using an Aethalometer, a semi-continuous optical absorption method. The optical attenuation factor for ambient BC was supplied by the instrument manufacturer. Three-hour average concentrations were calculated from the semi-continuous BC measurements to temporally match the EC/OC integrated quartz filter samples. BC and EC concentrations are highly correlated over the study period (R2=0.925). The regression equation is BC (μg m-3)=0.95 (±0.04) EC−0.2 (±0.4). The means of 3 h average measurements for EC and BC are 2.3 and 2.0 μg m-3, respectively, average concentrations of EC and BC ranged from 0.6 to 9.4 and 0.5 to 9.0 μg m-3 respectively. TOR OC and EC concentrations were not highly correlated (R2=0.22). The mean OC/EC ratio was 1.85.The 10-week Aethalometer hourly dataset was analyzed for daily and weekly temporal patterns. A strong diurnal BC pattern was observed, with peaks occurring between 7 a.m. and 9 a.m. local time. This is consistent with the increase in emissions from ground level combustion sources in the morning, coupled with poor dispersion before daytime vertical mixing is established. There was also some indication of a day-of-week effect on BC concentrations, attributed to activity of local ground level anthropogenic sources. Comparison of BC concentrations with co-located measurements of coefficient of haze in a separate field study in Philadelphia, PA, during the summer of 1992 showed good correlation between the two measurements (R2=0.82).  相似文献   

12.
Visibility data collected from Kaohsiung City, Taiwan, for the past two decades indicated that the air pollutants have significantly degraded visibility in recent years. During our study period, the seasonal mean visibilities in spring, summer, fall, and winter were only 5.4, 9.1, 8.2, and 3.4 km, respectively. To ascertain how urban aerosols influence the visibility, we conducted concurrent visibility monitoring and aerosol sampling in 1999 to identify the principal causes of visibility impairments in the region. In this study, ambient aerosols were sampled and analyzed for 11 constituents, including water-soluble ions and carbon materials, to investigate the chemical composition of Kaohsiung aerosols. Stepwise regression method was used to correlate the impact of aerosol species on visibility impairments. Both seasonal and diurnal variation patterns were found from the monitoring of visibility. Our results showed that light scattering was attributed primarily to aerosols with sizes that range from 0.26 to 0.90 pm, corresponding with the wavelength region of visible light, which accounted for approximately 72% of the light scattering coefficient. Sulfate was a dominant component that affected both the light scattering coefficient and the visibility in the region. On average, (NH4)2SO4, NH4NO3, total carbon, and fine particulate matter (PM2.5)-remainder contributed 53%, 17%, 16%, and 14% to total light scattering, respectively. An empirical regression model of visibility based on sulfate, elemental carbon, and humidity was developed, and the comparison indicated that visibility in an urban area could be properly simulated by the equation derived herein.  相似文献   

13.
The aerosol optical thickness over land is derived from satellite measurements of the radiance of scattered sunlight. These data are used to estimate the columnar mass density of particulate sulfur on a day with a large amount of sulfur. The horizontal transport of the particulate sulfur is calculated using wind vectors measured with rawins.  相似文献   

14.
Municipal solid waste (MSW) management is a major concern for highly urbanized societies. Among proposed MSW management systems, regionalization programs generally have received considerable attention. This study analyzes real-world operational data to assess different MSW management policies, especially regionalization strategies, and their impact on MSW management systems in the Taipei metropolitan area. Linear programming is also used to identify the minimum costs sustained by each policy. The linear programming results show that regionalization programs are more economical and also improve incinerator operation efficiency. Sensitivity analysis indicates that the minimum treatment requirement of incinerators is a very sensitive influence on the MSW flows distributed through the entire region. The MSW of several "sensitive" administrative districts will be allocated to different treatment facilities according to different management strategies. A list of preferential sequences of MSW treatment and disposal facilities can also be identified by the model presented in this study. The results of this study may provide a useful tool for aiding decision-making related to real-world MSW management problems.  相似文献   

15.
Abstract

Chenfang Lin is with the Department of Soil and Environmental Science at National Chung Hsing University.Municipal solid waste (MSW) management is a major concern for highly urbanized societies. Among proposed MSW management systems, regionalization programs generally have received considerable attention. This study analyzes real-world operational data to assess different MSW management policies, especially regionalization strategies, and their impact on MSW management systems in the Taipei metropolitan area. Linear programming is also used to identify the minimum costs sustained by each policy. The linear programming results show that regionalization programs are more economical and also improve incinerator operation efficiency. Sensitivity analysis indicates that the minimum treatment requirement of incinerators is a very sensitive influence on the MSW flows distributed through the entire region. The MSW of several “sensitive” administrative districts will be allocated to different treatment facilities according to different management strategies. A list of preferential sequences of MSW treatment and disposal facilities can also be identified by the model presented in this study. The results of this study may provide a useful tool for aiding decision-making related to real-world MSW management problems.  相似文献   

16.
The optical properties (extinction-to-backscatter ratio, backscattering, depolarization, and backscatter-related Angstrom exponent) and height distribution of Asian dusts were measured using a two-wavelength Raman/depolarization lidar at Taipei, Taiwan, during the Asian dust seasons in 2004 and 2005. Dust layers were frequently observed in the free atmosphere (1–6 km). Dust optical thickness ranged from 0.01 to 0.55; backscatter-related Angstrom exponents ranged from 0.42 to 1.47; and lidar ratios (extinction-to-backscatter ratio) for 355 nm ranged from 32 to 72 sr (steradian). The mean values of dust particle depolarization and extinction coefficient are 14±6% and 0.16km-1, respectively, which are close to the moderate dust depolarizations and extinctions observed in free atmosphere in China and Japan. Backscatter-related Angstrom exponents were found correlated positively with lidar ratio and negatively with particle depolarization, indicating that the dust optical characteristics are predominated by size distribution. Dusts were found to tend to exhibit unusual low depolarization properties under moist conditions (relative humidity RH>70%), and the possible explanations are discussed.  相似文献   

17.
Multi-year hourly measurements of PM2.5 elemental carbon (EC) and organic carbon (OC) from a site in the South Bronx, New York were used to examine diurnal, day of week and seasonal patterns. The hourly carbon measurements also provided temporally resolved information on sporadic EC spikes observed predominantly in winter. Furthermore, hourly EC and OC data were used to provide information on secondary organic aerosol formation. Average monthly EC concentrations ranged from 0.5 to 1.4 μg m?3 with peak hourly values of several μg m?3 typically observed from November to March. Mean EC concentrations were lower on weekends (approximately 27% lower on Saturday and 38% lower on Sunday) than on weekdays (Monday to Friday). The weekday/weekend difference was more pronounced during summer months and less noticeable during winter. Throughout the year EC exhibited a similar diurnal pattern to NOx showing a pronounced peak during the morning commute period (7–10 AM EST). These patterns suggest that EC was impacted by local mobile emissions and in addition by emissions from space heating sources during winter months. Although EC was highly correlated with black carbon (BC) there was a pronounced seasonal BC/EC gradient with summer BC concentrations approximately a factor of 2 higher than EC. Average monthly OC concentrations ranged from 1.0 to 4.1 μg m?3 with maximum hourly concentrations of 7–11 μg m?3 predominantly in summer or winter months. OC concentrations generally correlated with PM2.5 total mass and aerosol sulfate and with NOx during winter months. OC showed no particular day of week pattern. The OC diurnal pattern was typically different than EC except in winter when OC tracked EC and NOx indicating local primary emissions contributed significantly to OC during winter at the urban location. On average secondary organic aerosol was estimated to account for 40–50% of OC during winter and up to 63–73% during summer months.  相似文献   

18.
Environmental Science and Pollution Research - Under the impact of climate change, Taiwan, an island state, has faced the challenges of extreme weather events in recent years. Based on previous...  相似文献   

19.
Hourly measurements of ozone concentration in the urban atmosphere of Istanbul were carried out from February 1998 to July 1999. An assessment of the annual variations and relationships of ozone concentrations and meteorological variables was made. Annual variations were first examined without considering meteorological variables, and meteorological influences on ozone seasonal values were then examined. Furthermore, a typical ozone threshold period was analysed by considering meteorological variables for a case study. Meteorological conditions favourable for high ozone concentrations appeared when Istanbul and its surrounding region were dominated by an anticyclonic pressure system. During conducive ozone days, southerly and southwesterly winds with low speeds (daytime mean value <11m1sSUP align=right>-1) influence Istanbul.  相似文献   

20.
Acidic aerosol concentrations measured by an annular denuder system (ADS) and a honeycomb denuder system (HDS) in Hsinchu, Taiwan, were compared. Aerosols were also sampled by a MOUDI (micro-orifice uniform deposit impactor) and analyzed by an ion chromatograph to determine the size distributions of different species. Using the measured aerosol size distribution, theoretical analysis showed that positive HNO3 artifact due to volatilization of NH4NO3 is generally negligible for both samplers. Comparing two different denuder samplers, the average concentration of HNO3 measured by the ADS was found to be lower than that measured by the HDS, while the difference between the two samplers for the average concentration of other species was found to be within +/- 15%. A possible cause of the difference in HNO3 concentrations is due to a greater loss of HNO3 in the cyclone used by the ADS than in the impactor used by the HDS. The study also showed incomplete absorption of the evaporated HCl and HNO3 from the particles on the Teflon filter by the first nylon filter in the filter pack of the ADS. Collection efficiency and capacity of HCl and HNO3 by the nylon filters need further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号