首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this article is to analyse CO2 emissions caused by passenger transport in France: which socio-demographic groups travel, for what kinds of journey (local or long distance), how and why? Research focusing on the analysis of individual travel can improve the understanding of CO2 emissions by identifying upstream socio-economic factors, and also enable a better assessment of the potential social impact of measures introduced to limit greenhouse gases due to transport.Calculations are based on the latest French national transport survey (1994). Distances covered and CO2 emissions were estimated for each journey and for each surveyed individual. A socio-demographic characteristic typology was built and results were obtained through this analysis.If equity and accessibility issues are to be taken into account, planned policies cannot be of the same type if linked to mobility segments. An environmental tax system to limit CO2 emission increases appears appropriate for long-distance trips. Results are more varied for local journeys, which are often more of a necessity. Nevertheless, income brackets, and measures concerning urban planning or the growth of new car fleets, seem more pertinent.  相似文献   

2.
This paper models the effects of imposing efficient pricing on interurban passenger travel in the United Kingdom and passenger travel in London. Both the internal and external costs of the main modes are estimated. The resulting efficient prices are used to predict the changes in demand for each mode, together with implied tax revenues, operators' aggregate surplus or deficit, and the implied investment needs. Efficient pricing and taxation of externalities does not lead to substantial shifts to modes of transport with lower external costs and thus does not substantially reduce the impact of transport on the environment. In the long run, demand changes are driven mainly by the growth of income. The assumption made about the appropriate scale economies present is an important determinant of the degree of change and overall effects. In the London model, sufficient revenue is generated to cover the deficits incurred by public transport operators.  相似文献   

3.
Samuele Furfari 《Ambio》2016,45(1):63-77
The transport sector is fundamental for the economy but also for personal life. With a growing population and the globalization process, it is not surprising that the demand of transport is set to grow in the near future and certainly until 2050. This paper focuses on the huge potential of progress in the sector of technology for transport. As the principal sector for transport will remain on roads, the paper emphasizes the progress in the automotive sector. Since car manufacturers are investing massively into research and technology development to offer ever more efficient cars—not only energy efficient but also efficient in terms of safety and comfort—the car of tomorrow will be very different from the present one. The increasing role of electronics in cars will synergistically cooperate with that of so-called smart cities. The potential development of methane in the transport sector, mainly used for heavy transportation is discussed.  相似文献   

4.
This paper presents key findings of a study conducted under Asian Regional Research Programme in Energy, Environment and Climate on least cost options to meet the projected transport service demand in eight selected Asian cities. It also presents the barriers to the adoption of the selected cleaner transport options. Furthermore, it discusses some policies and measures to promote the cleaner transport options. The study finds that high initial cost and lack of infrastructure (especially for compressed natural gas operated vehicles and mass rapid transit system) are the major barriers to the selected options.  相似文献   

5.
Public transportation automatic fare collection (AFC) systems are able to continuously record large amounts of passenger travel information, providing massive, low-cost data for research on regulations pertaining to public transport. These data can be used not only to analyze characteristics of passengers’ trips but also to evaluate transport policies that promote a travel mode shift and emission reduction. In this study, models combining card, survey, and geographic information systems (GIS) data are established with a research focus on the private driving restriction policies being implemented in an ever-increasing number of cities. The study aims to evaluate the impact of these policies on the travel mode shift, as well as relevant carbon emission reductions. The private driving restriction policy implemented in Beijing is taken as an example. The impact of the restriction policy on the travel mode shift from cars to subways is analyzed through a model based on metro AFC data. The routing paths of these passengers are also analyzed based on the GIS method and on survey data, while associated carbon emission reductions are estimated. The analysis method used in this study can provide reference for the application of big data in evaluating transport policies.

Implications: Motor vehicles have become the most prevalent source of emissions and subsequently air pollution within Chinese cities. The evaluation of the effects of driving restriction policies on the travel mode shift and vehicle emissions will be useful for other cities in the future. Transport big data, playing an important support role in estimating the travel mode shift and emission reduction considered, can help related departments to estimate the effects of traffic jam alleviation and environment improvement before the implementation of these restriction policies and provide a reference for relevant decisions.  相似文献   


6.
Natural and human activities generate a significant amount of PM2.5 (particles ≤2.5 μm in aerodynamic diameter) into the surrounding atmospheric environments. Because of their small size, they can remain suspended for a relatively longer time in the air than coarse particles and thus can travel long distances in the atmosphere. PM2.5 is one of the key indicators of pollution and known to cause numerous types of respiratory and lung-related diseases. Due to poor implementation of regulations and a time lag in introducing the vehicle technology, levels of PM2.5 in most Asian cities are much worse than those in European environments. Dedicated reviews on understanding the characteristics of PM2.5 in Asian urban environments are currently missing but much needed. In order to fill the existing gaps in the literature, the aim of this review article is to describe dominating sources and their classification, followed by current status and health impact of PM2.5, in Asian countries. Further objectives include a critical synthesis of the topics such as secondary and tertiary aerosol formation, chemical composition, monitoring and modelling methods, source apportionment, emissions and exposure impacts. The review concludes with the synthesis of regulatory guidelines and future perspectives for PM2.5 in Asian countries. A critical synthesis of literature suggests a lack of exposure and monitoring studies to inform personal exposure in the household and rural areas of Asian environments.  相似文献   

7.
This paper explores the adaptation of a regional Lagrangian approach for making long-term simulations of SO2 and sulfate ambient concentrations at the resolution needed for health effects risk assessment in Asian megacities and their surroundings. A Lagrangian trajectory model (UR-BAT) is described which simulates transport and diffusion of sulfur within and near urban areas, originating from area and major point sources. The long-range contribution is accounted for by the ATMOS model, simulating all Asian sources. The model has been applied to Beijing and Bombay, by using preliminary emission figures, and the results have been compared with available monitoring data. The computed concentrations in different cities are in the correct range, indicating the potential use of the model in an integrated assessment framework such as RAINS-Asia.  相似文献   

8.
Atmospheric Aluminum measured in northern Taiwan from 2003 to 2006 is used as a dust tracer, from which dust concentrations are derived, and major Asian dust events are determined. The source locations for the major dust events are traced back and identified, and the processes leading to the southeastward transport of Asian dust is investigated. The derived dust concentrations are compared to the local PM10 (particle with size less than 10 μm) concentrations, and the impacts of Asian dust on the air quality of Taiwan are quantified.According to the backward trajectory and dust observation analyses, most of the southeastward transport of major Asian dust events originate from Mongolia and Inner Mongolia in northern China, and only one out of 16 events is generated from western China. Modeling studies and weather analyses of dust events suggest that the southeastward transport of Asian dust is usually generated behind a surface front and transported downwind behind the associated upper level trough. The associated upper level trough is usually deep, in which the northwesterly wind behind the trough favors the southeastward transport of dust to lower latitudes. Dust transported to Taipei generally occur during periods of large-scale subsidence.Asian dust contributes about 15 μg m?3 of aerosol particles to northern Taiwan during winter monsoon, which accounts for about 24–30% of the PM10 concentrations to the northern Taiwan. The contributions of Asian dust are raised pronouncedly to about 60–70% during major dust events. The impacts of Asian dust on Taiwan's air quality are most substantial in December. The Asian dust impacts decrease in other months, but still remain at around 30% in the late winter to early spring.  相似文献   

9.
In this work, we determine the major channels through which air pollutants, mainly originating in Northeast Asian mega-cities, flow out into the Northwestern Pacific atmosphere. For this purpose, comprehensive backward/forward trajectory analyses are conducted. Two important channels along which pollutants from the Northeast Asian mega-cities flow out are defined, and are labeled as “DC8 transport path” and “P3B transport path”. We then comprehensively examine the chemico-microphysical transformations of the anthropogenic pollutants from the Northeast Asian mega-cities along the two major transport paths, using a new Lagrangian forward-trajectory photochemical model. In the newly developed model, state-of-the-science parameterizations for considering chemico-microphysical aging processes and atmospheric aerosol processes are incorporated. As air masses travel toward low latitudes through the marine boundary layer (MBL), the temperature increases along the trajectories and large amounts of PAN experience thermal decomposition. By this process, PAN can be an important supplier of NO2 in the remote MBL. The O3 productions in the remote Northwestern Pacific MBL are fueled and maintained by NOx provided from the PAN decomposition. High O3 levels (>50 ppb) are observed within the remote MBL of the Northwestern Pacific Oceans from several TRACE-P DC8 and P3B measurements under the continental outflow situations. Gas-phase SO2 is continuously converted into nss-sulfate via heterogeneous oxidation reaction with H2O2 at a particle pH of 2–5. The Lagrangian-trajectory modeling studies also indicate that in the remote MBL of Northwestern Pacific Ocean under continental outflow situations, conditions are unfavorable for nucleation events, because of the depletion of SO2, the large aerosol surface areas available for H2SO4 sink, and high temperatures.  相似文献   

10.
This paper considers the implications of changing land use and transport patterns in cities in Central and Eastern Europe. It reviews experience elsewhere, primarily in Western Europe, where a spiral of increasing mobility and dispersal is widely acknowledged to be environmentally, socially and economically unsustainable. Policies being adopted at different scales in attempts to modify these trends are outlined, and some considerations for CEE cities are highlighted. It is argued that sustainable land use and transport systems are a matter of political choice.  相似文献   

11.
The study of the transport of polluted air masses has acquired great importance in the last years and as a consequence computed air mass trajectories are now currently associated with the analysis of atmospheric samples. Schematically, we can say that the pollution emitted in the boundary layer is partly transported within the boundary layer itself and partly within the free troposphere. By the latter route pollution can travel long distances. The main problem is now how to simulate the transport of pollutants when such a statification of the air is considered. Different techniques have been used to model the long-range transport of air masses (geostrophic, isobaric, isentropic trajectories…), but, presently, none can give a complete and satisfying response to the problem. The purpose of this study is to explore the use of the analyzed vertical wind component as a tool to compute air mass trajectories in five case studies. This parameter, resulting from the mass balance, is available from the data set of the European Center of Meteorological Weather Forecasts (ECMWF, Reading, U.K.). We shall discuss in which cases the computed trajectory is sensitive to this parameter. Our study suggests that this parameter should be used to compute air mass transport within the free troposphere.  相似文献   

12.
An effective streamtube ensemble method is developed to upscale convective-dispersive transport with multicomponent nonlinear reactions in steady nonuniform flow. The transport is cast in terms of a finite ensemble of independent discrete streamtubes that approximate convective transport along macroscopically averaged pathlines and dispersive transport longitudinally as microscopic mixing within streamtubes. The representation of fate and transport via a finite ensemble of effective linear streamtubes, allows the treatment of arbitrarily complex reaction systems involving both homogeneous and heterogeneous reactions, and longitudinal dispersive/diffusive mixing within streamtubes. This allows the use of reactive-transport codes designed to solve such problems in an Eulerian framework, as opposed to reliance on closed-form (convolutional or canonical) expressions for reactive transport in exclusively convective streamtubes. The approach requires both reactive-transport solutions for a representative ensemble of one-dimensional convective-dispersive-reactive streamtubes and the distribution of flux over the streamtube ensemble variants, and it does not allow for lateral mixing between streamtubes. Here, the only ensemble variant is travel time. The discussion details the way that the conventional Eulerian fate and transport model is converted first into an ensemble of transports along three-dimensional streamtubes of unknown geometry, and then to approximate one-dimensional streamtubes that are designed to honor the important global properties of the transport. Conditions under which such an 'equivalent' ensemble of one-dimensional streamtubes are described. The breakthrough curve of a nonreactive tracer in the ensemble is expressed as a combined Volterra-Fredholm integral equation, which serves as the basis for estimation of the distribution of flux over the variant of the ensemble, travel time. Transient convective speed and the effects of errors in flux distributions are described, and the method is applied to a demonstration problem involving nonlinear multicomponent reaction kinetics and strongly nonuniform flow.  相似文献   

13.
Lee BK  Lee HK  Jun NY 《Chemosphere》2006,63(7):1106-1115
This study analyzes the regional and temporal distributions of PM10 concentrations observed in major metropolitan cities in Korea before, during and after a recent Asian dust episode in 2002. There were spatial and temporal variations in PM10 concentrations among the mid-western, the southwestern, the southeastern, and the southern parts of Korea during this Asian dust period due to the different air mass movement time and the different wind directions and speeds of prevailing winds in each city or region. The origins of the three-day Asian dust episode were identified by an analysis of two-day backward isentropic air trajectories. The different origins for each day also significantly contributed to the spatial and temporal variations in PM10 concentrations. A significant relationship was found between PM10 concentrations on the day preceding the first peak day and the first peak day of the Asian dust period but only in the mid-western areas. The concentrations of PM10 just after the Asian dust episode were much higher than those just before. There was a significant increase in a coarse fraction, having soil origins, of particles during the Asian dust episode. Concentrations of Mn, Fe, Ni and Cr extracted from the total suspended particulate (TSP) samples collected in 7 cities during the Asian dust episode were much higher when compared with other days in 2001. However, the Asian dust did not consistently increase the concentrations of lead, cadmium and copper as they are influenced by local sources such as local traffic or industrial emissions.  相似文献   

14.
Vehicular exhaust emission has gradually become the major air pollution source in modern cities and traffic related exposure is found to contribute significantly to total human exposure level. A comprehensive survey was conducted from November 1995 to July 1996 in Hong Kong to assess the effect of traffic-induced air pollution inside different commuting microenvironments on commuter exposure. Microenvironmental monitoring is performed for six major public commuting modes (bus, light bus, MTR, railway, tram, ferry), plus private car and roadside pavement. Traffic-related pollutants, CO, NOx, THC and O3 were selected as the target pollutants. The results indicate that commuter exposure is highly influenced by the choice of commuting microenvironment. In general, the exposure level in decreasing order of measured pollutant level for respective commuting microenvironments are: private car, the group consisting light bus, bus, tram and pavement, MTR and train, and finally ferry. In private car, the CO level is several times higher than that in the other microenvironments with a trip averaged of 10.1 ppm and a maximum of 24.9 ppm. Factors such as the body position of the vehicle, intake point of the ventilation system, fuel used, ventilation, transport mode, road and driving conditions were used in the analysis. Inter-microenvironment, intra-microenvironment and temporal variation of CO concentrations were used as the major indicator. The low body position and low intake point of the ventilation system of the private car are believed to be the cause of higher intake of exhaust of other vehicles and thus result in high pollution level in this microenvironment. Compared with other metropolis around the world and the Hong Kong Air Quality Objectives (HKAQO), exposure levels of commuter to traffic-related air pollution in Hong Kong are relatively low for most pollutants measured. Only several cases of exceedence of HKAQO by NO2 were recorded. The strong prevailing wind plus the channeling effect created by the harbor, the fuel used, the relative abundance of new cars and the successful implementation of the vehicle emission control program are factors that compensate the effect of the emission source strength and thus lead to low exposure levels.  相似文献   

15.
Most atmospheric transport and diffusion models within emergency response systems have very limited physics and are forced to rely on the assumption that wind and turbulence conditions at the time of the release will be representative over the period for which dispersion must be predicted. For releases where the principal concern is about the first few kilometers of travel, such an assumption is appropriate. However, for large accidental releases during stable conditions, the plume may travel for several hours before it is diluted to safe levels and the assumption of persistence may be inappropriate, particularly for transport in complex terrain. Under these circumstances, a model that can forecast changes in wind and turbulence conditions is required. We have installed such a model on microcomputers and tested it in complex terrain near Salt Lake City. One-hour tracer releases produced surface concentrations that remain high for much longer times than that expected based on one hour’ travel time with the mean wind at the source height. Furthermore, relatively large concentrations were found at distances of over 40 km from the source. The model was generally able to reproduce the principal features described by the measurements, although some effects of subgrid scale terrain were missed.  相似文献   

16.
Numerical simulations with photochemical transport models were independently performed for two domains situated in the Iberian Peninsula covering the Lisbon and Barcelona airsheds. Although the days chosen for simulation of the two cities are not the same, the synoptic situations in both cases, known as typical summertime situations, were similar, which allowed the development of typical mesoscale circulations, such as sea breezes and mountain and valley winds dominated by the Azores anticyclone. Emission inventories for the two areas were developed. The O3 concentrations recorded in both cities have a similar level. Nevertheless, O(x) values in Barcelona are higher than in Lisbon, which may, at a first glance, indicate an apparently more oxidant atmosphere in Barcelona. Photochemical modeling for the two cities has shown that the behavior of the circulatory patterns in both urban areas is rather different, which mainly has to do with the different strengths of the sea breeze and the topography, inducing an important offshore vertical layered dimension of pollutant transport in Barcelona versus an important inland horizontal transport in Lisbon.  相似文献   

17.
Wind conditions in urban environments are important for a number of reasons. They can serve to transport air pollutants out of the urban environment and to moderate urban microclimatic conditions if satisfactory, yet can compromise pedestrian comfort and safety if not. We aim to study experimentally and numerically the effects of urban morphology (e.g., overall city form (skyline), street orientation, and street configuration) on wind conditions in cities. This report considers our initial investigations of two idealized city forms that are coincidentally similar to ancient Roman cities that were organized on one or two primary streets – a main north–south street, the cardus maximus, and a secondary east–west street, the decumanus maximus – and contained within a well-defined perimeter.We first consider round and square city models with one main street set parallel to the approaching wind and a secondary street producing an intersection at city centre. Not surprisingly, wind conditions in the two city models are dissimilar due to their shape differences. We then consider a long rectangular city model with a fully developed steady flow region along the main street. If the main street of the round city model is narrow, the parallel approaching wind cannot blow through the entire street and a penetrating inflow exists at the leeward opening. For the round city model with two crossing streets, a slightly non-parallel wind to the main street generates a stronger wind level in the entire street volume.  相似文献   

18.
Emerging evidence suggests that short episodes of high exposure to air pollution occur while commuting. These events can result in potentially adverse health effects. We present a quantification of the exposure of car passengers and cyclists to particulate matter (PM). We have simultaneously measured concentrations (PNC, PM2.5 and PM10) and ventilatory parameters (minute ventilation (VE), breathing frequency and tidal volume) in three Belgian locations (Brussels, Louvain-la-Neuve and Mol) for 55 persons (38 male and 17 female). Subjects were first driven by car and then cycled along identical routes in a pairwise design. Concentrations and lung deposition of PNC and PM mass were compared between biking trips and car trips.Mean bicycle/car ratios for PNC and PM are close to 1 and rarely significant. The size and magnitude of the differences in concentrations depend on the location which confirms similar inconsistencies reported in literature. On the other hand, the results from this study demonstrate that bicycle/car differences for inhaled quantities and lung deposited dose are large and consistent across locations. These differences are caused by increased VE in cyclists which significantly increases their exposure to traffic exhaust. The VE while riding a bicycle is 4.3 times higher compared to car passengers. This aspect has been ignored or severely underestimated in previous studies. Integrated health risk evaluations of transport modes or cycling policies should therefore use exposure estimates rather than concentrations.  相似文献   

19.
Realistic models of contaminant transport in groundwater demand detailed characterization of the spatial distribution of subsurface hydraulic properties, while at the same time programmatic constraints may limit collection of pertinent hydraulic data. Fortunately, alternate forms of data can be used to improve characterization of spatial variability. We utilize a methodology that augments sparse hydraulic information (hard data) with more widely available hydrogeologic information to generate equiprobable maps of hydrogeologic properties that incorporate patterns of connected permeable zones. Geophysical and lithologic logs are used to identify hydrogeologic categories and to condition stochastic simulations using Sequential Indicator Simulation (SIS). The resulting maps are populated with hydraulic conductivity values using field data and Sequential Gaussian Simulation (SGS). Maps of subsurface hydrogeologic heterogeneity are generated for the purpose of examining groundwater flow and transport processes at the Faultless underground nuclear test, Central Nevada Test Area (CNTA), through large-scale, three-dimensional numerical modeling. The maps provide the basis for simulation of groundwater flow, while transport of radionuclides from the nuclear cavity is modeled using particle tracking methods. Sensitivity analyses focus on model parameters that are most likely to reduce the long travel times observed in the base case. The methods employed in this study have improved our understanding of the spatial distribution of preferential flowpaths at this site and provided the critical foundation on which to build models of groundwater flow and transport. The results emphasize that the impacts of uncertainty in hydraulic and chemical parameters are dependent on the radioactive decay of specific species, with rapid decay magnifying the effects of parameters that change travel time.  相似文献   

20.
This study characterizes layer- and local-scale heterogeneities in hydraulic parameters (i.e., matrix permeability and porosity) and investigates the relative effect of layer- and local-scale heterogeneities on the uncertainty assessment of unsaturated flow and tracer transport in the unsaturated zone of Yucca Mountain, USA. The layer-scale heterogeneity is specific to hydrogeologic layers with layerwise properties, while the local-scale heterogeneity refers to the spatial variation of hydraulic properties within a layer. A Monte Carlo method is used to estimate mean, variance, and 5th, and 95th percentiles for the quantities of interest (e.g., matrix saturation and normalized cumulative mass arrival). Model simulations of unsaturated flow are evaluated by comparing the simulated and observed matrix saturations. Local-scale heterogeneity is examined by comparing the results of this study with those of the previous study that only considers layer-scale heterogeneity. We find that local-scale heterogeneity significantly increases predictive uncertainty in the percolation fluxes and tracer plumes, whereas the mean predictions are only slightly affected by the local-scale heterogeneity. The mean travel time of the conservative and reactive tracers to the water table in the early stage increases significantly due to the local-scale heterogeneity, while the influence of local-scale heterogeneity on travel time gradually decreases over time. Layer-scale heterogeneity is more important than local-scale heterogeneity for simulating overall tracer travel time, suggesting that it would be more cost-effective to reduce the layer-scale parameter uncertainty in order to reduce predictive uncertainty in tracer transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号