首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract

Public housing developments across the United States are being demolished, potentially increasing local concentrations of particulate matter (PM) in communities with high burdens of severe asthma. Little is known about the impact of demolition on local air quality. At three public housing developments in Chicago, IL, PM with an aerodynamic diameter <10 μm (PM10) and <2.5 μm were measured before and during high-rise demolition. Additionally, size-selective sampling and real-time monitoring were concurrently performed upwind and downwind of one demolition site. The concentration of particulates attributable to demolition was estimated after accounting for background urban air pollution. Particle microscopy was performed on a small number of samples. Substantial increases of PM10 occurred during demolition, with the magnitude of that increase varying based on sampler distance, wind direction, and averaging time. During structural demolition, local concentrations of PM10 42 m downwind of a demolition site increased 4- to 9-fold above upwind concentrations (6-hr averaging time). After adjusting for background PM10, the presence of dusty conditions was associated with a 74% increase in PM10 100 m downwind of demolition sites (24-hr averaging times). During structural demolition, short-term peaks in real-time PM10 (30-sec averaging time) occasionally exceeded 500 μg/m3. The median particle size downwind of a demolition site (17.3 μm) was significantly larger than background (3 μm). Specific activities are associated with real-time particulate measures. Microscopy did not identify asbestos or high concentrations of mold spores. In conclusion, individuals living near sites of public housing demolition are at risk for exposure to high particulate concentrations. This increase is characterized by relatively large particles and high short-term peaks in PM concentration.  相似文献   

2.
Public housing developments across the United States are being demolished, potentially increasing local concentrations of particulate matter (PM) in communities with high burdens of severe asthma. Little is known about the impact of demolition on local air quality. At three public housing developments in Chicago, IL, PM with an aerodynamic diameter < 10 microm (PM10) and < 2.5 microm were measured before and during high-rise demolition. Additionally, size-selective sampling and real-time monitoring were concurrently performed upwind and downwind of one demolition site. The concentration of particulates attributable to demolition was estimated after accounting for background urban air pollution. Particle microscopy was performed on a small number of samples. Substantial increases of PM10 occurred during demolition, with the magnitude of that increase varying based on sampler distance, wind direction, and averaging time. During structural demolition, local concentrations of PM10 42 m downwind of a demolition site increased 4- to 9-fold above upwind concentrations (6-hr averaging time). After adjusting for background PM10, the presence of dusty conditions was associated with a 74% increase in PM10 100 m downwind of demolition sites (24-hr averaging times). During structural demolition, short-term peaks in real-time PM10 (30-sec averaging time) occasionally exceeded 500 microg/m(3). The median particle size downwind of a demolition site (17.3 microm) was significantly larger than background (3 microm). Specific activities are associated with realtime particulate measures. Microscopy did not identify asbestos or high concentrations of mold spores. In conclusion, individuals living near sites of public housing demolition are at risk for exposure to high particulate concentrations. This increase is characterized by relatively large particles and high short-term peaks in PM concentration.  相似文献   

3.

The economic downturn in Nigeria and Structural Adjustment Programme led to the flooding of Nigerian market with imported used automobiles. Most of these vehicles needed refurbishing and reworking. The present study is a human health risk assessment of metal exposure resulting from reworking of imported used vehicles in Nigeria. Scrap paint dusts from 56 Japanese made cars were collected from 8 different mechanic villages (workshops A–H] in Southeastern Nigeria. Scrap paints were homogenized, mixed, divided into fine particles and digested by standard method. The filtrates were assayed of lead, manganese and copper with atomic absorption spectrophotometry (AAS). Workshop B has the highest concentration of Pb (4.26 ± 0.93). Manganese in workshops A and F were (3.31 ± 0.85) and (3.04 ± 0.47) respectively and were higher than the levels from workshops C, B, D, G and H. Copper in workshop D (7.11 ± 0.21) was significantly greater than the other workshops. The highest hazard quotient (HQ) through ingestion, inhalation and dermal exposures in adults were 9.44E−05 (workshop B), 4.20E−01 (workshop B) and 1.08E−05 (workshop D) respectively. The highest values for HQ through ingestion, inhalation and dermal in children were 8.82E−04, 7.61E−01 and 2.86E−05 all in workshop B respectively. For children, the highest carcinogenic risk levels were 7.05E−08, 6.09E−05 and 2.29E−10 for ingestion, inhalation and dermal exposures respectively. In adults, the carcinogenic risk levels were 7.55E−09, 3.39E−05 and 8.67E−10 for ingestion, inhalation and dermal exposures respectively. Chronic exposure to scrap car paint dusts may be of significant public health importance in Nigeria as this may add to the body burden of some heavy metals.

  相似文献   

4.
Vertical gradients of volatile organic compounds (VOCs) were measured over a maize field and a soybean field in 1995 and 1996, respectively, in the Lower Coastal Plains of North Carolina. The measurements over the maize field were conducted in its early growth period, during May 1995, and the measurements over the soybean field were conducted in its middle and later growth periods during July through August 1996 at the same location. These measurements were combined with micrometeorological flux measurements to determine emission flux measurements for various VOCs. This measurement programme was part of project NOVA (Natural emissions of Oxidant precursors: Validation of techniques and Assessment) to estimate the flux of VOCs. Methanol was identified as the major biogenic compound for both years with the average flux of 3450 ± 1456 µg/m²/hr over maize and 3079 ± 2766 µg/m²/hr over soybean. Acetone is another compound that was identified as a biogenic compound for both years with the average flux of 425 ± 223 µg/m²/hr over maize and 2701 ± 1710 µg/m²/hr over soybean. In addition to biogenic compounds, a large number of aromatic compounds, including styrene and 1,2,4-trimethylbenzene, were also identified as emissions from the ground over the soybean field.  相似文献   

5.
Experimental measurements of ammonia, acid gases, and the inorganic components of atmospheric aerosols were made at a commercial hog farm in eastern North Carolina from May 1998 to June 1999 by an annular denuder system (ADS). The ADS consisted of a cyclone separator, one diffusion denuder coated with sodium carbonate, another diffusion denuder with citric acid, and a filter pack containing Teflon and nylon filters in series. The equilibrium time constant for transfer between ammonia, acid gases, and aerosol phase of ammonium nitrate and ammonium chloride was determined based on kinetic rate constants (kN as the rate constant of ammonium nitrate aerosol: 2.04 × 10-4 m³/µmole/sec; kCl as the rate constant of ammonium chloride aerosol: 3.44 × 10-4 m³/µmole/sec) and the observed inorganic components of atmospheric aerosols. The equilibrium time constant was determined based on kinetic rate constants and the observed inorganic components of atmospheric aerosols. The equilibrium time constant has a wide range of values, with an average value of 15.26 (±10.94) minutes for ambient equilibrium time between ammonia, nitric acid gas and ammonium nitrate aerosol; and 8.22 (±6.81) minutes for ammonia, hydrochloric acid, and ammonium chloride. Significant correlations were determined between comparisons of equilibrium time constant estimates with meteorological parameters, such as ambient temperature and relative humidity. The predicted chemical compositions in the particle by EQUISOLV II Model are in good agreement with the observed chemical composition at the experimental site.  相似文献   

6.
In this study, several factors important for the design of a water supply treatment system for the removal of trace amounts of organic contaminants by microorganisms in a fixed-film were assessed. This entailed evaluating the effect of seeding with adapted microorganisms on the acclimation time, determining what depth of support material was required for removal of contaminants and observing the effect of hydraulic loading rate on the contaminant removal efficiency by the microorganisms. The study was conducted in the laboratory using sand columns as fixed-film biological reactors. Pentachlorophenol (PCP), 2,4,6 trichlorophenol and 2,4 dichlorophenol were used as the test contaminants. Dechlorinated Philadelphia tap water, which contained concentrations of dissolved organic matter (DOC) in the range of 1 to 4 mg/l, was used as the source water. The DOC of the source water served as a primary substrate for microbial growth in the sand columns. The total concentration of the contaminants added to the source water ranged between 200 and 800 μg/l, making them available as secondary carbon sources for the attached microorganisms. The columns were operated in a downflow mode and the hydraulic loading rates through the columns were varied from 0.5 gpm/ft² to 3 gpm/ft² (1.2 m/hr to 7.3 m/hr). It was observed that each cycle of operation of the treatment system could be divided into three different stages: acclimation; equilibrium removal; and clogging. Acclimation is the period of time between initial startup and equilibrium removal of the contaminants. Equilibrium removal was defined as the consistent removal of the contaminants for at least four days. Clogging of the sand with biological growth was found to occur after long term operation in shallow depths of sand. The acclimation time and the establishment of an adapted population were not shortened by seeding the sand columns with laboratory acclimated cultures. During the second stage, equilibrium removal, the removal of DOC decreased with depth as a first order relationship. However, the removal of the contaminants was observed to be zero order. Removal of the contaminants decreased with increasing hydraulic loading rate. Reductions of 80% or more of μg/l amounts of the chlorophenolic contaminants was achieved in a one inch depth of sand.  相似文献   

7.
The effect of heavy metals at environmentally relevant concentrations on couple fecundity has received limited study despite ubiquitous exposure. In 2005-2009, couples (n = 501) desiring pregnancy and discontinuing contraception were recruited and asked to complete interviews and to provide blood specimens for the quantification of cadmium (μg L−1), lead (μg dL−1) and mercury (μg L−1) using inductively coupled plasma-mass spectrometry. Couples completed daily journals on lifestyle and intercourse along with menstruation and pregnancy testing for women. Couples were followed for 12 months or until pregnant. Fecundability odds ratios (FORs) and 95% confidence intervals (CIs) were estimated adjusting for age, body mass index, cotinine, and serum lipids in relation to female then male exposures. FORs <1 denote a longer time to pregnancy. In adjusted models, reduced FORs were observed for both female cadmium (0.78; 95% CI 0.63-0.97) and male lead (0.85; 95% CI 0.73-0.98) concentrations. When jointly modeling couples’ exposures, only male lead concentration significantly reduced the FOR (0.82; 95% CI 0.68, 0.97), though the FOR remained <1 for female cadmium (0.80; 95% CI 0.64, 1.00). This prospective couple based cohort with longitudinal capture of time to pregnancy is suggestive of cadmium and lead’s reproductive toxicity at environmentally relevant concentrations.  相似文献   

8.
This paper deals with a one-week monitoring of the 50 Hz magnetic field on the ground floor and the first floor of houses under 150, 220 and 380 kV high-voltage overhead three-phase AC transmission lines. The field strength varied with the current intensity, the conductor height, and the storey of the house. Because current intensity varies with time the magnetic field depended on the time of day and the day of the week. The recorded magnetic field ranged from 0.1 µT to 4.5 µT. The maximum value was at least 20 times weaker than the 100 µT exposure level recommended by the guidelines of the International Radiation Protection Association (IRPA) and about 140 times smaller than the 640 µT of the European Prestandard (CENELEC). The B-field was, for 99.9% of the measuring time, larger than the 0.2 µT cut-off point used to define categories of exposed and unexposed subjects in EMF epidemiological studies and, for 99.3% of the time, was greater than the 0.3 µT level used by US private engineering companies as the 'prudent avoidance' exposure limit. The weakest average magnetic field was at least 40 times larger than the 0.02 µT background value.  相似文献   

9.
Twelve U.S. universities performing hazardous waste solvent commingling operations were surveyed for waste handler exposures to 45 U.S. Environmental Protection Agency (EPA)-designated volatile organic compounds (VOCs). Personal exposures (n = 33) and area concentrations (n = 30) were determined using gas chromatography/ mass spectrometry (GC/MS) analysis of passively collected samples. Air monitoring data were used to determine the veracity of laboratory-generated reports of waste container contents. Participants completed a questionnaire concerning the use of personal protective equipment, ventilation, and other appropriate safety equipment for their specific commingling operation. Follow-up telephone interviews were conducted to elucidate safeguards in place. Results showed that personal exposures exceeded area concentrations in 70% of operations. For the contaminant concentrations reported, 17% of personal samples exceeded Occupational Safety & Health Administration (OSHA) time-weighted average or ceiling limit values. Methylene chloride was a frequently seen airborne contaminant not listed on drum inventory sheets. When airborne constituents were compared with container content tags, 44% of the chemicals detected in air were omitted from the waste tags. This study concluded that the most frequently necessary safeguard is respiratory protection, preferably a supplied-air-type. The use of local exhaust ventilation systems rather than dilution or natural systems and facility operation in a totally explosion-safe manner are also recommended.  相似文献   

10.
The performance of an alternating pumped sequencing batch biofilm reactor process in synthetic diary wash-water treatment was studied. The system comprises two reactors with two identical plastic biofilm modules. Two centrifugal pumps, one connected to each reactor, alternately move the water from one reactor to the other one, resulting in aeration. At three loading rates (336, 501 and 1080 g COD/(m³ d)), total COD and total nitrogen were removed by 91-94% and 46-80%, respectively. Nitrogen was removed from wastewater by denitrification in the anoxic phase and Simultaneous Nitrification and Denitrification (SND) in the aerobic phase.  相似文献   

11.
Particulate pollution has been clearly linked with adverse health impacts from open fire cookstoves, and indoor air concentrations are frequently used as a proxy for exposures in health studies. Implicit are the assumptions that the size distributions for the open fire and improved stove are not significantly different, and that the relationship between indoor concentrations and personal exposures is the same between stoves. To evaluate the impact of these assumptions size distributions of particulate matter in indoor air were measured with the Sioutas cascade impactor in homes using open fires and improved Patsari stoves in a rural Purepecha community in Michoacan, Mexico. On average indoor concentrations of particles less than 0.25 μm were 72% reduced in homes with improved Patsari stoves, reflecting a reduced contribution of this size fraction to PM2.5 mass concentrations from 68% to 48%. As a result the mass median diameter of indoor PM2.5 particulate matter was increased by 29% with the Patsari improved stove compared to the open fire (from 0.42 μm to 0.59 μm, respectively). Personal PM2.5 exposure concentrations for women in homes using open fires were approximately 61% of indoor concentration levels (156 μg m?3 and 257 μg m?3 respectively). In contrast personal exposure concentrations were 77% times indoor air concentration levels for women in homes using improved Patsari stoves (78 μg m?3and 101 μg m?3 respectively). Thus, if indoor air concentrations are used in health and epidemiologic studies significant bias may result if the shift in size distribution and the change in relationship between indoor air concentrations and personal exposure concentrations are not accounted for between different stove types.  相似文献   

12.
Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 μg/m3 (stderr = 0.15) and 8.47 μg/m3 (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time–activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m3, stderr = 1.08, SidePak = 11.85 µg/m3, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m3, stderr = 0.39, SidePak = 24.93 µg/m3, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m3, stderr = 0.23, SidePak = 5.63 µg/m3, stderr = 0.08). Mean PM2.5 at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m3 (stderr = 0.23) to 12.38 µg/m3 (stderr = 0.45). By comparison, mean 24-h PM2.5 measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m3 during the study period. The range of average PM2.5 exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m3 (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals’ 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM2.5 exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates.

Implications: Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks.  相似文献   

13.
The aim of the current research was to systematically review and summarize the studies that evaluated the concentration of lead (Pb) and cadmium (Cd) in cow milk in different regions of Iran and to perform a meta-analysis of the findings. Moreover, the non-carcinogenic and carcinogenic risks of Pb and Cd through milk consumption in adult and child consumers were assessed. As a result of a systematic search in the international and national databases between January 2008 and October 2018, 17 reports involving 1874 samples were incorporated in our study for meta-analysis. The pooled concentrations of Pb and Cd were estimated to be 13.95 μg mL−1 (95% CI 9.72–18.11 μg mL−1) and 3.55 μg mL−1 (95% CI − 2.38–9.48 μg mL−1), respectively, which were lower than the WHO/FAO and national standard limits. The estimated weekly intake (EWI) of Pb and Cd through consuming milk was 16.65 and 7 μg day−1 for adults of 70 kg and 45 and 34 μg day−1 for children of 26 kg, respectively, which was well below the risk values set by Joint FAO/WHO Expert Committee on Food Additives (JECFA). The maximum target hazard quotient values (THQs) of Pb and Cd were 5.55E−5 and 5.55E−5 for adults and 5.55E−5 and 5.55E−5 for children, respectively, which were lower than 1 value, suggesting that Iranian consumers are not exposed to non-carcinogenic risk through consuming milk. Moreover, the incremental lifetime cancer risk (ILCR) of Pb estimated to be 2.96E−04 in adults and 1.0E−03 in children, indicating that consumers in Iran are at threshold carcinogenic risk of Pb through consuming milk (ILCR > 10−4). Therefore, planning and policy making for the sustainable reduction of these toxic metals in milk, particularly in industrial regions of Iran, are crucial.  相似文献   

14.
The treatability of anaerobic effluent from a molasses-based distillery was studied in a shaft-type hybrid bioreactor under purely suspended growth and hybrid system containing 5 mm tyre-tube beads. The Ks, k, Y and k found as 111.29 mg/l, 0.026/h, 0.4607 and 0.0040/h respectively. The maximum COD removal was 51.7% at a loading rate of 5.250 kg d−1 m−3. The overall removal rate was 0.0431, 0.0452, 0.0484 and 0.053/h under 0, 10, 20 and 30 g/l of beads respectively. When attached biomass increased, the cell synthesis part of oxygen utilisation coefficient gradually decreased and that for endogenous respiration increased.  相似文献   

15.
Directive 99/13/EC on the emission of Volatile Organic Compounds (VOCs) is impacting on several industries in Italy, as well in other EU countries. Many small enterprises have to invest in new control systems and need to be helped to choose an appropriate and safe technology. As VOCs are highly flammable compounds, high concentrations in emission flows can pose a fire and explosion hazard if control systems are not properly designed and proper procedures are not implemented. Biofiltration may be considered as a suitable solution for VOC emissions control, as investment and operation costs are lower and performances are comparable with other abatement systems and comply with permit requirements. Furthermore, mild exercise conditions allow safer operations.  相似文献   

16.
Chlorpyrifos is the most common organophosphate insecticide registered for use in Vietnam and is widely used in agriculture, particularly rice farming. However, chlorpyrifos exposure to and adverse effects on farmers has not been evaluated. In this study, biological monitoring of chlorpyrifos exposure in a group of rice farmers was conducted after a typical application event using back-pack spraying.Urine samples (24 h) were collected from the rice farmers before and post insecticide application. Samples were analysed for 3,5,6-trichloropyridinol (TCP), the major urinary metabolite of chlorpyrifos, using an enzymatic pre-treatment before extraction followed by HPLC-MS/MS. Absorbed Daily Dose (ADD) of chlorpyrifos for farmers were then estimated from urinary TCP levels, expressed as μg g−1 creatinine. The analytical method for urinary TCP had a low detection limit (0.6 μg L−1), acceptable recovery values (80-114%), and low relative percentage differences in duplicate and repeated samples.Post-application chlorpyrifos ADD of farmers varied from 0.4 to 94.2 μg kg−1 (body weight) d−1 with a mean of 19.4 μg kg−1 d−1 which was approximately 80-fold higher than the mean baseline exposure level (0.24 μg kg−1 d−1). Hazard Quotients (ratio of the mean ADD for rice farmers to acute oral reference dose) calculated using acute oral reference doses recommended by United States and Australian agencies varied from 2.1 (Australian NRA), 4.2 (US EPA) to 6.9 (ATSDR).Biological monitoring using HPLC-MS/MS analysis of urinary TCP (24 h) was found to be an effective method for measuring chlorpyrifos exposure among farmers. This case study found that Vietnamese rice farmers had relatively high exposures to chlorpyrifos after application, which were likely to have adverse health effects.  相似文献   

17.
Atmospheric acid aerosols were sampled by two annular denuder systems (ADS) and a micro-orifice uniform deposit impactor (MOUDI) at a traffic site in central Taiwan. Theoretical analysis showed that the relative artifact for HNO3 gas sampling was about 0.53 when the initial HNO3 concentration was under 0.2 µg/m³ and should be considered carefully. The concentrations of gaseous acid at the traffic sampling site were higher than those in the other study. The size distributions of acid aerosols were unimodal for Cl-, NO2-, and NO3-, and bimodal for SO42-. The dominant acid ions in particles less than 18 µm were SO42-, NO3-, NO2- and Cl-.  相似文献   

18.

The adverse impacts of lead and cadmium exposure on health outcomes have been reported in the past. Few studies have been conducted on the relationship between lead and cadmium exposures and disability. We evaluated whether lead and cadmium exposures were associated with functional dependence including the total number of disabilities, activities of daily living (ADL), instrumental activities of daily living (IADL), leisure and social activities (LSA), lower extremity mobility (LEM), and general physical activities (GPA) in an elderly population. A total of 5513 eligible subjects were enrolled in the study from the National Health and Nutrition Examination Survey 2001–2006. Serum lead and cadmium exposure assessments were performed using atomic absorption spectrometry. Functional dependence was assessed by 19 structured questions. The relationships between lead and cadmium exposures and functional dependence were investigated using by multivariable linear regression models. Q2, Q3, and Q4 of lead exposure were significantly associated with the total number of disabilities, with β coefficients of ??0.62 (95% CI ??0.99, ??0.24), ??0.64 (95% CI ??1.02, ??0.26), and ??0.81 (95% CI ??1.19, ??0.42), respectively. This relationship remained significant in males. Furthermore, we analyzed the relationships between lead and cadmium exposure quartiles and various functional dependence metrics, and we determined that lead content was significantly associated with decreased ADL, LEM, and GPA (p?<?0.05) and cadmium content was inversely associated with ADL (p?<?0.05). Our study demonstrated a strong relationship between exposure to lead and cadmium and functional dependence in an elderly population.

  相似文献   

19.
The natural radiation levels were measured in about 50 residential houses of Tehri Garhwal, Uttaranchal, using an environmental radiation dosimeter in both the indoor and the outdoor atmosphere. The total gamma ray activity was found to vary from 29.74 µR/h to 41.19 µR/h with a mean of 36.5 µR/h for the indoor environment, whereas for outdoors it varied from 28.76 µR/h to 43.46 µR/h with a mean of 30.1 µR/h. The resulting gamma ray dose at 20 traditional rural houses was also measured. The values varied from 38.91 µR/h to 77.68 µR/h with a mean of 66.6 µR/h. Measurements of the diurnal variation of the dose rates showed that they are higher in the rural traditional houses than in modern houses. The variations of dose rate with the type of building material, the mode of construction and the age of houses are also discussed.  相似文献   

20.
ABSTRACT

This paper demonstrates statistical methods that estimate measurement error from available industrial hygiene data. Errors in measuring a continuous exposure variable may arise when all individuals in a work area are assigned the same exposure. An example is when the mean of exposure measurements obtained on a sample of individuals is assigned to all workers with similar jobs. This may lead to inaccurate point and interval estimates in exposure-response modeling. A method of simulating the distribution of true (i.e., unobserved) individual exposures is described in order to estimate the mean and variance of measurement error. The minimum variance unbiased estimator approximates the mean of lognormally distributed exposure measurements. The distribution of true individual exposures is approximated by the distribution of simulated estimates of mean exposure. The methodology is illustrated by exposure data from work areas manufacturing refractory ceramic fiber (RCF) and RCF products. Results show that exposure is slightly underestimated in work areas with between 25 and 113 exposure measurements; measurement error variance averages about 1.3% of the total variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号