首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental Science and Pollution Research - With the increase in global population, industrialization, and urbanization, waste from construction, renovation, and demolition (CRD) activities has...  相似文献   

2.
Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO2) were measured for 262 urban adult (25–55 years) participants in three EXPOLIS centres (Basel; Switzerland, Helsinki; Finland, and Prague; Czech Republic) using passive samplers for 48-h sampling periods during 1996–1997. The average residential outdoor and indoor NO2 levels were lowest in Helsinki (24±12 and 18±11 μg m−3, respectively), highest in Prague (61±20 and 43±23 μg m−3), with Basel in between (36±13 and 27±13 μg m−3). Average workplace NO2 levels, however, were highest in Basel (36±24 μg m−3), lowest in Helsinki (27±15 μg m−3), with Prague in between (30±18 μg m−3). A time-weighted microenvironmental exposure model explained 74% of the personal NO2 exposure variation in all centres and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11–19% of personal NO2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power.  相似文献   

3.
Commuter exposures to VOCs in Boston, Massachusetts.   总被引:4,自引:0,他引:4  
This study examines the commuter's exposure to six gasoline-related volatile organic compounds (VOCs): benzene, toluene, ethylbenzene, m-/p-xylene, o-xylene, and formaldehyde. The VOC concentrations to which commuters were exposed in four different commuting modes (driving, subway, walking, and biking) in Boston, Massachusetts, are compared. The VOC concentrations in participants' homes and offices were also measured. Factors that could influence in-vehicle VOC concentrations, such as different traffic patterns, car model and vehicle ventilation conditions, were also evaluated. Driving a private car was associated with higher VOC concentrations and commuting on urban roadways resulted in the highest VOC concentrations. The use of car heaters resulted in higher in-vehicle VOC concentrations. The longer the subway commuters stayed underground, the higher their VOC exposures. The home-to-work car or subway commute represented about 10 to 20 percent of an individual's total VOC exposure for these compounds.  相似文献   

4.
首先分析了交通噪声对居住区声环境的影响,然后重点探讨相应的防治方法,特别是在居住区的规划中,就利用对噪声不敏感的建筑物和绿化隔离带形成小区周边的声屏障、合理布置小区道路系统并防止城市交通穿越、加强住宅建筑设计中隔声构造处理等方面提出了具体的技术措施。  相似文献   

5.
6.
Tomato response to concurrent and sequential NO2 and O3 exposures   总被引:2,自引:0,他引:2  
In the ambient environment, concentrations of air pollutants vary on a diurnal cycle, resulting in various patterns of concurrent and sequential exposures of plants. The response of tomato plants to sequential and concurrent NO2 and O3 exposures was determined using pollutant levels equal to the maximum acceptable levels recommended by the National Ambient Air Quality Objectives of Environment Canada for a 1 h average. The concurrent treatment, 1 h of NO2 + O3, was compared to 1 h of NO20, O3 or control in plants at the 4 to 6 or the 9 to 11 leaf stage. At the 4 to 6 leaf stage, leaf and stem fresh weights were significantly reduced by the NO2 + O3 treatment relative to control, whereas these growth parameters were not reduced relative to control by the single pollutants indicating a coalitive response. Leaf area was significantly smaller as a result of the NO2 + O3 treatment relative to the NO2 treatment. A main effect of O3 was observed on leaf dry weight. The sequential treatments were: NO2 followed by O3 (NO2-O3); O3 followed by NO2 (O3-NO2); NO2 at night followed by O3 during the daytime (NO2(N)-O3(D)). Each gas exposure was 1 h; only plants at the 4 to 6 leaf stage were treated. Only the O3-NO2 treatment significantly reduced leaf area, leaf fresh weight and stem fresh and dry weights relative to control plants. Inconsistencies among treatments occurring at different time periods of the day suggest that time period of exposure should reflect ambient time periods. The coalitive action, and the sequential treatment response, of these pollutants indicated that criteria based on single pollutants may not be adequate to establish air quality objectives when these pollutants occur together.  相似文献   

7.
Potted sugar maple seedlings were exposed to ozone and acidic precipitation in open-top chambers for three consecutive growing seasons. Periodic measurements of photosynthesis, dark respiration, through-fall and soil solution chemistry, and annual measurements of the weight of plant parts were made. Experimental treatments caused few and minor effects on above- or below-ground growth of the seedlings, even after three growing seasons. There were trends for reduced photosynthesis in trees exposed to elevated concentrations of ozone and increased photosynthesis in those exposed to the lowest pH simulated rain treatment. The chemistries of soil-solutions and through-fall were not altered significantly by treatment. Although major effects were not observed, sugar maple may respond to exposures that take place over a significant part of its life cycle.  相似文献   

8.
Respirable carbon or fly ash particles are suspected to increase the respiratory toxicity of coexisting acidic air pollutants, by concentrating acid on their surfaces and so delivering it efficiently to the lower respiratory tract. To investigate this issue, we exposed 15 healthy and 15 asthmatic volunteers in a controlled-environment chamber (21 degrees C, 50 percent relative humidity) to four test atmospheres: (i) clean air; (ii) 0.5-microns H2SO4 aerosol at approximately 100 micrograms/m3, generated from water solution; (iii) 0.5-microns carbon aerosol at approximately 250 micrograms/m3, generated from highly pure carbon black with specific surface area comparable to ambient pollution particles; and (iv) carbon as in (iii) plus approximately 100 micrograms/m3 of ultrafine H2SO4 aerosol generated from fuming sulfuric acid. Electron microscopy showed that nearly all acid in (iv) became attached to carbon particle surfaces, and that most particles remained in the sub-micron size range. Exposures were performed double-blind, 1 week apart. They lasted 1 hr each, with alternate 10-min periods of heavy exercise (ventilation approximately 50 L/min) and rest. Subjects gargled citrus juice before exposure to suppress airway ammonia. Lung function and symptoms were measured pre-exposure, after initial exercise, and at end-exposure. Bronchial reactivity to methacholine was measured after exposure. Statistical analyses tested for effects of H2SO4 or carbon, separate or interactive, on health measures. Group data showed no more than small equivocal effects of any exposure on any health measure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Xin J  Liu X  Liu W  Jiang L  Wang J  Niu J 《Chemosphere》2011,84(3):342-347
This study provides the first intensive investigation of Dichlorodiphenyltrichloroethanes (DDT) distribution in typical paint factories and shipyards in China where DDT containing antifouling paint were mass produced and used respectively. DDTs were analyzed in soil, sludge and sediment samples collected from three major paint factories and two shipyards. The results showed that the total DDTs concentrations detected in paint factory and shipyard sites ranged from 0.06 to 8387.24 mg kg−1. In comparison with paint factory sites, the shipyard sites were much more seriously contaminated. However, for both kinds of sites, the DDTs level was found to be largely affected by history and capacity of production and use of DDT containing antifouling paint. (DDE + DDD)/DDT ratios indicated that DDT containing antifouling paint could serve as important fresh input sources for DDTs. It can be seen that most samples in shipyards were in ranges where heavy contamination and potential ecological risk were identified.  相似文献   

10.
Environmental Science and Pollution Research - Our previous gene expression studies in a PCB-exposed cohort of young children in Slovakia revealed that early-life exposures to PCBs and other...  相似文献   

11.
To better understand chemical modes of action, emphasis has been given to stress responses at lower levels of biological organization. Cholinesterases and antioxidant defenses are among the most used biomarkers due to their crucial role in the neurocholinergic transmission and in cell homeostasis preventing DNA damage, enzymatic inactivation and lipid peroxidation. The main goal of this study was to investigate the effects of zinc and cadmium on survival and reproduction of E. albidus and to assess metals oxidative stress potential and neurotoxic effects at concentrations that affected reproduction. Both metals affected the enchytraeids’ survival and reproduction and induced significant changes in the antioxidant defenses as well as increased lipid peroxidation, indicating oxidative damage. This study demonstrates that determining effects at different levels of biological organization can give better information on the physiological responses of enchytraeids in metal contamination events and further unravel the mechanistic processes dealing with metal stress.  相似文献   

12.
BACKGROUND, AIM AND SCOPE: All across Europe, people live and work in indoor environments. On average, people spend around 90% of their time indoors (homes, workplaces, cars and public transport means, etc.) and are exposed to a complex mixture of pollutants at concentration levels that are often several times higher than outdoors. These pollutants are emitted by different sources indoors and outdoors and include volatile organic compounds (VOCs), carbonyls (aldehydes and ketones) and other chemical substances often adsorbed on particles. Moreover, legal obligations opposed by legislations, such as the European Union's General Product Safety Directive (GPSD) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), increasingly require detailed understanding of where and how chemical substances are used throughout their life-cycle and require better characterisation of their emissions and exposure. This information is essential to be able to control emissions from sources aiming at a reduction of adverse health effects. Scientifically sound human risk assessment procedures based on qualitative and quantitative human exposure information allows a better characterisation of population exposures to chemical substances. In this context, the current paper compares inhalation exposures to three health-based EU priority substances, i.e. benzene, formaldehyde and acetaldehyde. MATERIALS AND METHODS: Distributions of urban population inhalation exposures, indoor and outdoor concentrations were created on the basis of measured AIRMEX data in 12 European cities and compared to results from existing European population exposure studies published within the scientific literature. By pooling all EU city personal exposure, indoor and outdoor concentration means, representative EU city cumulative frequency distributions were created. Population exposures were modelled with a microenvironment model using the time spent and concentrations in four microenvironments, i.e. indoors at home and at work, outdoors at work and in transit, as input parameters. Pooled EU city inhalation exposures were compared to modelled population exposures. The contributions of these microenvironments to the total daily inhalation exposure of formaldehyde, benzene and acetaldehyde were estimated. Inhalation exposures were compared to the EU annual ambient benzene air quality guideline (5 microg/m3-to be met by 2010) and the recommended (based on the INDEX project) 30-min average formaldehyde limit value (30 microg/m3). RESULTS: Indoor inhalation exposure contributions are much higher compared to the outdoor or in-transit microenvironment contributions, accounting for almost 99% in the case of formaldehyde. The highest in-transit exposure contribution was found for benzene; 29.4% of the total inhalation exposure contribution. Comparing the pooled AIRMEX EU city inhalation exposures with the modelled exposures, benzene, formaldehyde and acetaldehyde exposures are 5.1, 17.3 and 11.8 microg/m3 vs. 5.1, 20.1 and 10.2 microg/m3, respectively. Together with the fact that a dominating fraction of time is spent indoors (>90%), the total inhalation exposure is mostly driven by the time spent indoors. DISCUSSION: The approach used in this paper faced three challenges concerning exposure and time-activity data, comparability and scarce or missing in-transit data inducing careful interpretation of the results. The results obtained by AIRMEX underline that many European urban populations are still exposed to elevated levels of benzene and formaldehyde in the inhaled air. It is still likely that the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended formaldehyde 30-min average limit value of 30 microg/m3 are exceeded by a substantial part of populations living in urban areas. Considering multimedia and multi-pathway exposure to acetaldehyde, the biggest exposure contribution was found to be related to dietary behaviour rather than to inhalation. CONCLUSIONS: In the present study, inhalation exposures of urban populations were assessed on the basis of novel and existing exposure data. The indoor residential microenvironment contributed most to the total daily urban population inhalation exposure. The results presented in this paper suggest that a significant part of the populations living in European cities exceed the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended (INDEX project) formaldehyde 30-min average limit value of 30 microg/m3. RECOMMENDATIONS AND PERSPECTIVES: To reduce exposures and consequent health effects, adequate measures must be taken to diminish emissions from sources such as materials and products that especially emit benzene and formaldehyde in indoor air. In parallel, measures can be taken aiming at reducing the outdoor pollution contribution indoors. Besides emission reduction, mechanisms to effectively monitor and manage the indoor air quality should be established. These mechanisms could be developed by setting up appropriate EU indoor air guidelines.  相似文献   

13.
Petunia at about 6 weeks old and kidney bean at two growing stages (6–7 days old and 16–18 days old) were exposed separately to O3, (0–0.40 ppm) and PAN (0–0.25 ppm) for 4 h and to the mixture for the same time. In addition, petunia was exposed to O, (0.10–0.40 ppm) and then PAN (0.010−0.040 ppm) for 4 h, respectively. Foliar injury of petunia and kidney bean in exposures to the mixtures of O3 and PAN was significantly smaller than that induced by each oxidant, with the exception of PAN injury on young leaves of 16–18 day-old kidney bean. The percentage of foliar injury caused by either of the mixed pollutants decreased with an increase of the concentration of the other oxidant, and was found to approximate a logarithmic function of the combined pollutant concentrations expressed as O3, minum PAN or vice versa. Alternate exposures caused no additive or synergistic injuries.  相似文献   

14.
This study assessed the in vitro and in vivo effects of an acetylcholinesterase enzyme inhibitor (chlorpyrifos) in two estuarine crustaceans: grass shrimp (Palaemonetes pugio) and mysid (Americamysis bahia). The differences in response were quantified after lethal and sublethal exposures to chlorpyrifos and in vitro assays with chlorpyrifos-oxon. Results from the in vitro experiments indicated that the target enzyme, acetylcholinesterase (AChE), in the two species was similar in sensitivity to chlorpyrifos inhibition with IC50s of 0.98 nM and 0.89 nM for grass shrimp and mysids, respectively. In vivo experiments showed that mysids were significantly more sensitive to chlorpyrifos-induced AChE inhibition after 24 h of exposure. The in vivo EC50s for AChE inhibition were 1.23 μg L?1 for grass shrimp and 0.027 μg L?1 for mysids.

Median lethal concentrations (24h LC50 values) were 1.06 μg L?1 for grass shrimp and 0.068 μg L?1 for mysids. The results suggest that differences in the response of these two crustaceans are likely related to differences in uptake and metabolism rather than target site sensitivity.  相似文献   

15.
Wood is commonly used in residential combustion for heating purposes; however, it can be a major source of air pollutants, namely fine particles, volatile organic compounds and carbon monoxide. Since 2004, the PM10 daily limit value has been surpassed in Portugal, and the European Commission has stated that plans and programs must be designed in order to reduce these levels. In Portugal, 18% of PM10 emissions are due to residential wood combustion, which may deeply impact the PM10 levels in the atmosphere. The main aim of this study is to investigate the impact of residential wood combustion on the air quality in Portugal. The air quality modelling system MM5/CHIMERE was applied over Portugal for a winter month, for the following three scenarios: the reference scenario, considering the actual emissions of PM10; scenario 1, where residential wood combustion emissions are not considered; and scenario 2, which takes into account a complete conversion from traditional fireplaces to certified appliances (with a 90% reduction in PM emissions). The residential wood combustion contribution to PM10 air quality concentration values during January 2007 ranges from 0 to 14 μg m?3, with a mean contribution of 10 μg m?3 in the Lisboa area and 6 μg m?3 in the Porto region. Concerning the legislated values, the area where the daily average limit value (50 μg m?3) is exceeded decreases by 46% in the simulation when residential combustion is not considered. The modelling results for scenario 2 are not significantly different from those for scenario 1. In summary, the regulation of the residential wood combustion sector is as an effective way to reduce the PM10 levels in the atmosphere as regards air quality plans and programs.  相似文献   

16.
Methylcyclopentadienyl manganese tricarbonyl (MMT) is a manganese-based gasoline additive used to enhance automobile performance. MMT has been used in Canadian gasoline for about 20 yr. Because of the potential for increased levels of Mn in particulate matter resulting from automotive exhausts, a large-scale population-based exposure study (∼1000 participant periods) was conducted in Toronto, Canada, to estimate the distribution of 3-day average personal exposures to particulate matter (PM2.5 and PM10) and Mn. A stratified, three-stage, two-phase probability, longitudinal sample design of the metropolitan population was employed. Residential indoor and outdoor, and ambient levels (at a fixed site and on a roof) of PM2.5, PM10, and Mn were also measured. Supplementary data on traffic counts, meteorology, MMT levels in gasoline, personal occupations, and activities (e.g. amount of vehicular usage) were collected. Overall precision (%RSD) for analysis of duplicate co-located samples ranged from 2.5 to 5.0% for particulate matter and 3.1 to 5.5% for Mn. The detection limits were 1.47 and 3.45 μg m-3 for the PM10 and PM2.5 fractions, respectively, and 5.50 and 1.83 ng m-3 for Mn in PM10 and PM2.5, respectively. These low detection limits permitted the reporting of concentrations for >98% of the samples. For PM10, the personal particulate matter levels (median 48.5 μg m-3) were much higher than either indoor (23.1 μg m-3) or outdoor levels (23.6 μg m-3). The median levels for PM2.5 for personal, indoor, and outdoor were 28.4, 15.4 and 13.2 μg m-3, respectively. The correlation between PM2.5 personal exposures and indoor concentrations was high (0.79), while correlations between personal and the outdoor, fixed site and roof site were low (0.16–0.27). Indoor Mn concentration distributions (in PM2.5 and PM10), unlike particulate matter, exhibited much lower and less variable levels that the corresponding outdoor data. The median personal exposure was 8.0 ng m-3, compared with 4.7 and 8.6 ng m-3, respectively, for the indoor and outdoor distributions. The highest correlations occurred for personal vs indoor data (0.56) and for outdoor vs roof site data (0.66), and vs fixed site data (0.56). The concentration of Mn in particulate matter, expressed in ppm (w/w), revealed that the fixed site was the highest, followed by the roof site, outdoor, indoor, and personal. The personal and indoor data showed a statistically significant correlation (0.68) while all other correlations between personal or indoor data and outdoor or fixed-site data were quite small. The low correlations of personal and indoor levels with outdoor levels suggest that different sources in the indoor and outdoor microenvironments produce particle matter with dissimilar composition. The correlation results indicate that neither the roof- nor fixed-site concentrations can adequately predict personal particulate matter or Mn exposures.  相似文献   

17.
18.
Environmental Science and Pollution Research - Construction and demolition waste (CDW) and municipal solid waste (MSW) are the waste flows mostly generated at a global level. In developing...  相似文献   

19.
Environmental Science and Pollution Research - Carbendazim and thiram are fungicides used in combination to prevent mold destruction of crops. Studies have demonstrated genotoxicity by these...  相似文献   

20.
Vehicular exhaust emission has gradually become the major air pollution source in modern cities and traffic related exposure is found to contribute significantly to total human exposure level. A comprehensive survey was conducted from November 1995 to July 1996 in Hong Kong to assess the effect of traffic-induced air pollution inside different commuting microenvironments on commuter exposure. Microenvironmental monitoring is performed for six major public commuting modes (bus, light bus, MTR, railway, tram, ferry), plus private car and roadside pavement. Traffic-related pollutants, CO, NOx, THC and O3 were selected as the target pollutants. The results indicate that commuter exposure is highly influenced by the choice of commuting microenvironment. In general, the exposure level in decreasing order of measured pollutant level for respective commuting microenvironments are: private car, the group consisting light bus, bus, tram and pavement, MTR and train, and finally ferry. In private car, the CO level is several times higher than that in the other microenvironments with a trip averaged of 10.1 ppm and a maximum of 24.9 ppm. Factors such as the body position of the vehicle, intake point of the ventilation system, fuel used, ventilation, transport mode, road and driving conditions were used in the analysis. Inter-microenvironment, intra-microenvironment and temporal variation of CO concentrations were used as the major indicator. The low body position and low intake point of the ventilation system of the private car are believed to be the cause of higher intake of exhaust of other vehicles and thus result in high pollution level in this microenvironment. Compared with other metropolis around the world and the Hong Kong Air Quality Objectives (HKAQO), exposure levels of commuter to traffic-related air pollution in Hong Kong are relatively low for most pollutants measured. Only several cases of exceedence of HKAQO by NO2 were recorded. The strong prevailing wind plus the channeling effect created by the harbor, the fuel used, the relative abundance of new cars and the successful implementation of the vehicle emission control program are factors that compensate the effect of the emission source strength and thus lead to low exposure levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号