首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Mulder H  Breure AM  Rulkens WH 《Chemosphere》2001,43(8):1085-1094
Mass-transfer models and biodegradation models were developed for three theoretical physical states of polycyclic aromatic hydrocarbons (PAHs) in soil. These mechanistic models were used to calculate the treatment periods necessary for complete removal of the PAH pollutants from the soil under batch conditions. Results indicate that the bioremediation of PAHs in such systems is mainly mass-transfer limited. The potential for bioremediation as a treatment technique for PAH contaminated soils is therefore mainly determined by the mass-transfer dynamics of PAHs. Under mass-transfer limited conditions simplified mathematical models, based on the assumption of a zero dissolved PAH concentrations, can be used to predict the period of time needed for complete bioremediation.  相似文献   

2.
Péry AR  Mons R  Garric J 《Chemosphere》2005,59(2):247-253
Little is known about the differences between the species of the genus Chironomus relatively to their life cycle strategies. This knowledge is however crucial to fully understand the response of the Chironomus community to field perturbations. Here, we proposed to study four Chironomus species by using an energy-based model to describe growth, emergence and reproduction. We used data from the literature for two species (Chironomus plumosus and Chironomus tentans) and data from our experiments for two other species (Chironomus prasinus and Chironomus riparius). We showed that our model is able to accurately describe the life-history attributes for all the species tested, which suggests that Chironomus species have the same fundamental characteristics (low maintenance energetic costs, isomorphism), which makes possible the building of a common modelling framework to assess effects of toxicants at individual and population level. The species showed a few differences relatively to the parameters of the models with possible consequences when assessing effects of chemicals on Chironomus community. For instance, due to differences in growth parameters, C. riparius population dynamics should be more sensitive to effects on individual growth than C. prasinus or C. plumosus ones.  相似文献   

3.
根据微生物生长动力学特征以及膜分离特征,建立恒通量下运行的一体式膜生物反应器系统出水COD数学模型,提出膜生物反应器处理效率的数学模型。以实验及模型为基础,分别对进水COD浓度控制在300、400、500 mg/L附近时经过反应器后COD的去除效率进行了比较。通过公式计算的数据和实验数据分析可得:COD去除率的公式计算值与实验结果比较吻合,相对偏差仅为0.0223,为膜系统有机物的去除效果估算提供了基础,可为该类工艺的参数选择与优化提供参考。  相似文献   

4.
The natural range of variation of ecosystems provides reference conditions for sustainable management and biodiversity conservation. We review how the understanding of natural reference conditions of boreal forests in northern Europe has changed from earlier perceptions of even-aged dynamics driven by stand-replacing disturbances towards current understanding highlighting the role of non-stand-replacing disturbances and the resultant complex forest dynamics and structures. We show how earlier views and conceptual models of forest disturbance dynamics, including the influential ASIO model, provide estimates of reference conditions that are outside the natural range of variation. Based on a research synthesis, we present a revised forest reference model incorporating the observed complexity of ecosystem dynamics and the prevalence of old forests. Finally, we outline a management model and demonstrate its use in forest ecosystem management and show how regional conservation area needs can be estimated. We conclude that attaining favourable conservation status in northern Europe’s boreal forests requires increasing emphasis on ecosystem management and conservation for old forest characteristics.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01444-3) contains supplementary material, which is available to authorized users.  相似文献   

5.
The national-scale forest recovery of Vietnam started in the early 1990s and is associated with a shift from net deforestation to net reforestation. Large disparities in forest cover dynamics are, however, observed at the local scale. This study aims to unravel the mechanisms driving forest cover change for a mountainous region located in northwest Vietnam. Statistical analyses were used to explore the association between forest cover change and household characteristics. In Sa Pa district, deforestation rates are decreasing, but forest degradation continues at similar rates. Deforestation is not necessarily associated with impoverished ethnic communities or high levels of subsistence farming, and the largest forest cover dynamics are found in villages with the best socio-economic conditions. Our empirical study does not provide strong evidence of a dominant role of agriculture in forest cover dynamics. It shows that empirical studies on local-scale forest dynamics remain important to unravel the complexity of human–environment interactions.  相似文献   

6.
The detailed dynamics of epiphytic lichen communities were observed while studying permanent quadrats in the zone of influence of a phosphorus fertiliser factory in central Lithuania. The most significant changes were induced by several factors: changes in macroenvironment (increase of illumination), bark scaling, succession processes, individual growth characteristics of the community members, and influence of fungal infection and invertebrate grazing. None of these changes could be directly linked with air pollution. These observations have shown that in conditions of more or less stable pollution, epiphytic community dynamics should be evaluated with care, the best indicators of the characteristics of the communities being species richness and presence/absence and abundance of indicator (nitrophilous or acidophilous) species.  相似文献   

7.
A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric chemistry.  相似文献   

8.
Background, Aim and Scope Acid deposition has become a concern in south China in recent years. This phenomenon has increased to a dramatic extent with the large use of cars and coal- fueled power plants. As a consequence, soils are becoming acidified and their element dynamics will change. A decrease in the nutrient availability will lead to slower plant growth and maybe to a change in the forest type with current species being replaced by new ones with less nutrient requirements. Because of these reasons, it is important to understand how the dynamics of elements will change and what mechanism is part of the process. This knowledge is important for modeling the acidification process and either finding ways to counter it or to predict its consequences. The primary purpose of this study was to provide information about how the dynamics of K, Na, Ca, Mg and P are affected by acid deposition in a typical forest in southern China. Materials and Methods: Experimental soils and saplings were collected directly from the monsoon evergreen broad-leaved forest in Dinghushan. All saplings were transplanted individually into ceramic pots in August 2000 and placed in an open area near their origin site. Pot soils were treated weekly from October, 2000 to July, 2002 with an acidic solution at pH 3.05, pH 3.52, pH 4.00 or pH 4.40, or with tap water as a control. The concentrations of SO42-, NO3-, K+, Na+, Ca2+, Mg2+ and available P and the pH were measured in soil and leachate samples taken at different times. The sapling leaves were collected and their element concentrations were measured at the end of the experiment. Results: Concentrations of soil exchangeable Ca and Mg decreased quickly over time, although only Ca showed changes with the acidic solution treatment and soil exchangeable K was stable because of soil weathering. Leaching of K, Mg and Ca was dependent upon the treatment acidity. Soil available P decreased slowly without any correlation with the acidity of the treatment. All the NO3- added by the treatment was taken up by the plants, but the SO42- added accumulated in the soil. Discussion: Amongst the plant species, Schima superba was little affected by the treatment, the leaf P content was affected in Acmena acuminatissima plants and Cryptocarya concinna was the most susceptible species to soil acidification, with a marked decrease of the leaf K, Ca and Mg concentrations when the treatment acidity increased. Conclusions: Simulated acid deposition affected the dynamics of K, Ca and Mg in the monsoon evergreen broad-leaved forest. The dynamics of Ca in the soil and of K, Mg and Ca in the soil leachates were affected by the acidic solution treatment. If such a soil acidification occurs, Cryptocarya concinna will be amongst the first affected species, but Schima superba will be able to sustain a good growth and mineral nutrition. Recommendations and Perspectives: Acid deposition will lead to imbalance the nutrient elements in the evergreen broad-leaved forest because of accelerated leaching losses of soil exchangeable Ca and Mg. Measures should be developed to slow down soil acidification or nutrient decrease.  相似文献   

9.
Background, aims, and scope  Sometimes, urban wastewaters convey a more or less significant part of toxic products from industries or the craft industry. Nitrifying activity can be affected by these substances, implying higher ammonia concentrations in the outlet effluent and contributing to toxicity for the aquatic environment. Moreover, the more stringently treated wastewater standards now require a reliable treatment for nitrogen. One of the key issues is the identification of the inhibition behavior of nitrifying bacteria facing a toxic substance. This new understanding could then finally be integrated into models in order to represent and to optimize wastewater treatment plants (WWTP) operation in cases involving ‘toxic scenarios’. Materials and methods  The toxic substances studied in this work, cadmium and 3.5-dichlorophenol (3.5-DCP), are representative of chemical substances commonly found in municipal sewage and industrial effluents and symbolize two different contaminant groups. The effects of Cd and 3.5-DCP on nitrification kinetics have been investigated using respirometry techniques. Results  IC50 values determination gives concentrations of 3.1 mg/L for 3.5-DCP and 45.8 mg/L for Cd at 21 ± 1°C. The variation to low temperature seems to have no real effect on IC50 for DCP, but induces a decrease of cadmium IC50 to 27.5 mg/L at 14°C. Finally, specific respirometric tests have been carried out in order to determine the potential effect of these toxic substances on the nitrifying decay rate b a . No significant effect has been noticed for Cd, whereas the presence of 3.5-DCP (at IC50 concentration) induced a dramatic increase of b a at 20°C. The same behavior has been confirmed by experiments performed in winter periods with a sludge temperature around 12°C. Discussion  The target substances have different modes of action on activity and mortality, notably due to the abilities of the contaminant to be precipitated, accumulated, or even to be progressively degraded. Studies realized at low temperature confirmed this assumption, and put in evidence the effect of temperature on toxic substances capable of being biosorbed. However, the change in the sludge sample characteristics can be pointed out as a problem in the investigation of the temperature effect on nitrification inhibition, as biosorption, bioaccumulation, and predation are directly linked to the sludge characteristics (VSS concentration, temperature) and the plant operating conditions (loading rates, sludge age, etc.). Conclusions  This work brings new understandings concerning the action mode of these specific contaminants on nitrifying bacteria and, in particular, on the role of temperature. The experiments lead to the determination of the IC50 values for both toxic substances on biological nitrification. The inhibition mechanisms of Cd and 3.5-DCP on nitrifying activity have been simply represented by a non-competitive inhibition model. Recommendations and perspectives  Other experiments carried out in a continuous lab-scale pilot plant should be done with a proper control of the operating conditions and of the sludge characteristics in order to better understand the mechanisms of nitrification inhibition for each contaminant. Finally, these first results show that toxic substances can have an effect on the growth rate but also on the decay rate, depending on the characteristics of the toxic substance and the sludge. This eventual double effect would imply different strategies of WWTP operation according to the behavior of the contaminant on the bacteria.  相似文献   

10.
The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches and evaluated the ability of the approach to simulate field experiment.  相似文献   

11.
We expose here a detailed spatially explicit model of aphid population dynamics at the scale of a whole country (Metropolitan France). It is based on convection–diffusion-reaction equations, driven by abiotic and biotic factors. The target species is the grain aphid, Sitobion avenae F., considering both its winged and apterous morphs. In this preliminary work, simulations for year 2004 (an outbreak case) produced realistic aphid densities, and showed that both spatial and temporal S. avenae population dynamics can be represented as an irregular wave of population peak densities from southwest to northeast of the country, driven by gradients or differences in temperature, wheat phenology, and wheat surfaces. This wave pattern fits well to our knowledge of S. avenae phenology. The effects of three insecticide spray regimes were simulated in five different sites and showed that insecticide sprays were ineffective in terms of yield increase after wheat flowering. After suitable validation, which will require some further years of observations, the model will be used to forecast aphid densities in real time at any date or growth stage of the crop anywhere in the country. It will be the backbone of a decision support system, forecasting yield losses at the level of a field. The model intends then to complete the punctual forecasting provided by older models by a comprehensive spatial view on a large area and leads to the diminution of insecticide sprayings in wheat crops.  相似文献   

12.
Empirical models of tree growth have been used for many years to predict timber yields and other properties of trees. However, such models rely on measured relationships between tree growth and historic environmental conditions. As anthropogenic actions alter the environment, especially atmospheric composition, empirical models become less reliable and process-based models become more useful. Process-based models are challenged to simulate growth of structurally and physiologically complex organisms using explicit mathematical expressions to capture growth response to environmental conditions. In this review we summarize the physiological requirements of process-based models and examine the capabilities of six published models (CARBON, ECOPHYS, PGSM, TREE-BGC, TREGRO, W91) for simulating tree response to changes in environmental conditions (elevated temperature, increased CO(2) concentration, and enhanced concentrations of tropospheric ozone). These analyses indicate that current models are reliable integrators of environmental effects on individual processes (e.g. photosynthesis), but may be less reliable where physiological acclimation occurs or when extrapolated to growth of specific tree compartments.  相似文献   

13.
A model of temperature dynamics was developed as part of a general model of activated-sludge reactors. Transport of heat was described by the one-dimensional, advection-dispersion equation, with a source term based on a theoretical heat balance over the reactor. The model was compared to several reference models, including a tanks-in-series model and the dispersion model with heat components neglecting biochemical-energy inputs and other activated-sludge, heat-balance terms. All the models were tested under steady-state and dynamic conditions at a full-scale facility, the Rock Creek wastewater treatment plant in Hillsboro, Oregon, using meteorological data from a station located 16 km from the plant. The dispersion model and tanks-in-series model matched in situ temperature data with absolute-mean errors less than 0.1 degrees C. Neglecting biochemical-heat-energy inputs in the activated-sludge reactor underestimated temperatures by up to 0.5 degrees C. The biochemical-heat-energy inputs accounted for 30 to 40% of the total heat flux throughout the year.  相似文献   

14.
Several treatment technologies are available for the treatment of palm oil mill wastes. Vermicomposting is widely recognized as efficient, eco-friendly methods for converting organic waste materials to valuable products. This study evaluates the effect of different vermicompost extracts obtained from palm oil mill effluent (POME) and palm-pressed fiber (PPF) mixtures on the germination, growth, relative toxicity, and photosynthetic pigments of mung beans (Vigna radiata) plant. POME contains valuable nutrients and can be used as a liquid fertilizer for fertigation. Mung bean seeds were sown in petri dishes irrigated with different dilutions of vermicomposted POME-PPF extracts, namely 50, 60, and 70% at varying dilutions. Results showed that at lower dilutions, the vermicompost extracts showed favorable effects on seed germination, seedling growth, and total chlorophyll content in mung bean seedlings, but at higher dilutions, they showed inhibitory effects. The carotenoid contents also decreased with increased dilutions of POME-PPF. This study recommends that the extracts could serve as a good source of fertilizer for the germination and growth enhancement of mung bean seedlings at the recommended dilutions.  相似文献   

15.
研究了Fenton试剂降解腐殖酸废水的影响特性,并在理论分析反应过程的基础上建立动力学方程,同时根据实验进行动力学方程参数估算。研究表明,Fenton试剂通过氧化和混凝共同作用有效去除腐殖酸。在初始pH=4,40mmol/L FeSO4和160 mmol/L H2O2投量下,腐殖酸60 min氧化去除率、混凝去除率分别达到78.6%和11.5%,其初始氧化速率达到最大59.6 mg/(L.min)。腐殖酸的氧化降解动力学模型值与实验值吻合良好,说明采用该动力学模型能较好预测腐殖酸废水的氧化降解情况,且Fenton氧化降解腐殖酸的机理符合自由基的理论和实践。  相似文献   

16.
Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation   总被引:1,自引:0,他引:1  
Phyto-remedial efficiency of Ipomoea aquatica was examined at different experimental conditions for a period of 3 months. This plant was selected due to its easy establishment, tolerance and growing easiness. In all trials, the I. aquatica was grown in coir dust to ensure an inert medium. Essential growth nutrients were supplied externally using Albert solution. Once plant growth conditions were fixed, the model system was spiked with Cr(VI) solution in the range of 7-90 ppm. Up to 28 ppm Cr(VI), I. aquatica exhibits uniform absorption characteristics showing over 75% removal of added Cr(VI). At this stage I. aquatica was not affected and it showed no toxicity symptoms. Therefore, it is suited as a potential phyto-remediant. Further I. aquatica is a vegetable particularly in Asian region; therefore caution has to be taken when selecting it for human consumption due to its high chromium accumulation capacity.  相似文献   

17.
大气污染物扩散模式的应用研究综述   总被引:6,自引:0,他引:6  
应用大气污染物扩散模式可以模拟不同尺度、气象、地形条件下工业污染物在大气中的输送与扩散特征,为大气监测、城市环境规划和空气质量预报等工作提供科学依据.归纳了目前广泛应用于模拟工业污染物扩散的模式,着重介绍了近年来国内外对这些模式的主要应用研究进展,比较了各模式在应用上的优缺点,并对大气污染物扩散模式的应用研究前景进行了讨论.  相似文献   

18.
在使用混合酵母菌菌株处理高浓度含油废水中,研究了序批式反应器(SBR)内酵母菌在不同起始pH条件下对废水的处理效果.通过与pH中性或碱性条件比较发现,pH 4~5的条件在酵母菌的发泡抑制、菌体生长以及COD/油去除等方面均显示出更好的效果,pH 5是系统运行的最佳条件.长达100d的SBR连续运行试验表明,系统可以在pH=5条件下长期、稳定运行.  相似文献   

19.
Composting has been demonstrated to be effective in degrading organic pollutants (OP) whose behaviour depends on the composting conditions, the microbial populations activated and interactions with organic matters. The fate of OP during composting involves complex mechanisms and models can be helpful tools for educational and scientific purposes, as well as for industrialists who want to optimise the composting process for OP elimination. A COP-Compost model, which couples an organic carbon (OC) module and an organic pollutant (OP) module and which simulates the changes of organic matter, organic pollutants and the microbial activities during the composting process, has been proposed and calibrated for a first set of OP in a previous study. The objectives of the present work were (1) to introduce the COP-Compost model from its convenient interface to a potential panel of users, (2) to show the variety of OP that could be simulated, including the possibility of choosing between degradation through co-metabolism or specific metabolism and (3) to show the effect of the initial characteristics of organic matter quality and its microbial biomass on the simulated results of the OP dynamic. In the model, we assumed that the pollutants can be adsorbed on organic matter according to the biochemical quality of the OC and that the microorganisms can degrade the pollutants at the same time as they degrade OC (by co-metabolism). A composting experiment describing two different 14C-labelled organic pollutants, simazine and pyrene, were chosen from the literature because the four OP fractions simulated in the model were measured during the study (the mineralised, soluble, sorbed and non-extractable fractions). Except for the mineralised fraction of simazine, a good agreement was achieved between the simulated and experimental results describing the evolution of the different organic fractions. For simazine, a specific biomass had to be added. To assess the relative importance of organic matter dynamics on the organic pollutants’ behaviour, a sensitivity analysis was conducted. The sensitivity analysis demonstrated that the parameters associated with organic matter dynamics and its initial microbial biomass greatly influenced the evolution of all the OP fractions, although the initial biochemical quality of the OC did not have a significant impact on the OP evolution.  相似文献   

20.
To estimate dynamics of arbuscular mycorrhizal (AM) symbiosis in heavy metal (HM) phytoremediation, we conducted a literature survey and correlated HM uptake and relative plant growth parameters from published data. After estimating AM feedback responses for these parameters at low and high soil-HM concentration intervals, we determined that the roles of AM symbiosis are characterized by (1) an increased HM phytoextraction via mycorrhizospheric 'Enhanced Uptake' at low soil-HM concentrations, and (2) a reduced HM bioavailability via AM fungal 'Metal-Binding' processes at high soil-HM levels, hence resulting in increased plant biomass and enhanced plant tolerance through HM stress-avoidance. We present two conceptual models which illustrate the important compromise between plant growth, plant HM uptake and HM tolerance, and further emphasize the importance of AM symbiosis in buffering the soil environment for plants under such stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号