首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Baban A  Yediler A  Ciliz N  Kettrup A 《Chemosphere》2004,57(7):731-738
Textile dyeing and finishing industry involves considerable amount of water usage as well as polluted and highly colored wastewater discharges. Biological treatability by means of mineralization, nitrification and denitrification of high strength woolen textile dye bathes, first- and second-rinses is presented. COD fractionation study was carried out and kinetic parameters were determined. Biodegradability of organic compounds in highly loaded composite wastewater after segregation and the effluent of applied biological treatment of high strength composite wastewater were measured by determining oxygen consumption rates. The results were used in terms of assessing an alternative method for inert COD fractionation. The study implied that about 80% soluble COD, 50% color and 75% toxicity reduction were possible by single sludge biological processes. Sixteen per cent of total COD was found to be initially inert. Inert fraction was increased to 22% by production of soluble and particulate microbial products through biological treatment.  相似文献   

2.
In this study, a detailed wastewater profile and treatability studies of Demirtas Organized Industrial District (OID) were undertaken on a pilot-scale. The industrial categorisation of Demirtas OID was determined, and the wastewater characterisations of each industrial sector were analysed and the flow-rates were measured. The results were used to design a wastewater treatment plant for Demirtas OID. Pilot-scale chemical and biological treatability studies were carried out. The steady-state performance of the pilot-scale treatment system in removing chemical oxygen demand (COD) and suspended solids (SS) was studied for a period of three months. The removal efficiencies obtained in this study were 42% of COD and 67% of SS in the chemical treatment, and 84% of COD and 25% of SS in the biological treatment. The overall removal efficiency of the pilot-scale system was 91% COD and 75% SS. The pilot-scale study showed that the wastewater from Demirtas OID could be treated with biological and chemical methods, and the treated wastewater met the Regulation of Discharge Standards of Turkey. The significance of this study is that it is the first such system in Turkey to be tested on a pilot scale.  相似文献   

3.
Ozonation of hydrolyzed azo dye reactive yellow 84 (CI).   总被引:17,自引:0,他引:17  
The combination of chemical and biological water treatment processes is a promising technique to reduce recalcitrant wastewater loads. The key to the efficiency of such a system is a better understanding of the mechanisms involved during the degradation processes. Ozonation has been applied to many fields in water and wastewater treatment. Especially for textile mill effluents ozonation can achieve high color removal, enhance biodegradability, destroy phenols and reduce the chemical oxygen demand (COD). However, little is known about the reaction intermediates and products formed during ozonation. This work deals with the degradation of hydrolyzed Reactive Yellow 84 (Color Index), a widely used azo dye in textile finishing processes with two monochlorotriazine anchor groups. Ozonation of the hydrolyzed dye in ultra pure water was performed in a laboratory scale cylindric batch reactor. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the visible range (400 nm), was almost complete after 60 and 90 min with an ozone concentration of 18.5 and 9.1 mg/l, respectively. The TOC/TOC0 ratio after ozonation was about 30%, the COD was diminished to 50% of the initial value. The BOD5/COD ratio increased from 0.01 to about 0.8. Oxidation and cleavage of the azo group yield nitrate. Cleavage of the sulfonic acid groups of aromatic rings caused increases in the amount of sulfate. Formic acid and oxalic acid were identified as main oxidation products by high performance ion chromatography (HPIC). The concentrations of these major products were monitored at defined time intervals during ozonation.  相似文献   

4.
Dyeing wastewater was known to have strong color and refractory organic pollutants. In this study irradiation alone was used for dyes wastewater treatment. This paper studies the effect of the concentrations of pollutants to its removal at various dosages using electron beam technology. Irradiation was effective in removing the highly colored and refractory organic compounds. The color removal for initial concentrations of 255 CU, 520 CU, 990 CU and 1900 CU treated using irradiation at 0.5kGy were 61%, 48%, 28% and 16%, respectively. However, at the dose of 108kGy and higher, the color removal between 87% and 96% were recorded with no apparent trend. COD removal also reported similar trend but at relatively lower removal percentage. The COD removal at 0.5kGy for initial COD concentrations of 57mg/l and 515mg/l were 10% and 0%, respectively. At irradiation dose of 108kGy, the removal for initial COD concentrations of 57mg/l and 515mg/l were 37% and 13%, respectively. This showed that concentrations of pollutants and dose of irradiation applied to remove color and COD were dependent to each other.  相似文献   

5.
吹脱法预处理皮革废水的实验研究   总被引:5,自引:0,他引:5  
对某皮革厂综合废水进行吹脱预处理实验,综合考察了影响氨氮去除的各个因素(pH值、汽液比、吹脱温度、氨氮初始浓度),同时对该预处理工艺去除铬、SS(悬浮固体浓度)、COD和硫化物的条件进行了优化,并进行了能耗及运行成本估算。结果表明:该厂皮革废水的最佳吹脱工况为pH=11,气液比=1 800,温度25~35℃,在此条件下,当进水ρ(NH3-N)=304.7 mg/L、ρ(Cr)=65.0 mg/L、ρ(SS)=1 700 mg/L、ρ(COD)=2 700 mg/L、ρ(S2-)=112.3 mg/L时,相应的去除率可达78.1%~83.5%、96.4%、88.2%、45.6%和85.0%,且吹脱法对氨氮具有较高的抗冲击负荷能力,吨水处理成本约为3.61元,可作为皮革废水的预处理工艺。  相似文献   

6.
Lu J  Wang X  Shan B  Li X  Wang W 《Chemosphere》2006,62(2):322-331
This work was to give a comprehensive estimation for the chemical compositions contributable to COD of the produced water treatment system. For this purpose, the wastewater samples were collected from an onshore wastewater treatment plant. The chemical compositions of the wastewater were investigated, and the COD contributed by each component was estimated. The results showed that the COD levels of O&G and SS presented decreasing trends during the whole process and achieved total removal percentages of 95.1% and 62.3%, respectively. The final COD of organic acids and low-molecular-weight carbonyl compounds were respectively lowered to nearly 64% and 35% of their initial levels, and no regular trends were found for the COD of these chemicals during the whole treatment process. The COD of inorganic components presented minor variations at all sampling spots. The majority of COD was originated from O&G in raw wastewater. The COD contributed by O&G decreased greatly with continuous treatment and finally was lower than 17% of measured COD. At each sampling spot, the ratios of COD contributed by SS did not exceed 7.6% of measured COD. Other measured chemicals, including organic acids, carbonyl compounds, volatile phenols, reductive anions, metals and TDP were not the main sources of COD during the whole treatment process, and the ratio of COD was below 9% at each sampling spot. Most of the soluble components contributable to residual COD were still unknown after biological treatment, and the COD contributed by these components was greater than 57% of measured COD.  相似文献   

7.
絮凝-Fenton试剂氧化处理印染废水   总被引:1,自引:0,他引:1  
采用Fenton试剂对某染袜厂2种印染废水(印染红和印染蓝)进行处理。考察了硫酸亚铁投加量、双氧水投加量、反应时间及pH值对印染废水的色度及COD去除率的影响,通过正交实验确定了Fenton试剂处理该废水的最佳操作条件为:反应时间30 min、双氧水(30%)投加量4 mL/L、硫酸亚铁投加量300 mg/L、pH值为4左右。在最佳条件下,印染蓝废水经氧化处理后COD去除率大于80%,色度去除率95%以上;印染红废水需经絮凝预处理后再用Fenton试剂氧化处理,其脱色率达到了99.6%,COD去除率为91.2%,出水COD浓度为96 mg/L,可达标排放。  相似文献   

8.
根据污染源头控制和废水回用的要求,对典型棉针织染整厂的不同生产过程废水排水水质特征进行了统计分析,提出了较实用的废水源头清浊分流方案。在此基础上重点研究了混凝-臭氧组合工艺对清废水处理效果,确定了最优的工艺条件。结果表明,清废水主要为洗水,占废水总量的25%~30%;混凝-臭氧组合工艺的最优工艺条件为:pH为6~9,PAC投加量为48 mg/L,PAM投加量为1.0 mg/L,臭氧接触时间为12 min(臭氧浓度为14.5 mg/L),这时,清废水COD、色度去除率分别为71%和98%,实践证明,出水水质完全能够满足染整生产。  相似文献   

9.
厌氧-好氧工艺处理制药废水的中试研究   总被引:3,自引:0,他引:3  
将由厌氧折流板反应器(ABR)、移动床生物膜反应器(MBBR)和膜生物反应器(MBR)组合而成的厌氧-好氧工艺用于处理制药废水的中试研究.试验结果表明,当原水SS平均值为1000 mg/L,COD为10 000 mg/L,NH3-N为500 mg/L时,出水浊度、COD和NH3-N分别为3 NTU、500 mg/L以及10 mg/L以下,去除率分别为98%、95%和98%以上.  相似文献   

10.
常规组合工艺-稳定塘-湿地系统处理印染废水   总被引:1,自引:1,他引:0  
针对工业园区印染企业产生的印染废水和生活污水,采用独特的"常规组合工艺与‘植物稳定塘-人工湿地系统’联合工艺"对其进行集中统一处理,并考察了运行效果。数据结果表明,系统出水COD、BOD5、SS、色度、NH3-N和TP平均分别为63.2 mg/L、13.8 mg/L、5.0 mg/L、49倍、0.2 mg/L和0.4 mg/L,出水水质达到国家污水综合排放一级标准(GB8978-1996)。该工艺运行稳定,可有效去除废水中的COD、SS和色度,去除率均在90%以上。按日均处理量4×104m3计算,此工艺每年将削减COD排放近30万t。  相似文献   

11.
Hu C  Wang Y 《Chemosphere》1999,39(12):2107-2115
The photodegradation and biodegradability have been investigated for four non-biodegradable commercial azo dyes, Reactive YellowKD-3G, Reactive Red 15, Reactive Red 24, Cationic Blue X-GRL, an indicator. Methyl Orange, and one industrial wool textile wastewater, using TiO2 suspensions irradiated with a medium pressure mercury lamp. The color removal of dyes solution and dyeing wastewater reached to above 90% within 20-30 min. of photocatalytic treatment. Biochemical oxygen demand (BOD) was found to increase, while chemical oxygen demand (COD), total organic carbon (TOC) decreased, so that the ratio of BOD5/COD of the wastewater increased from original zero up to 0.75. The result implies that photocatalytic oxidation enhanced the biodegradability of the dye-containing wastewater and therefore relationship between decolorization and biodegradability exists. When the color disappeared completely, the wastewater biodegraded normally and could be discharged for further treatment. The experimental results demonstrate that it is possible to combine photocatalysis with conventional biological treatment for the remedy of wastewater containing generally non-biodegradable azo dyes.  相似文献   

12.
Chen TY  Kao CM  Yeh TY  Chien HY  Chao AC 《Chemosphere》2006,64(3):497-502
The main objective of this study was to examine the efficacy and capacity of using constructed wetlands on industrial pollutant removal. Four parallel pilot-scale modified free water surface (FWS) constructed wetland systems [dimension for each system: 4-m (L)x1-m (W)x1-m (D)] were installed inside an industrial park for conducting the proposed treatability study. The averaged influent contains approximately 170 mg l(-1) chemical oxygen demand (COD), 80 mg l(-1) biochemical oxygen demand (BOD), 90 mg l(-1) suspend solid (SS), and 32 mg l(-1) NH(3)-N. In the plant-selection study, four different wetland plant species including floating plants [Pistia stratiotes L. (P. stratiotes) and Ipomoea aquatica (I. aquatica)] and emergent plants [Phragmites communis L. (P. communis) and Typha orientalis Presl. (T. orientalis)] were evaluated. Results show that only the emergent plant (P. communis) could survive and reproduce with a continuous feed of 0.4m(3)d(-1) of the raw wastewater. Thus, P. communis was used in the subsequent treatment study. Two different control parameters including hydraulic retention time (HRT) (3, 5, and 7d) and media [vesicles ceramic bioballs and small gravels, 1cm in diameter] were examined in the treatment study. Results indicate that the system with a 5-d HRT (feed rate of 0.4m(3)d(-1)) and vesicles ceramic bioballs as the media had the acceptable and optimal pollutant removal efficiency. If operated under conditions of the above parameters, the pilot-plant wetland system can achieve removal of 61% COD, 89% BOD, 81% SS, 35% TP, and 56% NH(3)-N. The treated wastewater meets the current industrial wastewater discharge standards in Taiwan.  相似文献   

13.
The main purpose of this study was to investigate the effectiveness of Lactobacillus 12 and Lactobacillus rhamnosus as both cells and biomasses for the removal of dye from real textile dyeing wastewater. The removal experiments were conducted according to the Box–Behnken experimental design, and the regression equations for the removal of dye were determined by the Minitab 14 program. The optimum variables were found to be 10 g/?L biomass concentration for biomasses, 3 for initial pH of the solution, and 20 °C for temperature with an observed dye removal efficiency of about 60 and 80 % with L. 12 and L. rhamnosus biomasses, respectively. Scanning electron microscopy and Fourier transform infrared spectroscopy images also showed that the biomass characteristics studied were favored by the sorption of the dye from the textile industry wastewater. Consequently, these biomasses may be considered as good biosorbents due to their effective yields and the lower cost of the removal of dyes from the effluents of the textile dyeing house.  相似文献   

14.
采用絮凝沉淀+接触氧化+人工湿地工艺处理印染废水中COD研究。结果表明,斜板沉淀池出水COD平均值为1322mg/L,此间COD去除率为38·6%;二沉池出水COD平均值为71mg/L,此段COD去除率达94·6%;人工湿地出水COD平均值为37mg/L,人工湿地COD去除率为48·0%。处理设施COD总去除率98·3%。  相似文献   

15.
Meriç S  Kaptan D  Olmez T 《Chemosphere》2004,54(3):435-441
In this study, Reactive Black 5 (RB5) was removed from synthetic wastewater using Fenton's oxidation (FO) process. Experiments were conducted on the samples containing 100 and 200 mg l(-1) of RB5 to remove the dye toxicity. Seventy-five milligram per litre of RB5 caused 25% toxicity on 24-h born daphnids whereas 100 mg l(-1) of RB5 displayed 100% toxicity on Daphnia magna. The study was performed in a systematic approach searching optimum values of FeSO(4) and H(2)O(2) concentrations, pH and temperature. Optimum pH and temperature for 100 mg l(-1) of RB5 were observed as 3.0 and 40 degrees C, respectively, using 100 mg l(-1) of FeSO(4) and 400 mg l(-1) of H(2)O(2) resulted in 71% chemical oxygen demand (COD) and 99% color removal. For 200 mg l(-1) of RB5, 84% COD removal was obtained using 225 mg l(-1) of FeSO(4) and 1000 mg l(-1) of H(2)O(2) yielding 0.05 molar ratio at pH 3.0 and 40 degrees C. Color removal was also more than 99%. The optimum conditions determined in accordance with the literature data. The H(2)O(2) requirement seems to be related to initial COD of the sample. FeSO(4)/H(2)O(2) ratios found were not changed for both concentrations. The temperature affected the COD removal significantly at high degrees. Toxicity was completely removed for each concentration of RB5 at optimum removal conditions.  相似文献   

16.
对厌氧滤池反应器处理难降解印染废水进行中试研究。结果表明,厌氧滤池反应器水力停留时间(HRT)在8.1~14.6 h之间,进水COD浓度波动较大(500~1 000 mg/L)时,对COD平均去除率为20%。印染废水的BOD5/COD由0.23提高到0.35,废水可生化性明显改善。印染废水中硫酸根浓度略有下降,去除浓度为70 mg/L左右。厌氧滤池进出水颜色明显变化,由紫红色变为蓝黑色,紫外可见光谱分析表明废水中的有机物结构发生变化。  相似文献   

17.
为了探讨矿化垃圾再利用于印染废水处理的可行性,研究了矿化垃圾生化反应床处理模拟印染废水的工艺参数,进行了优势菌群的镜检和提取、培养,实验结果表明,适宜的工艺运行参数如下为水力停留时间12~24 h,水力负荷100~140 L/(m3·d),COD污染负荷240~360 g/(m3·d),布水周期为24 h条件下的进水历时为6 h;适宜的工艺运行参数条件下,矿化垃圾生化反应床对模拟印染废水的COD去除率97%以上,总磷去除率95%以上,氨氮的去除率在98%以上;处理模拟印染废水的矿化垃圾生化反应床内的微生物群落以球菌为主,该菌体对模拟印染废水具有良好的专性降解作用。研究结果将对矿化垃圾的再利用和印染废水的处理提供一定的技术参考。  相似文献   

18.
A detailed characterisation of the incoming wastewater and a performance evaluation were carried out for the domestic wastewater treatment plant of Erzincan City. Conventional characterisation results showed that Erzincan has a medium strength wastewater quality. Structural characterisation of the chemical oxygen demand (COD) indicated that the biodegradable fraction of the total COD was 64.7%. The soluble inert fraction was computed as 10.9% of the total COD. In Erzincan, an activated sludge plant provides secondary treatment using Carrousel treatment units. Because some operational problems, such as sludge bulking and foaming, have been experienced, and performance failures related to carbonaceous matter removal have been recorded many times, a new operational strategy suitable for this type of treatment plant was developed. In the new strategy, the sludge age was kept at 22 days, intermittent aeration was abandoned and replaced by continuous aeration, and the sludge recycle ratio was increased to 1.35 from 0.85. The developed operational strategy showed its merit in that previous operational problems largely disappeared and COD concentrations remained below the Turkish discharge limits of 100 mg/l and the NH4 removal rate was in the range 87–95%.  相似文献   

19.
采用膜生物反应器(MBR)-反渗透(RO)工艺对印染废水进行了深度处理实验。原水经MBR系统处理后,COD去除率、ss去除率和色度去除率分别达89.9%、100%和87.5%。MBR系统处理出水进入反渗透(RO)系统进行处理,硬度去除率和除盐率分别达99.62%和99.64%,同时可进一步除去剩余的COD、色度。系统出水水质满足生产回用的要求。  相似文献   

20.

Surgical cotton production has drastically been increased in the past few years due to excessive use by medical health professionals especially in countries like India, which is among the top three exporters of cotton worldwide. The effluent generated from surgical cotton industries differ from textile effluents by the conspicuous absence of dyeing chemicals. This wastewater has a high concentration of suspended particles, COD, dissolved ions, organic carbon, and alkaline pH. Several studies have been published on the treatment of textile effluents and the degradation of dyeing chemicals, while the treatment studies on surgical cotton wastewater have been rarely reported in spite of their potential to cause pollution in receiving land/water bodies. Activated sludge microbes have been extensively studied and well documented in the treatment of several industrial effluent but does not match to the production of valuable biomass from algae. The global energy demand has prompted the scientific community to investigate and explore the possibility of using algae for energy production with simultaneous wastewater treatment. To the best of the authors’ knowledge, no research articles have been published which compare the effectiveness of activated sludge microorganisms, microalgae, and macroalgae in removing contaminants from real wastewater. To date, there is a knowledge gap in understanding and selecting the right choice of biological system for effective and economical effluent treatment. In an attempt to minimize this gap, carbon removal by microalgae, macroalgae, and activated sludge microbes were investigated on real effluent from surgical cotton industries. It was observed that the strain of Chlorella vulgaris could dissipate 83% of COD from real wastewater, while consortia of macroalgae (consisting predominantly of Ulvaceae and Chaetomorpha) and activated sludge microbes could remove 81% and 69% of the carbon, respectively. The microalgal growth (in terms of wet weight) increased from 0.15 to 0.3 g, whereas the macroalgal wet weight increased from 1.5 to 3 g in over 7 days of batch experiments conducted in triplicates. This indicated the superlative performance of microalgae over activated sludge microbes in carbon dissipation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号