首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
A numerical model for simulation of the electrohydrodynamic flow in an electrically enhanced cyclone is presented. A finite element approach was applied to solve the coupled equations for the positive corona-induced electric field. Three-dimensional simulations of gas flow were carried using Reynolds-Averaged Navier-Stokes equations including the Reynolds stress model and the electrohydrodynamic effect. Numerical results show that the change in the flow profile because of the influence of the corona-induced electric field is apparent when the inlet flow rate is low but is negligible at higher flow rates.  相似文献   

2.
The electrical and fluid dynamical characteristics of a barbed plate-to-plate electrostatic precipitator are compared with those of a conventional wire-to-plate precipitator under particle-free conditions. The barbed plate electrode design is based on the concept that a more uniform distribution of current within the flow channel may reduce the scale of the corona-induced electrohydrodynamic flow and thus decrease particle mixing. Current-voltage relationships and hot-film anemometer measurements of turbulence intensities, integral length scales and eddy diflusivities are presented for current densities as high as9mAm−2at gas speeds of 0.5,1.0 and 2.0 m s−1. Visual inspection of the discharge pattern indicates that the scale of the current inhomogeneity is reduced. Flow visualization and measurements of integral length scales confirm that the barbed plate design does reduce the scale of the electrically induced flow. Even though downstream turbulence levels are increased in the planar geometry, gas diffusivities are not substantially reduced. Additional study of the inter-electrode gas flow field and particle collection efficiency is necessary to determine the practical viability of the barbed plate precipitator.  相似文献   

3.
Environmental properties of organic matter contained halogen and sulfur were studied in sediments of bleached kraft pulp mill effluent (BKME) recipient lakes and 2 m3 outdoor enclosures (mesocosms). The BKME contributed to 1% (v/v) of the total water flow in the lake downstream of the pulp mill where the sediments contained 1.7 to 4 mg of tetrahydrofuran extractable organic halogen (EOX-Cl) and 0.6 to 0.8 mg of tetrahydrofuran extractable organic sulfur (EOS-S) g−1 of organic matter. Upstream sediment contained 0.03 mg of EOXCl and 0.7 mg of EOS-S g−1 of organic matter. EOX was a better indicator for the influence of BKME in the recipient sediment than EOS. The polarity of BKME contained EOX corresponded to log Kow of < 1, and that of the downstream sediment contained EOX to > 4.5. HP-SEC analysis of the molecular weight distribution (MWD) of the EOX showed a peak between 300 to 600 g mol−1 for the BKME and between 1000 to 2000 g mol−1 for the downstream sediment. The MWD of the BKME contained EOS peaked at 300 to 1000 g mol−1, and that of the downstream sediment contained EOS at 1000 to 5000 g mol−1. These results indicate that BKME contained organic halogen and sulfur undergo major structural transformations when incorporated into sediment. The biota-to-sediment accumulation factor (BSAF) of EOX from sediments formed downstream of the mill and in the mesocosms to the lipids ofLumbriculus variegatus was 0.4 to 0.7. This is of a similar order of magnitude to the BSAF reported for 2,3,7,8-tetrachlorodibenzop-dioxin and 2,3,7,8-tetrachlorodibenzofuran.  相似文献   

4.
The mixing processes of the aerosol particles from an outdoor environment in a ventilated scale chamber were experimentally studied. The particles were classified into five groups by size: 0.3–0.5 μm, 0.5–1.0 μm, 1.0–3.0 μm, 3.0–5.0 μm and 5.0–10.0 μm. The developing process for the concentration of each particle group was measured in different kinds of flow fields.The results show that the flow field configuration can effectively influence the dispersion time rate of the particles at certain positions. The increase in particle diameter can decrease the dispersion time rate. When the gas flow velocity is high, the particle dispersion time rate is independent of particle size; but when the gas flow velocity is low, particle size can significantly affect the particle dispersion time rate because the turbulent diffusion becomes important in the air and particle transport. The uniformity of the particle concentration for certain positions in steady state tends to be controlled by the inflow velocity, flow field configuration and the particle diameters.  相似文献   

5.
In isokinetic sampling from a gas stream it is usually assumed that the flow pattern upstream of the sampling probe is not affected by the presence of the probe. That some probes do seriously affect the gas streamlines is shown by velocity traverses taken with a hot wire anemometer under controlled flow conditions in a wind tunnel. The degree to v/hich the streamlines are affected depends on the wall thickness and taper of the nozzle, the stem diameter, as well as on the size and proximity of sampling accessories in the vicinity of the nozzle. For a probe to cause negligible disturbance under isokinetic conditions it should have a sharp-edged nozzle with little or no outside bevel, and the stem of the probe should be at least 11 stem diameters downstream from the nozzle inlet.  相似文献   

6.
Vertical gradients of volatile organic compounds (VOCs) were measured over a maize field and a soybean field in 1995 and 1996, respectively, in the Lower Coastal Plains of North Carolina. The measurements over the maize field were conducted in its early growth period, during May 1995, and the measurements over the soybean field were conducted in its middle and later growth periods during July through August 1996 at the same location. These measurements were combined with micrometeorological flux measurements to determine emission flux measurements for various VOCs. This measurement programme was part of project NOVA (Natural emissions of Oxidant precursors: Validation of techniques and Assessment) to estimate the flux of VOCs. Methanol was identified as the major biogenic compound for both years with the average flux of 3450 ± 1456 µg/m²/hr over maize and 3079 ± 2766 µg/m²/hr over soybean. Acetone is another compound that was identified as a biogenic compound for both years with the average flux of 425 ± 223 µg/m²/hr over maize and 2701 ± 1710 µg/m²/hr over soybean. In addition to biogenic compounds, a large number of aromatic compounds, including styrene and 1,2,4-trimethylbenzene, were also identified as emissions from the ground over the soybean field.  相似文献   

7.
Roadside air pollution due to heavy traffic is one of the unsettled issues in the atmospheric environment in urban areas. As a practical application of a Computational Fluid Dynamics (CFD) model, a coupled mesoscale-CFD model was applied to the Ikegamicho area of Kawasaki City, Japan. For this study, the effects of traffic-produced flow and turbulence (TPFT) on the dispersion of the pollutants near the heavy traffic road were mainly investigated in an actual urban area. First, a series of preliminary CFD calculations was conducted for a road tunnel field experiment to obtain a fitting parameter for the traffic-produced flow. The calculation was then performed for 24 h in December 2005 around Ikegamicho, and the results were compared with the data at a roadside monitoring post in the area, located 10 m from the boundary of the ground road. In general, the effect of traffic-produced flow and turbulence was limited at the downstream side of the roads. The maximum concentration of NOx was reduced and smoothed out along the traffic flow by the traffic-produced flow and turbulence on the road. The effects of traffic-produced turbulence on the dispersion of pollutants were greater than those of traffic-produced flow; however, the effects of traffic-produced flow were not negligible. The concentration of pollutants was not particularly dependent on the turbulent Schmidt number because most of the emission sources were introduced as volume sources in the present calculations, and the effect caused by differences in the material diffusion coefficient was not particularly significant at the outside of the road.  相似文献   

8.
Point velocity measurements conducted by traversing a Pitot tube across the cross section of a flow conduit continue to be the standard practice for evaluating the accuracy of continuous flow-monitoring devices. Such velocity traverses were conducted in the exhaust duct of a reduced-scale analog of a stationary source, and mean flow velocity was computed using several common integration techniques. Sources of random and systematic measurement uncertainty were identified and applied in the uncertainty analysis. When applicable, the minimum requirements of the standard test methods were used to estimate measurement uncertainty due to random sources. Estimates of the systematic measurement uncertainty due to discretized measurements of the asymmetric flow field were determined by simulating point velocity traverse measurements in a flow distribution generated using computational fluid dynamics. For the evaluated flow system, estimates of relative expanded uncertainty for the mean flow velocity ranged from ±1.4% to ±9.3% and depended on the number of measurement locations and the method of integration.
Implications:Accurate flow measurements in smokestacks are critical for quantifying the levels of greenhouse gas emissions from fossil-fuel-burning power plants, the largest emitters of carbon dioxide. A systematic uncertainty analysis is necessary to evaluate the accuracy of these measurements. This study demonstrates such an analysis and its application to identify specific measurement components and procedures needing focused attention to improve the accuracy of mean flow velocity measurements in smokestacks.  相似文献   

9.
Dimethyl disulphide (DMDS) removal was investigated in a compact scrubber (hydraulic residence time ≈20 ms), composed of a wire mesh packing structure where liquid and gas flow at co-current and high gas superficial velocity (>12 m s−1). In order to regenerate the scrubbing liquid and to maintain a driving force in the scrubber, ozone and hydrogen peroxide were added to water since they allow the generation of nonselective and highly reactive species, hydroxyl radicals HO. Three ways of reagent distribution were tested. The influence of several parameters (liquid flow rate(s), ozone flow rate, pH and reagent concentrations) was investigated. The best configuration was obtained when ozone is transferred in the scrubbing liquid before introduction at the top of the scrubber simultaneously with the hydrogen peroxide solution, allowing to generate hydroxyl radical in the scrubber. With this configuration, DMDS removal could be increased from 16% with water to 34% at the same gas and liquid flow rates in the scrubber showing the potentiality of advanced oxidation process.  相似文献   

10.
Measurements of the vertical entrainment velocity into two-dimensional dense gas plumes over fully rough surfaces were carried out as part of a co-operative research programme with wind tunnel facilities in the USA. This paper presents results obtained for neutral boundary layer conditions in the EnFlo wind tunnel at the University of Surrey; a companion paper treats the stable boundary layer case. Entrainment velocities, WE, were deduced from the streamwise development of the concentration field, non-dimensionalised with respect to the friction velocity in the undisturbed flow, u*, and correlated with the plume Richardson number, Ri*. Results for Richardson numbers in the range Ri*<15 were found to be well fitted by the empirical expression: WE/u*=0.65/(1+0.2Ri*). Flow visualisation studies showed layered plume structures with a sharp upper interface at higher Richardson numbers and in this regime turbulent motion below the interface became progressively more intermittent as Ri* increased. Measured turbulence levels collapsed within such high Richardson number plumes and flow and dispersion were significantly affected by molecular processes. Up-welling above the source was observed when the emission speed exceeded the approach flow friction velocity, though there was no clear evidence that this affected plume behaviour away from the immediate vicinity of the source.  相似文献   

11.
The grid-type electrostatic precipitator1 evolved from some basic research into the collection of airborne charged dust particles in the wake of a flat, metallic, perforated plate under the action of an externally applied electric field. In the earliest experiments in the laboratory2 a flat grounded perforated plate (or grid) was placed at right angles to an air stream moving at 6 ft/sec and an electric field was created on its downstream side by the placement of a second grid, bearing high negative potential, just downstream of the first. Negatively charged dust particles, carried along by the air stream through the openings in the first of the two grids, collected on the downstream face of the upstream grid as a result of the electric force acting on them in the direction opposing the air flow. Measured values of dust collection efficiency could not be accounted for simply by resolving the directly opposing mainstream air flow and electrostatic forces. The concept of vortex-enhanced precipitation was therefore proposed in order to explain the experimental results.  相似文献   

12.
13.
The presently available standards for measurement of gas flow in stacks and industrial flues are reviewed. Various problems associated with probe traverse techniques using the pitot-static tube, the Type S pitot tube, a directional type pitot tube, and hot wire anemometers are described. Recommendations are made with respect to the selection of velocity measurement station, and the selective application of velocity measurement devices is discussed.  相似文献   

14.
水力旋流器速度场的PDPA测试研究   总被引:1,自引:0,他引:1  
韩婕  汪华林  马吉 《环境工程学报》2010,4(5):1101-1106
应用相位多普勒粒子分析仪(PDPA)对液液水力旋流器模型的内部流场进行了测试,分析了旋流器内部速度场的特点。通过进口流量的变化,测试了该模型的不同截面上的速度场分布情况。测试结果表明:随着流量的增大,旋流器轴截面上的速度都增大,旋流变大,有利于连续相和分散相的分离;旋流器中连续相和分散相速度分布趋势相同,但在管芯处,两者速度滑移明显。  相似文献   

15.
A new technique to generate thick turbulent boundary layers In relatively short distances, which is capable of modifying and controlling rapidly the mean and unsteady profiles of the simulated layers, is presented. The increased thickness is achieved in the "I.IT. Environmental Wind Tunnel" by providing large momentum defects at the wall through upstream oriented, spanwise discrete wall jets, with changeable jet velocities and controllable jet angles. Various mean velocity profiles of the boundary layer (which can be represented by a wide range of power law exponents) are obtained at the same streamwise position using different settings of the counter-jet parameters and different types of artificial surface roughness. The transverse uniformity of these layers is also documented. Selected measurements of the flow field in the vicinity of a "building" model tested in three surface layers are compared in order to examine the sensitivity of measured effects to changes in the surface layer characteristics. Viewing the flow field with the aid of the modular flow concept, changes in the wake of the "building," in the flow above its roof and in the shear layer spreading downstream from its top are recorded through profiles of mean velocity and turbulence intensity. The effect of the wind direction with respect to the model is also investigated.  相似文献   

16.
This paper deals with a one-week monitoring of the 50 Hz magnetic field on the ground floor and the first floor of houses under 150, 220 and 380 kV high-voltage overhead three-phase AC transmission lines. The field strength varied with the current intensity, the conductor height, and the storey of the house. Because current intensity varies with time the magnetic field depended on the time of day and the day of the week. The recorded magnetic field ranged from 0.1 µT to 4.5 µT. The maximum value was at least 20 times weaker than the 100 µT exposure level recommended by the guidelines of the International Radiation Protection Association (IRPA) and about 140 times smaller than the 640 µT of the European Prestandard (CENELEC). The B-field was, for 99.9% of the measuring time, larger than the 0.2 µT cut-off point used to define categories of exposed and unexposed subjects in EMF epidemiological studies and, for 99.3% of the time, was greater than the 0.3 µT level used by US private engineering companies as the 'prudent avoidance' exposure limit. The weakest average magnetic field was at least 40 times larger than the 0.02 µT background value.  相似文献   

17.
Assessing the potential of natural attenuation in groundwater relies on the ability to predict and quantify the processes that occur in contaminant plumes. Transverse dispersion is a significant mass transfer mechanism for mixing of electron acceptors and donors and thus may control the lengths of steady state plumes. Laboratory experiments were carried out using a 2-dimensional acrylic glass tank filled with glass beads, quartz sand and field site material as porous media. Flow velocities and grain sizes were varied in order to cover a large range of Peclet numbers including typical field scenarios. The laboratory study was extended by a comprehensive literature search to compare the new results with earlier work. As a result we propose a new empirical relationship for prediction of transverse dispersion coefficients (Dt) which is based on the Peclet number (Pe). This new relationship indicates a nonlinear dependency on the flow velocity (nu a) and grain size (d), namely a relative decrease of the dispersion coefficient with increasing flow velocity in relatively fast flowing water: Dt/Daq=Dp/Daq+0.28(Pe)0.72 (with Pe=nu a d/Daq; Daq and Dp denote the aqueous and pore diffusion coefficients, resp.).  相似文献   

18.
Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s?1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m?2 h?1 and 12 h cumulative emission ranged from 8.5 to 260 g m?2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.  相似文献   

19.
A wind tunnel experiment was carried out to simulate stack gas diffusion within an unstable atmospheric boundary layer over a coastal region. The wind tunnel floor, 4 m leeward of the entrance of the test section, was heated to 90°C over a length of 6 m in the streamwise direction, and wind tunnel experiments were performed under the flat plate condition with a prototype-to-model length scale ratio of 1200. Three similarity criteria of flow fields in the wind tunnel and in atmosphere, viz., bulk Richardson number, surface Reynolds number and the ratio of the Peclet number to the Richardson number, were considered in the wind tunnel experiment. Tracer gas was released along the coastline at a height of 10 cm, which corresponded to 120 m in height in atmosphere. The obtained wind tunnel experimental results of ground level concentration were compared with 30-min average values of the field experiments, viz., the data from the Tokai 82 field experiment. The maximum ground level concentration and its location were accurately simulated when there was close similarity between the wind tunnel and atmospheric flow conditions. The maximum concentration increased and occurred closer to the source when the level of convection was relatively stronger in atmosphere.  相似文献   

20.
The aim of this study was to compare degradation rates of aniline in laboratory shake flask simulation tests with field rates in the river Rhine. The combined events of a low flow situation in the Rhine and residual aniline concentrations in the effluent from the BASF treatment plant in Ludwigshafen temporarily higher than normal, made it possible to monitor aniline at trace concentrations in the river water downstream the wastewater outlet by means of a sensitive GC headspace analytical method. Aniline was analyzed along a downstream gradient and the dilution along the gradient was calculated from measurements of conductivity, sulfate and a non-readily biodegradable substance, 1,4-dioxane. Compensating dilution, field first-order degradation rate constants downstream the discharge of BASF were estimated at 1.8 day−1 for two different dates with water temperatures of 21.9 and 14.7 °C, respectively. This field rate estimate was compared with results from 38 laboratory shake flask batch tests with Rhine water which averaged 1.5 day−1 at 15 °C and 2.0 day−1 at 20 °C. These results indicate that laboratory shake flask batch tests with low concentrations of test substance can be good predictors of degradation rates in natural water bodies––at least as ascertained here for short duration tests with readily degradable compounds among which aniline is a commonly used reference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号