首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately and in combination. Lemna minor was chosen for As remediation and collected from a ditch in Utrecht, The Netherlands. The tanks were filled with surface water without any pre-cleaning, therefore containing various elements including metals as Mn (2.9 mg L(-1)), Cu (0.05 mg L(-1)), Fe (1.39 mg L(-1)), and Ba (0.13 mg L(-1)). This water was then spiked with As and allocated to a feed container, guaranteeing a continuous flow of 0.12 mL s(-1) to each tank. Two experiments were performed: Exp. 1 with 3 consecutive stages with rising applied voltage and Exp. 2, with a constant voltage over a period of 6 d. Measurements of pH and temperature were taken every working day, as well as water samples from outlets of all tanks including feed container for control. From the present study, there was no evidence that As had been taken up by the plants, but a strong depletion of As was observed in the tanks where current was applied. Preliminary results clearly showed that applying voltage to the electrodes caused 90% removal of As from the spiked surface water.  相似文献   

2.
In order to study the accumulation rates and effects of platinum as influenced by lead, experiments were performed with poplar cuttings in a growth chamber. The heavy metals were added at a final concentration of 34.8 ppb each to nutrient solutions as PtCl4 and Pb(NO3)2. The variants were 1) control; 2) permanent Pt treatment for 6 weeks; 3) pretreatment with Pt plus subsequent treatment with Pb (three weeks each), and 4) heavy metal application in inverse order to variant 3. The experiments revealed that platinum accumulates in the roots of poplar cuttings to a higher degree than lead. It is translocated from the roots to other plant parts to an extremely low degree. Lead is displaced from the roots by subsequent Pt treatment. Insoluble platinum was found to be associated especially on the cell walls of the rhizodermis and exodermis of the root tips. Accumulation of platinum in the roots leads to a gradual depletion of the plants’ water supply. The disturbance of the water household causes a reduction of the transpirational surface, lowered transpiration rates and enhanced root growth. All these alterations are induced as a means of coping water stress. From the results of this experiment, the conclusion can be drawn that, under the chosen experimental conditions, platinum manifests a higher toxicity than lead in plant roots because of its higher accumulation rates.  相似文献   

3.
Chae KJ  Kim SM  Park HD  Yim SH  Kim IS 《Chemosphere》2008,71(5):961-968
Hydrophobic sponge media require a relatively long start-up period, as they just float on the surface of aeration tanks due to their little tendency to adsorb water, which causes a delay in the initiation of bacterial attachment. In order to overcome this difficulty, a new pseudo-amphoteric BioCube media (a standard BioCube is hydrophobic) using polyalkylene oxide-modified polydimethylsiloxane (PDMS) as a surfactant was developed. Of the many evaluated hydrophilizing agents, polyalkylene oxide-modified PDMS was found suitable. Among the diverse types of modified PDMS, the non-reactive polyethylene oxide-modified PDMS was found to be optimum agent. Pseudo-amphoteric BioCube media are readily immersible, but after complete immersion, they gradually become hydrophobic, as the polyethylene oxide-modified PDMS is designed to alienate from polyurethane backbone of BioCube to provide hydrophobic surfaces exhibiting more affinity for bacterial attachment. Clearly, the pseudo-amphoteric BioCube showed faster bacterial attachment during the early stage due to chances of enhanced contact between the bacteria and media surfaces, but the extent of attachment between the hydrophobic and pseudo-amphoteric BioCube was similar at the steady state because the former (pseudo-amphoteric BioCube) had already changed to hydrophobic. Fluorescent in situ hybridization result showed 14% occupation by ammonia oxidizing bacteria, 13% by nitrite oxidizing bacteria and 73% by others in pseudo-amphoteric BioCube, respectively.  相似文献   

4.
以深圳市宝安区为例,探讨以再生水满足城市水系环境需水的方法.应用一维恒定与非恒定水质模型计算了4种补水水质方案下该区10条主要河流的环境需水量,从水量平衡角度提出全区再生水BOD5的平均值,并进一步分析了补水水质与河流环境需水量的关系.结合该区水系与污水处理系统空间位置,提出3种再生水的空间配置方法.结果表明:茅洲河和...  相似文献   

5.
Drinking water in the vast Arctic Canadian territory of Nunavut is sourced from surface water lakes or rivers and transferred to man-made or natural reservoirs. The raw water is at a minimum treated by chlorination and distributed to customers either by trucks delivering to a water storage tank inside buildings or through a piped distribution system. The objective of this study was to characterize the chemical and microbial drinking water quality from source to tap in three hamlets (Coral Harbour, Pond Inlet and Pangnirtung—each has a population of <2000) on trucked service, and in Iqaluit (population ~6700), which uses a combination of trucked and piped water conveyance. Generally, the source and drinking water was of satisfactory microbial quality, containing Escherichia coli levels of <1 MPN/100 mL with a few exceptions, and selected pathogenic bacteria and parasites were below detection limits using quantitative polymerase chain reaction (qPCR) methods. Tap water in households receiving trucked water contained less than the recommended 0.2 mg/L of free chlorine, while piped drinking water in Iqaluit complied with Health Canada guidelines for residual chlorine (i.e. >0.2 mg/L free chlorine). Some buildings in the four communities contained manganese (Mn), copper (Cu), iron (Fe) and/or lead (Pb) concentrations above Health Canada guideline values for the aesthetic (Mn, Cu and Fe) and health (Pb) objectives. Corrosion of components of the drinking water distribution system (household storage tanks, premise plumbing) could be contributing to Pb, Cu and Fe levels, as the source water in three of the four communities had low alkalinity. The results point to the need for robust disinfection, which may include secondary disinfection or point-of-use disinfection, to prevent microbial risks in drinking water tanks in buildings and ultimately at the tap.  相似文献   

6.
管道分质供水消毒副产物及其安全性评价   总被引:2,自引:0,他引:2  
消毒副产物是饮用水中应主要控制的毒害物。然而,管道分质供水中消毒副产物特征及污染水平很少研究。以某一管道分质供水工程为例,对其中消毒副产物进行了详细研究。研究结果表明,管道分质供水消毒副产物在量与质上与其源水自来水存在很大差别。在管道分质供水中消毒副产物量少,一般不到自来水的1/10,且主要是一些毒性较低、与供水管材有关的溶出物。据此计算出管道分质供水由消毒副产物引起的致癌风险性一般不到其源水的1/10,其安全性大大提高。  相似文献   

7.
Polyacrylamide (PAM) use in irrigation for erosion control has increased water infiltration and reduced soil erosion. This has improved runoff water quality via lower concentrations of nitrogen, phosphorous, and pesticides, and decreased biological oxygen demand. Since non-toxic high molecular weight anionic PAMs removed clay size sediment particles in flowing water, we hypothesized that PAM would effectively remove or immobilize microorganisms in flowing water. In an agricultural field, we determined the efficacy of PAM-treatment of furrow irrigation water to remove several categories of microorganisms in the inflow and runoff. Treatments were: (1) PAM application and a control; (2) three flow rates; (3) two distances from the inflow point; and (4) three times during each irrigation. After water traveled 1 m at 7.5 and 15.5 l min(-1), PAM-treatment reduced total bacterial and microbial biomass and total fungal biomass relative to the control treatment. After water traveled 40 m at 7.5, 15.5, and 22.5 l min(-1), PAM-treatment reduced algae, the numbers active and total bacteria, active and total fungal length, and total bacterial biomass, total fungal and microbial biomass relative to the control treatment. Although specific organisms were not identified or monitored in this study, the results clearly have implications for controlling the spread of soil-borne plant pathogens and other classes of harmful organisms within and among fields via irrigation water and in re-utilized return flows. Beyond furrow-irrigated agriculture, new methods to manage overland transmission of harmful microorganisms could potentially help control transport of pathogens from animal waste in runoff and groundwater.  相似文献   

8.

The demand for high-quality safe and clean water supply has revolutionized water treatment technologies and become a most focused subject of environmental science. Water contamination generally marks the presence of numerous toxic and harmful substances. These contaminants such as heavy metals, organic and inorganic pollutants, oil wastes, and chemical dyes are discharged from various industrial effluents and domestic wastes. Among several water treatment technologies, the utilization of silica nanostructures has received considerable attention due to their stability, sustainability, and cost-effective properties. As such, this review outlines the latest innovative approaches for synthesis and application of silica nanostructures in water treatment, apart from exploring the gaps that limit their large-scale industrial application. In addition, future challenges for improved water remediation and water quality technologies are keenly discussed.

  相似文献   

9.
The objectives of this study were to evaluate metal contamination of drinking water resulting from the corrosion of distribution pipes and its significance to human health. A community in Dhahran, which is served from its own desalination facilities, was chosen for this study. About 150 drinking water samples were collected and analyzed for metal concentrations using an inductively coupled argon plasma analyzer. It was found that copper, iron and zinc in the drinking water increased during its transportation from the desalination plant to the consumers. This increase was related to the length and material of distribution pipes. Concentrations of copper and zinc were increased during overnight storage of water in the appliances. Metal concentrations found in this study are discussed with reference to human health.  相似文献   

10.
Following the emergence of sustainable development as a key environmental management concept in the late 1980s, much discussion and debate has occurred on how the general concept can be understood in the context of particular resources, economic sectors and fields of academic study. This paper attempts to integrate two such particular areas of study, urban development and fresh water resources management. Following an overview of the concept of sustainable development, where the fresh water resource base is used to illustrate different interpretations of sustainability, the paper advances a number of perceptions of the sustainable city and the implications for fresh water management. Key concepts that emerge include a need to reduce the urban ecological sphere of influence, best understood in the context of a quasi-autonomous vision of the sustainable city, requiring a radical shift away from 'engineering-fix' water supply augmentation towards demand management and other approaches that sit more easily with the prime need to maintain the functional integrity of ecosystems.  相似文献   

11.
The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing.

Implications: This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.  相似文献   


12.
Safe and sufficient quantity of water is necessary for a healthy growth of human beings. The gap between water demand and available water supply is increasing day by day. Proper sanitation, especially decentralized approach, can solve the problem of water supply and wastewater management and that can be done by reuse of greywater. Typically, from a household, greywater (GW) flow is around 65 % of the total wastewater flow. Further light greywater is around 50 % of the total GW. Hence, GW has a high potential for recycle and reuse. The aim of this article is to reveal the present state of art in GW treatment and to identify the further scope for research. Present article contains a review on per capita GW generation, GW characteristics, and its treatment. Around 22 treatment systems comprising different treatment processes are discussed in detail for removal efficiency of pollutants, effluent concentrations and their compliance with wastewater reuse guidelines and standards. Constructed wetland and filtration were found efficient in the removal of most of the reuse parameters compared to other technologies. Anaerobic followed by aerobic system with post-disinfection unit may be a sustainable option for GW treatment for reuse. There is a need to develop the technologies for GW treatment at household level to increase the reuse practises at grass root level. Further, there is need of development of flow diagram with different technologies by targeting the type of reuse (flushing, gardening, agriculture, etc.).  相似文献   

13.
城市水源地突发性水污染事件研究述评   总被引:1,自引:0,他引:1  
日益恶化的突发性水污染事件始终是国内外大多数城市水源地安全和城市供水安全的重要威胁.从城市水源地突发性污染事件的风险源、水源地易损性、应急评估和预警技术及应急机制4个方面综述了国内外城市水源地突发性污染事件的研究进展.述评认为,应关注城市水源地的特殊易损性及突发性污染的威胁,重点研究水源地突发性污染事件的快速评估和预警技术及应急机制,全面开展城市水源地突发性污染事件的基础和实例研究.  相似文献   

14.
城市水源地突发性水污染事件研究述评   总被引:10,自引:0,他引:10  
日益恶化的突发性水污染事件始终是国内外大多数城市水源地安全和城市供水安全的重要威胁。从城市水源地突发性污染事件的风险源、水源地易损性、应急评估和预警技术及应急机制4个方面综述了国内外城市水源地突发性污染事件的研究进展。述评认为,应关注城市水源地的特殊易损性及突发性污染的威胁,重点研究水源地突发性污染事件的快速评估和预警技术及应急机制,全面开展城市水源地突发性污染事件的基础和实例研究。  相似文献   

15.
One of the highest self-reported incidence rates of acute gastrointestinal illness (AGI) in the global peer-reviewed literature occurs in Inuit communities in the Canadian Arctic. This high incidence of illness could be due, in part, to the consumption of contaminated water, as many northern communities face challenges related to the quality of municipal drinking water. Furthermore, many Inuit store drinking water in containers in the home, which could increase the risk of contamination between source and point-of-use (i.e., water recontamination during storage). To examine this risk, this research characterized drinking water collection and storage practices, identified potential risk factors for water contamination between source and point-of-use, and examined possible associations between drinking water contamination and self-reported AGI in the Inuit community of Rigolet, Canada. The study included a cross-sectional census survey that captured data on types of drinking water used, household practices related to drinking water (e.g., how it was collected and stored), physical characteristics of water storage containers, and self-reported AGI. Additionally, water samples were collected from all identified drinking water containers in homes and analyzed for presence of Escherichia coli and total coliforms. Despite municipally treated tap water being available in all homes, 77.6% of households had alternative sources of drinking water stored in containers, and of these containers, 25.2% tested positive for total coliforms. The use of transfer devices and water dippers (i.e., smaller bowls or measuring cups) for the collection and retrieval of water from containers were both significantly associated with increased odds of total coliform presence in stored water (ORtransfer device = 3.4, 95% CI 1.2–11.7; ORdipper = 13.4, 95% CI 3.8–47.1). Twenty-eight-day period prevalence of self-reported AGI during the month before the survey was 17.2% (95% CI 13.0–22.5), which yielded an annual incidence rate of 2.4 cases per person per year (95% CI 1.8–3.1); no water-related risk factors were significantly associated with AGI. Considering the high prevalence of, and risk factors associated with, indicator bacteria in drinking water stored in containers, potential exposure to waterborne pathogens may be minimized through interventions at the household level.  相似文献   

16.
Rising human demand and climatic variability have created greater uncertainty regarding global food trade and its effects on the food security of nations. To reduce reliance on imported food, many countries have focused on increasing their domestic food production in recent years. With clear goals for the complete self-sufficiency of rice production, Sri Lanka provides an ideal case study for examining the projected growth in domestic rice supply, how this compares to future national demand, and what the associated impacts from water and fertilizer demands may be. Using national rice statistics and estimates of intensification, this study finds that improvements in rice production can feed 25.3 million Sri Lankans (compared to a projected population of 23.8 million people) by 2050. However, to achieve this growth, consumptive water use and nitrogen fertilizer application may need to increase by as much as 69 and 23 %, respectively. This assessment demonstrates that targets for maintaining self-sufficiency should better incorporate avenues for improving resource use efficiency.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0720-2) contains supplementary material, which is available to authorized users.  相似文献   

17.
This study compared results of no aeration, intermittent aeration, and constant aeration strategies in determining the static acute (48-h) toxicity of phenolic-based effluents to adult fathead minnows (Pimephales promelas). Toxicity was greatest in no aeration tests followed by intermittent aeration and constant aeration. Two factors were considered responsible for the observed patterns of toxicity. First, in side-by-side tests of no versus intermittent aeration and intermittent versus constant aeration, toxicity reductions were directly attributed to maintenance of dissolved oxygen above 5.0 mg litre(-1) in aerated containers. Secondly, toxicity was reduced when treatment system temperatures were warmest, probably due to increased microbial activity and volatilisation during late spring to early autumn (temperatures > 16 degrees C). Effluent was slightly more toxic on- than off-site, presumably due to degradation of phenolic compounds during transport and set-up at the off-site laboratory (approximately 4.5 h). Gill tissue ultrastructure and histopathology were used to determine the extent of effluent-induced damage and the recovery of minnows to short (6-h) effluent exposures. After a 48-h exposure to the approximate LC(50) level, gill tissue lamellae were characteristically desquamated with epithelium lifting from the basement membrane. Gill tissue was similarly damaged after a 6-h exposure to 100% effluent and had recovered to pre-exposure conditions after 42 h in clean water. Aeration strategies in these studies demonstrated potential air-stripping of volatile compounds, although stress to test organisms from low dissolved oxygen was relieved.  相似文献   

18.
Elia AC  Anastasi V  Dörr AJ 《Chemosphere》2006,64(10):1633-1641
This study was carried out in order to assess the effects of disinfectant-treatment on antioxidant response of Cyprinus carpio L. Therefore, enzymatic activities of glutathione S-transferases, glyoxalase I, glyoxalase II, glutathione peroxidases, glutathione reductase, catalase and total glutathione content of carp liver, exposed to surface water treated with three disinfectants for potabilization, sodium hypochlorite, chlorine dioxide and peracetic acid were investigated. Specimens of carp were exposed in four experimental tanks supplied with a continuous water flow from Lake Trasimeno (Italy), three of them treated with constant concentration of sodium hypochlorite, chlorine dioxide and peracetic acid, for 10 and 20 days, while the control tank was supplied with untreated lake water. Differences in biochemical parameters were observed in specimens following exposure to these disinfectants and mainly, chlorine compounds induced marked biochemical variations of carp liver, compared to those induced by peracetic acid treatment. Our results showed that antioxidant parameters of Cyprinus carpio could be used as biomarkers of oxidative stress when this species is exposed to disinfectants for water potabilization.  相似文献   

19.
以太湖15个入湖河流之一的社渎港为研究对象,利用社渎港流域的水环境质量监测数据、工业企业污染排放调查数据、环境统计数据及社会经济统计数据,对社渎港流域产业结构的合理性进行了诊断,并采用典型相关分析方法探讨了产业结构演变对水环境的影响。结果表明,研究区的工业污染总体上得到了较好控制,其中屺亭街道的工业污染排放最为严重;城乡生活污染和农业面源污染是研究区水环境质量恶化的主要原因,城乡生活污染对COD和氨氮入河量的贡献率较高,分别为46.59%和60.55%,农业面源污染对TN和TP入河量的贡献率突出,分别为64.05%和76.50%;研究区产业结构与钱纳里三次产业结构模式(产业结构合理程度的参照标准)的Hamming贴近度从2001年的0.83下降到2007年的0.77,产业结构不尽合理,且不合理程度逐渐加剧;研究区第一产业对TN和TP入河量的影响最为显著,第三产业对氨氮和COD入河量的影响最为明显;可通过优化产业结构来减轻研究区的水环境污染状况,产业结构调整的主要目标应为降低第二产业产值比例及增加第三产业产值比例。  相似文献   

20.
The treatment process described in this research explores the impact of exposing water samples containing fecal coliforms to the radiation produced by single ultraviolet (UV) light-emitting diodes (LEDs) operating at 265 nm. UV LEDs are long lasting, compact in size and produce more efficient light output than traditional mercury-vapour bulbs, making them ideal for application in point-of-use disinfection systems, such as in remote areas. In this study, contaminated water samples containing either a pure culture of Escherichia coli or tertiary effluent from the City of Regina Wastewater Treatment Plant were used to study the application and efficiency of using UV LEDs for water disinfection. The results indicate that bacterial inactivation was achieved in a time-dependent manner, with 1- and 2.5-log E. coli reductions in water following 20 and 50 min of UV LED exposure, respectively. Ultraviolet radiation was less effective in reducing coliform bacteria in wastewater samples due to the elevated turbidity levels. Further work remains to be completed to optimize the application of UV LEDs for point-of-use disinfection systems; however, the results from this study support that bacterial inactivation using UV LEDs is possible, meriting further future technological development of the LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号