首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Pesticides applied on agricultural lands reach groundwater by leaching, and move to offsite water bodies by direct runoff, erosion and spray drift. Therefore, an assessment of the mobility of pesticides in water resources is important to safeguard such resources. Mobility of pesticides on agricultural lands of Mahaweli river basin in Sri Lanka has not been reported to date. In this context, the mobility potential of 32 pesticides on surface water and groundwater was assessed by widely used pesticide risk indicators, such as Attenuation Factor (AF) index and the Pesticide Impact Rating Index (PIRI) with some modifications. Four surface water bodies having greater than 20% land use of the catchment under agriculture, and shallow groundwater table at 3.0 m depth were selected for the risk assessment. According to AF, carbofuran, quinclorac and thiamethoxam are three most leachable pesticides having AF values 1.44 × 10?2, 1.87 × 10?3 and 5.70 × 10?4, respectively. Using PIRI, offsite movement of pesticides by direct runoff was found to be greater than with the erosion of soil particles for the study area. Carbofuran and quinclorac are most mobile pesticides by direct runoff with runoff fractions of 0.01 and 0.08, respectively, at the studied area. Thiamethoxam and novaluron are the most mobile pesticides by erosion with erosion factions of 1.02 × 10?4 and 1.05 × 10?4, respectively. Expected pesticide residue levels in both surface and groundwater were predicted to remain below the USEPA health advisory levels, except for carbofuran, indicating that pesticide pollution is unlikely to exceed the available health guidelines in the Mahaweli river basin in Sri Lanka.  相似文献   

2.
Projected climate change might increase the deposition of nitrogen by about 10% to seminatural ecosystems in southern Norway. At Storgama, increased precipitation in the growing season increased the fluxes of total organic carbon (TOC) and total organic nitrogen (TON) in proportion to the water flux. In winter, soil temperatures near 0 degrees C, common under a snowpack, induced higher runoff of inorganic nitrogen (N) and lower runoff of TOC. By contrast, soil temperatures below freezing, caused by little snow accumulation (expected in a warmer world), reduced runoff of inorganic N, TON, and TOC. Long-term monitoring data showed that reduced snowpack can cause either decreased or increased N leaching, depending on interactions with N deposition, soil temperature regime, and winter discharge. Seasonal variation in TOC was mainly climatically controlled, whereas deposition of sulfate and nitrate (NO3) explained the long-term TOC increase. Upscaling to the river basin scale showed that the annual flux of NO3 will remain unchanged in response to climate change projections.  相似文献   

3.
Projected changes in climate in Southern Norway include increases in summer and autumn precipitation. This may affect leaching of dissolved organic matter (DOM) from soils. Effects of experimentally added extra precipitation (10 mm week) during the growing season of 3 years (2004-2006) to small headwater catchments at Storgama (59 degrees 0'N, 550-600 m a.s.l.) on leaching of total organic carbon (TOC) and total organic nitrogen (TON) were assessed. Extra precipitation did not have a significant effect on average TOC and TON concentrations in runoff. Thus, fluxes of TOC and TON increased nearly proportionally with water fluxes. This suggests that a store of adsorbed and potentially mobile TOC and TON in catchment soils buffers the concentration of DOM in runoff. The size and dynamics of the pool of TOC and TON depends on the balance between production and leaching rates. Infrequent short droughts had only small effects on TOC and TON fluxes in runoff from the reference catchments.  相似文献   

4.
Restrepo JD  Syvitski JP 《Ambio》2006,35(2):65-74
The Magdalena River, a major fluvial system draining most of the Colombian Andes, is a world-class river, in the top 10 in terms of sediment load (approximately 150 MT/yr). In this study, we explore the major natural factors and anthropogenic influences behind the patterns in sediment yield on the Magdalena basin and reconstruct the spatial and temporal pattern of deforestation and agricultural intensification across the basin to test the relationships between land use change and trends in sediment yield. Our results show that sediment yield for the whole Magdalena catchment can be explained by natural variables, including runoff and maximum water discharge. These two estimators explain 58% of variance in sediment yield. Temporal analyses of sediment discharges and land use show that the extent of erosion within the catchment has increased over the last 10 to 20 years. Many anthropogenic influences, including a forest decrease by 40% in a 20-year period, an agriculture and pasture increase by 65%, poor soil conservation and mining practices, and increasing rates of urbanization, may have accounted for the overall increasing trends in sediment yield on a regional scale.  相似文献   

5.
The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272microgm(-2)d(-1) MCB and 71microgm(-2)d(-1) DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream.  相似文献   

6.
Salvetti R  Azzellino A  Vismara R 《Chemosphere》2006,65(11):2168-2177
The source apportionment of the annual nutrient load carried by the Po river to the Adriatic sea has been studied.

An integrated modelling approach was applied to the Lombardy plain area, which covers about 34% of the Po river watershed area and accounts for about 50% of the point sources’ loads carried by the river. To extract all the information available from direct instream measurements, two different modelling tools were alternatively used. The source apportionment was investigated considering both dry and wet weather scenarios. In order to quantify the apportionment in dry-weather conditions, the Lombardy portion of the Po river basin was modelled by using the US-EPA QUAL2E model. Such a simulation allowed to assess a significant contribution (about 50% of the total dry-weather load) of a not rain-driven diffuse pollution component (i.e. groundwater, springs, lake emissaries). Moreover, to estimate the rain-driven surface runoff contribution to the instream total load, the Lombardy plain area was also modelled by means of the US-DA SWAT model. SWAT results indicate a runoff contribution to the Po river instream total load of about 10 000 t N yr−1 and 1300 t P yr−1 (i.e. approximately the 10–20% of the total annual Lombardy nutrient load). At the event scale (i.e. the single rainstorm event) the runoff contribution may rise up to 30–80% of the total instream load. Finally, the total annual nitrogen load at the Po basin closure was estimated for the period 1985–2001. Out of a total annual load of 140 000 t N yr−1, Lombardy accounts for 43% (point plus diffuse sources). The rain-driven diffuse sources constitute the 20% of the overall total load, the point sources account for 40%, whereas the remaining 40% is mainly constituted by “dry-weather diffuse sources” (i.e. groundwater, springs, lake emissaries).  相似文献   


7.
A large database including temporal trends of physical, ecological and socio-economic data was developed within the EUROCAT project. The aim was to estimate the nutrient fluxes for different socio-economic scenarios at catchment and coastal zone level of the Po catchment (Northern Italy) with reference to the Water Quality Objectives reported in the Water Framework Directive (WFD 2000/60/CE) and also in Italian legislation. Emission data derived from different sources at national, regional and local levels are referred to point and non-point sources. While non-point (diffuse) sources are simply integrated into the nutrient flux model, point sources are irregularly distributed. Intensive farming activity in the Po valley is one of the main Pressure factors Driving groundwater pollution in the catchment, therefore understanding the spatial variability of groundwater nitrate concentrations is a critical issue to be considered in developing a Water Quality Management Plan. In order to use the scattered point source data as input in our biogeochemical and transport models, it was necessary to predict their values and associated uncertainty at unsampled locations. This study reports the spatial distribution and uncertainty of groundwater nitrate concentration at a test site of the Po watershed using a probabilistic approach. Our approach was based on geostatistical sequential Gaussian simulation used to yield a series of stochastic images characterized by equally probable spatial distributions of the nitrate concentration across the area. Post-processing of many simulations allowed the mapping of contaminated and uncontaminated areas and provided a model for the uncertainty in the spatial distribution of nitrate concentrations.  相似文献   

8.
Contaminated sites pose a significant threat to groundwater resources worldwide. Due to limited available resources a risk-based prioritisation of the remediation efforts is essential. Existing risk assessment tools are unsuitable for this purpose, because they consider each contaminated site separately and on a local scale, which makes it difficult to compare the impact from different sites. Hence a modelling tool for risk assessment of contaminated sites on the catchment scale has been developed. The CatchRisk screening tool evaluates the risk associated with each site in terms of its ability to contaminate abstracted groundwater in the catchment. The tool considers both the local scale and the catchment scale. At the local scale, a flexible, site specific leaching model that can be adjusted to the actual data availability is used to estimate the mass flux over time from identified sites. At the catchment scale, a transport model that utilises the source flux and a groundwater model covering the catchment is used to estimate the transient impact on the supply well. The CatchRisk model was tested on a groundwater catchment for a waterworks north of Copenhagen, Denmark. Even though data scarcity limited the application of the model, the sites that most likely caused the observed contamination at the waterworks were identified. The method was found to be valuable as a basis for prioritising point sources according to their impact on groundwater quality. The tool can also be used as a framework for testing hypotheses on the origin of contamination in the catchment and for identification of unknown contaminant sources.  相似文献   

9.
Temporary streams are characterised by specific hydrological regimes, which influence ecosystem processes, groundwater and surface water interactions, sediment regime, nutrient delivery, water quality and ecological status. This paper presents a methodology to characterise and classify the regime of a temporary river in Southern Italy based on hydrological indicators (HIs) computed with long-term daily flow records. By using a principal component analysis (PCA), a set of non-redundant indices were identified describing the main characteristics of the hydrological regime in the study area. The indicators identified were the annual maximum 30- and 90-day mean (DH4 and DH5), the number of zero flow days (DL6), flow permanence (MF) and the 6-month seasonal predictability of dry periods (SD6). A methodology was also tested to estimate selected HIs in ungauged river reaches. Watershed characteristics such as catchment area, gauging station elevation, mean watershed slope, mean annual rainfall, land use, soil hydraulic conductivity and available water content were derived for each site. Selected indicators were then linked to the catchment characteristics using a regression analysis. Finally, MF and SD6 were used to classify the river reaches on the basis of their degree of intermittency. The methodology presented in this paper constitutes a useful tool for ecologists and water resource managers in the Water Framework Directive implementation process, which requires a characterisation of the hydrological regime and a ‘river type’ classification for all water bodies.  相似文献   

10.
We have manipulated the winter-time soil temperature regime of small headwater catchments in a montane heathland area of southern Norway to study the possible effects on concentrations and fluxes of inorganic nitrogen in runoff. The experiments included extra insulation of soils in two catchments to prevent subzero temperatures during winter, and removal of snow in two other catchments to promote soil frost. Increased soil temperatures during winter increased the springtime concentrations and fluxes of ammonium (NH4) and nitrate (NO3) in runoff. By contrast, snow removal with development of significant soil frost showed no systematic effects on mean concentrations or fluxes of inorganic N. The results from our experiments suggest that warmer soils during winter caused by exceptionally mild winters, or alternatively a heavy snowpack, imply a greater risk for inorganic N leaching in this region than a possible increase of soil frost events because of reduced snow cover.  相似文献   

11.
《Chemosphere》2013,90(11):1467-1471
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600 °C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.  相似文献   

12.

Background

A three-dimensional groundwater flow model was used to evaluate the groundwater potential and assess the effects of groundwater withdrawal on the regional water level and flow direction in the central Beijing area. A program of groundwater modeling aimed at estimating current contaminant fluxes to the central area and site streams via groundwater was developed.

Results and discussion

The conceptual model developed for the site attempted to incorporate a complex stratigraphic profile in which groundwater flow and contaminant transport is strongly controlled by a shallow aquifer. Here, a conceptual model for groundwater flow and contaminant transport in central Beijing is presented.

Conclusion

Model simulations indicated that a sharp drop in the hydraulic head occurs at the center of the model area, which generates a cone of depression and a continuous decline of head with respect to time as a result of heavy groundwater abstraction.  相似文献   

13.
Projected increases in winter temperature due to future climate change may cause decreased snow accumulation at lower and intermediate altitudes in northern temperate regions. The resulting changes in soil temperature and water regime may affect the leaching of total organic carbon (TOC) and total organic nitrogen (TON). We manipulated the snow cover of small headwater catchments in a montane heathland area of southern Norway to quantify its effect on concentrations and fluxes of TOC and TON in runoff. Manipulations included snow removal, to promote soil frost, and insulation, to prevent soil frost. Snow removal resulted in increased TOC and TON concentrations, but decreased fluxes. Insulation caused a slight decrease in concentrations and fluxes of TOC. Our experiments show that a change in snow depth, and thus soil temperature, is not likely to have serious effects on TOC and TON leaching in the montane heathland area studied.  相似文献   

14.
When applied to soils, it is unclear whether and how biochar can affect soil nutrients. This has implications both to the availability of nutrients to plants or microbes, as well as to the question of whether biochar soil amendment may enhance or reduce the leaching of nutrients. In this work, a range of laboratory experiments were conducted to determine the effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. A total of thirteen biochars were tested in laboratory sorption experiments and most of them showed little/no ability to sorb nitrate or phosphate. However, nine biochars could remove ammonium from aqueous solution. Biochars made from Brazilian pepperwood and peanut hull at 600 °C (PH600 and BP600, respectively) were used in a column leaching experiment to assess their ability to hold nutrients in a sandy soil. The BP600 biochar effectively reduced the total amount of nitrate, ammonium, and phosphate in the leachates by 34.0%, 34.7%, and 20.6%, respectively, relative to the soil alone. The PH600 biochar also reduced the leaching of nitrate and ammonium by 34% and 14%, respectively, but caused additional phosphate release from the soil columns. These results indicate that the effect of biochar on the leaching of agricultural nutrients in soils is not uniform and varies by biochar and nutrient type. Therefore, the nutrient sorption characteristics of a biochar should be studied prior to its use in a particular soil amendment project.  相似文献   

15.
Storm runoff in afforested catchments at Llyn Brianne is acidic and Al-bearing. At baseflows, stream water is well-buffered with low Al levels. This paper presents the results of a study into how hydrological pathways account for these variations in stream-water chemistry. The investigation was carried out in the LI1 catchment; a 0.4-ha subcatchment covered by stagnohumic gley soils was monitored between October 1988 and September 1989. An instrumented hill-slope was established to identify the hydrological pathways that control the hydrochemistry of storm runoff draining from the subcatchment. Perched watertables developed in the surface horizons of the soil during storm episodes and produced lateral flow above the impeding subsoil. This near-surface flow path was responsible for generating acid, Al-rich storm runoff. Some water drained vertically through the soil profile into the underlying slope drift; seepage from groundwater in the drift sustained baseflows. Buffering reactions in the groundwater zone reduced the acidity and Al levels of baseflows. These hydrochemical characteristics are likely to be representative of other areas of stagnohumic gley soils, which cover 19% of the LI1 catchment: these soils may therefore provide a substantial source of acid, Al-bearing storm runoff in LI1 and similar afforested catchments.  相似文献   

16.
Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system.  相似文献   

17.
A nitrogen budget of the Changjiang river catchment   总被引:1,自引:0,他引:1  
Shen Z  Liu Q  Zhang S  Miao H  Zhang P 《Ambio》2003,32(1):65-69
Based on 1997-1998 field investigations in the Changjiang river mouth, rain sampling from the river's upper reaches to the mouth, historical data, and relevant literature, the various sources of Total Nitrogen (TN) and Dissolved Inorganic Nitrogen (DIN) in the Changjiang river catchment and N transport in the Changjiang river mouth were estimated. The export fluxes of various form of N were mainly controlled by the river runoff, and the export fluxes of NO3-N, DIN and TN in 1998 (an especially heavy flood year) were 1438 10(3) tonnes (t) yr(-1) or 795.1 kg km(-2) yr(-1), 1746 10(3) t yr(-1) or 965.4 kg km(-2) yr(-1) and 2849 10(3) t yr(-1) or 1575.3 kg km(-2) yr(-1), respectively. The TN and DIN in the Changjiang river came mainly from precipitation, agricultural nonpoint sources, N lost from fertilizer and soil, and point sources of industrial waste and residential sewage discharge, which were about 56.2% and 62.3%, 15.4% and 18.5%, 17.1% and 14.4%, respectively, of the N outflow at the Changjiang river mouth; maximum transport being in the middle reaches.  相似文献   

18.
A study was conducted using two pilot-scale land-treatment units (LTUs) to evaluate the efficacy of different cultivation and maintenance schedules during bioremediation of contaminated soil from a wood treatment facility using landfarming technology. The soil contained high concentrations of polycyclic aromatic hydrocarbons (PAHs, approximately 13000 ppm) as well as of pentachlorophenol (PCP, approximately 1500 ppm). An initial 6-month intensive-treatment phase was followed by 24 months of less-intensive treatment. During the first phase, traditional landfarming practice of regular cultivation was compared with a gas-phase composition based cultivation strategy, and both the landfarming units were intensively monitored and maintained with respect to moisture control and delivery of nutrients. The two strategies resulted in similar contaminant concentration profiles with time during this phase, although different microbial populations developed in the two-landfarming units. The second (less-intensive) treatment phase involved no moisture control and nutrient delivery beyond the initial adjustments, and compared natural attenuation (no cultivation) with quarterly cultivation of soil. Both the strategies showed similar behavior again. GC/MS analysis of the soil samples showed PAH removal including four-ring homologues. Leachability tests at zero time and after 6 and 22 months of operation showed significant reductions in leaching of PCP and low molecular weight PAHs. Extended treatment resulted in some leaching of high molecular weight PAHs. Significant biological activity was demonstrated, even at the high contaminant concentrations. Phospholipid ester-linked fatty acid (PLFA) analysis showed an increase in biomass and a divergence in community composition in soils depending on the treatment conducted.  相似文献   

19.
I X Tsiros 《Chemosphere》2001,44(2):99-107
Dynamics of airborne mercury deposited onto catchment areas is investigated within the framework of a simulation model. Model results show that, for a particular atmospheric deposition rate, significant interannual variability in mercury transport flux in catchments is caused by climatology and corresponding differences in catchment soil loss rates; in comparison to the normal year, runoff flux increased by a factor of 2-3 for the wet year (rainfall 35% above normal) while for the dry year (rainfall 18% below normal) runoff flux decreased by factors of 5-7. The interaction of parameters describing soil type, topography and vegetation cover causes variability in both transport and emission fluxes among catchments; as soil loss rate increases by a factor of 5 due to variations in these parameters among the examined catchments, annual average transport flux increases by a factor of 3; and annual average emission flux of mercury (as Hg0) from soil to the atmosphere decreases by a factor of 2 due to the decreased levels of soil mercury associated with catchment soil loss increases. Seasonal variability of transport flux is associated with seasonal changes in precipitation and soil loss rates while seasonal changes of emission flux are primarily due to changes in soil moisture regime and temperature. Although modeled results are consistent with observational data from previous studies, they must be interpreted in a relative sense due to the screening-level character of this study.  相似文献   

20.
The one-dimensional pesticide fate model MACRO was loose-linked to the three-dimensional discrete fracture/matrix diffusion model FRAC3DVS to describe transport of the pesticide mecoprop in a fractured moraine till and local sand aquifer (5-5.5 m depth) overlying a regional limestone aquifer (16 m depth) at Havdrup, Denmark. Alternative approaches to describe the upper boundary in the groundwater model were examined. Field-scale simulations were run to compare a uniform upper boundary condition with a spatially variable upper boundary derived from Monte-Carlo simulations with MACRO. Plot-scale simulations were run to investigate the influence of the temporal resolution of the upper boundary conditions for fluxes in the groundwater model and the effects of different assumptions concerning the macropore/fracture connectivity between the two models. The influence of within-field variability of leaching on simulated mecoprop concentrations in the local aquifer was relatively small. A fully transient simulation with FRAC3DVS gave 20 times larger leaching to the regional aquifer compared to the case with steady-state water flow, assuming full connectivity with respect to macropores/fractures across the boundary between the two models. For fully transient simulations 'disconnecting' the macropores/fractures at the interface between the two models reduced leaching by a factor 24. A fully connected, transient simulation with FRAC3DVS, with spatially uniform upper boundary fluxes derived from a MACRO simulation with 'effective' parameters is therefore recommended for assessing leaching risks to the regional aquifer, at this, and similar sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号