首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
管式生物过滤器去除乙苯废气   总被引:1,自引:0,他引:1  
生物过滤由于其良好的成本效益和环境友好性已经成为控制挥发性有机化合物(VOCs)含量和气味气体排放的常规技术。营养物质的均匀分布、生物膜和介质床内的气体流是成就一个性能优良的生物过滤器至关重要的因素。而由本实验室开发的管式生物过滤器(TBFs)已被证明具备此优势。本实验的管式生物过滤器以聚氨酯海绵作为填料,研究在不同有机负荷、气体停留时间(EBCT)、进气量和表面活性剂等条件下乙苯废气的去除效率(RE)。实验同时记录了管式生物过滤器启动阶段的表现。初期使附着在填料上的微生物暴露在浓度为40 mg/m3的乙苯废气中40 d,此时的气体停留时间为15 s,使微生物慢慢适应并逐步降解乙苯废气;然后连续地控制管式生物过滤器的入口乙苯浓度为40、80、120和160 mg/m3,以使有机负荷逐步升高。结果表明,乙苯去除效率随着有机负荷的增大而逐步减小。当气体停留时间从15 s增加到30 s和60 s,而有机负荷控制在38.60 g/(m3·h)时,乙苯废气去除效率略微增加。此外,随着进气量的增大乙苯废气的最大平均去除效率有所下降而此时的降解容量增大,这个过程中乙苯进气浓度保持不变。结果还表明,在营养液中加入聚乙二醇辛基苯基醚这种表面活性剂可以提高乙苯废气的去除效率。  相似文献   

2.
Modeling variations of medium porosity in rotating drum biofilter   总被引:1,自引:0,他引:1  
Yang C  Chen H  Zeng G  Yu G  Liu X  Zhang X 《Chemosphere》2009,74(2):245-249
Rotating drum biofilters (RDBs) mounted with reticulated polyurethane sponge media has showed high removal efficiencies over a long period of time when used for volatile organic compound (VOC) removal. Due to the accumulation of biomass within the sponge medium, the porosity of a filter bed usually changes dynamically, which makes it difficult to predict and to control. In this paper, the porosity of a multi-layer RDB bed was investigated by a diffusion-reaction model in which biofilm growth and decay were taken into account at the pore scale of the sponge medium. Temporal and spatial changes of porosity were studied under various organic loadings and gas empty bed contact times (EBCTs). The porosity of the biofilter bed was assumed to be a function of biofilm thickness, and all the pores were assumed to be uniform. Toluene was selected as the model VOC. The model was solved using numerical methods through the MATLAB software. Results show that the porosity decreased with increased time of operation, increased toluene loading, or decreased gas EBCT value. The porosity in the outermost medium layer was less than that in the inner medium layers. Toluene removal efficiencies and porosities calculated from this model correlated with the experimental data well. Porosity variation was proposed to be an indicator for prediction of biofilter performance in biofilters as a consequence.  相似文献   

3.
Indoor plants can remove volatile organic compounds (VOCs) from the air. The majority of knowledge comes from laboratory studies where results cannot directly be transferred to real-life settings. The aim of this study was to develop an experimental test system to assess VOC removal by indoor plants which allows for an improved real-life simulation. Parameters such as relative humidity, air exchange rate and VOC concentration are controlled and can be varied to simulate different real-life settings. For example, toluene diffusion through a needle gave concentrations in the range of 0.10–2.35 μg/L with deviations from theoretical values of 3.2–10.5 %. Overall, the system proved to be functional for the assessment of VOC removal by indoor plants with Hedera helix reaching a toluene removal rate of up to 66.5 μg/m2/h. The mode of toluene exposure (semi-dynamic or dynamic) had a significant influence on the removal rate obtained by H. helix.  相似文献   

4.
An activated sludge aeration tank (40 x 40 x 300 cm, width x length x height) with a set of 2-mm orifice air spargers was used to treat gas-borne volatile organic compounds (VOCs; toluene, p-xylene, and dichloromethane) in air streams. The effects of liquid depth (Z), aeration intensity (G/A), the overall mass-transfer rate of oxygen in clean water (KLaO2), the Henry's law constant of the tested VOC (H), and the influent gaseous VOC concentration (C0) on the efficiency of removal of VOCs were examined and compared with a literature-cited model. Results show that the measured VOC removal efficiencies and those predicted by the model were comparable at a G/A of 3.75-11.25 m3/m2 hr and C0 of approximately 1000-6000 mg/m3. Experimental data also indicated that the designed gas treatment reactor with KLaO2 = 5-15 hr(-l) could achieve > 85% removal of VOCs with H = 0.24-0.25 at an aerated liquid depth of 1 m and > 95% removal of dichloromethane with H = 0.13 at a 1-m liquid depth.  相似文献   

5.
Photocatalytic oxidation (PCO) was investigated in a bench-scale reactor for the abatement of two airborne organic contaminants: toluene and ethanol. A mathematical model that includes the impacts of light intensity, initial contaminant concentration, catalyst thickness, and relative humidity (RH) on the degradation of organic contaminants in a photocatalytic reactor was developed to describe this process. The commercially available catalyst Degussa-PtTiO2 was selected to compare with the MTU-PtTiO2-350 catalyst, which was synthesized by the sol-gel process, platinized, and calcined at 350 degrees C. For toluene removal using the MTU-PtTiO2-350 catalyst, the degradation rate increased with increases in light intensity from 0.2 to 2.2 mW/cm2 and in catalyst thickness from 0.00037 to 0.00361 cm. However, further increases in light intensity and catalyst thickness had only slight effect on the toluene degradation rate. Increasing the initial concentration from 6.29 to 127.9 microg/L and the RH from 10 to 85% resulted in decreases in the toluene degradation rate. For ethanol removal using the MTU-PtTiO2-350 catalyst, the degradation rate increased more rapidly with an increase in RH from 17 to 56%; the RH had little effect on the ethanol degradation rate while it further increased from 56% to 82%. We discuss applicability of the model to estimate the influence of process variables and to evaluate photocatalyst performance.  相似文献   

6.
Cai Z  Kim D  Sorial GA 《Chemosphere》2007,68(6):1090-1097
Two independent parallel trickling bed air biofilters (TBABs) ("A" and "B") with two different typical VOC mixtures were investigated. Toluene, styrene, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) were the target VOCs in the mixtures. Biofilter "A" was fed equal molar ratio of the VOCs and biofilter "B" was fed a mixture based on EPA 2003 emission report. Backwashing and substrate starvation operation were conducted as biomass control. Biofilter "A" and "B" maintained 99% overall removal efficiency for influent concentration up to 500 and 300 ppmv under backwashing operating condition, respectively. The starvation study indicated that it can be an effective biomass control for influent concentrations up to 250 ppmv for biofilter "A" and 300 ppmv for "B". Re-acclimation of biofilter performance was delayed with increase of influent concentration for both biofilters. Starvation operation helped the biofilter to recover at low concentrations and delayed re-acclimation at high concentrations. Furthermore, re-acclamation for biofilter "B" was delayed due to its high toluene content as compared to biofilter "A". The pseudo first-order removal rate constant decreased with increase of volumetric loading rate for both biofilters. MEK and MIBK were completely removed in the upper 3/8 media depth. While biofilter depth utilization for the removal of styrene and toluene increased with increase of influent concentrations for both biofilters. However, toluene removal utilized more biofilter depth for biofilter "B" as compared to biofilter "A".  相似文献   

7.
Abstract

Photocatalytic oxidation (PCO) was investigated in a bench-scale reactor for the abatement of two airborne organic contaminants: toluene and ethanol. A mathematical model that includes the impacts of light intensity, initial contaminant concentration, catalyst thickness, and relative humidity (RH) on the degradation of organic contaminants in a photocatalytic reactor was developed to describe this process. The commercially available catalyst Degussa-PtTiO2 was selected to compare with the MTU-PtTiO2-350 catalyst, which was synthesized by the sol-gel process, platinized, and calcined at 350 °C. For toluene removal using the MTU-PtTiO2-350 catalyst, the degradation rate increased with increases in light intensity from 0.2 to 2.2 mW/cm2 and in catalyst thickness from 0.00037 to 0.00361 cm. However, further increases in light intensity and catalyst thickness had only slight effect on the toluene degradation rate. Increasing the initial concentration from 6.29 to 127.9 μg/L and the RH from 10 to 85% resulted in decreases in the toluene degradation rate. For ethanol removal using the MTU-PtTiO2- 350 catalyst, the degradation rate increased more rapidly with an increase in RH from 17 to 56%; the RH had little effect on the ethanol degradation rate while it further increased from 56% to 82%. We discuss applicability of the model to estimate the influence of process variables and to evaluate photocatalyst performance.  相似文献   

8.
In the northeast of Italy, high volatile organic carbon (VOC) emissions originate from small-medium companies producing furniture. In these conditions it is difficult to propose a single, efficient, and economic system to reduce pollution. Among the various choices, the biofiltration method could be a good solution, because microbial populations possess multiple VOC degradation potentials used to oxidize these compounds to CO2. Starting from the air emissions of a typical industrial wood-painting plant, a series of experiments studied in vitro microbial degradation of each individual VOC. Isolated strains were then added to a laboratory-scale biofiltration apparatus filled with an organic matrix, and the different VOC behavior demonstrated the potential of single and/or synergic microbial removal actions. When a single substrate was fed, the removal efficiency of a Pseudomonas aeruginosa inoculated reactor was 1.1, 1.17, and 0.33 g m(-3) hr(-1), respectively, for xylene, toluene, and ethoxy propyl acetate. A VOC mixture composed of butyl acetate, ethyl acetate, diacetin alcohol, ethoxy propanol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene was then fed into a 2-m(3) reactor treating 100 m3 hr(-1) of contaminated air. The reactor was filled with the same mixture of organic matrix, enriched with all of the isolated strains together. During reactor study, different VOC loading rates were used, and the behavior was evaluated continuously. After a short acclimation period, the removal efficiency was > 65% at VOC load of 150-200 g m(-3) hr(-1). Quantification of removal efficiencies and VOC speciation confirmed the relationship among removal efficiencies, compound biodegradability, and the dynamic transport of each mixture component within the organic matrix. Samples of the fixed bed were withdrawn at different intervals and the heterogeneous microbial community evaluated for both total and differential compound counts.  相似文献   

9.
ABSTRACT

The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical, engineered control of volatile organic compounds (VOCs) in effluent air streams. Trickle bed air biofilters (TBABs) are especially applicable for treating VOCs at high loadings. For long-term, stable operation of highly loaded TBABs, removal of excess accumulated bio-mass is essential. Our previous research demonstrated that suitable biomass control for TBABs was achievable by periodic backwashing of the biofilter medium. Backwashing was performed by fluidizing the pelletized biological attachment medium with warm water to about a 40% bed expansion. This paper presents an evaluation of the impact of backwashing on the performance of four such TBABs highly loaded with toluene. The inlet VOC concentrations studied were 250 and 500 ppmv toluene, and the loadings were 4.1 and 6.2 kg COD/m3 day (55 and 83 g toluene/m3 hr). Loading is defined as kg of chemical oxygen demand per cubic meter of medium per day. Performance deterioration at the higher loading was apparently due to a reduction of the specific surface of the attached biofilm resulting from the accumulation of excess biomass. For a toluene loading of 4.1 kg COD/m3 day, it was demonstrated that the long-term performance of biofilters with either inlet concentration could be maintained at over 99.9% VOC removal by employing a backwashing strategy consisting of a frequency of every other day and a duration of 1 hr.  相似文献   

10.
Biofiltration of high loads of ethyl acetate in the presence of toluene.   总被引:1,自引:0,他引:1  
To date, biofilters have been used primarily to control dilute, usually odorous, off-gases with relatively low volatile organic compound (VOC) concentrations (< 1 g m-3) and VOC loads (< 50 g m-3 hr-1). Recently, however, U.S. industry has shown an interest in applying biofilters to higher concentrations of VOCs and hazardous air pollutants (HAPs). In this study, the behavior of biofilters under high loads of binary VOC mixtures was studied. Two bench-scale biofilters were operated using a commercially available medium and a mixture of wood chips and compost. Both were exposed to varying mixtures of ethyl acetate and toluene. Concentration profiles and the corresponding removal efficiencies as a function of VOC loading were determined through frequent grab-sampling and GC analysis. Biofilter response to two frequently encountered operating problems--media dry-out and operating temperatures exceeding 40 degrees C--was also evaluated under controlled conditions. Microbial populations were also monitored to confirm the presence of organisms capable of degrading both major off-gas constituents. The results demonstrated several characteristics of biofilters operating under high VOC load conditions. Maximum elimination capacities for ethyl acetate were typically in the range of 200 g m-3 hr-1. Despite the presence of toluene degraders, the removal of toluene was inhibited by high loads of ethyl acetate. Several byproducts, particularly ethanol, were formed. Short-term dry-out and temperature excursions resulted in reduced performance.  相似文献   

11.
实验采用经甲苯培养驯化而成的单一假单胞菌菌种,通过分析平板式生物膜反应器内,不同阶段假单胞细菌生物膜干重、厚度、活性生物量和生物种群分布的变化,研究生物膜特性与降解效率之间的关系。实验结果表明,在挂膜初期生物膜迅速生长,生物量以及生物膜干重增长很快,有利于甲苯及营养物质的传输,降解效率也快速提升。随着生物膜的生长,生物量及干重也逐步增加,厚度逐渐增加使传质阻力不断增大,生物膜上层微生物的有机底物供应不足,使生物膜上层结构稀疏,最终维持一个甲苯的总传输量与生化降解量的平衡,生物量的生长与衰亡也达到动态平衡,形成了一个较高且稳定的降解效率。  相似文献   

12.
The influence of nutrient conditions on the degradation of toluene vapor in a rotatory-switching biofilter (RSB) was investigated. The biofilter consists of four segments connected in series, each with a packing layer made of polyvinyl formal. The influent airstreams including toluene vapors were passed through segments 1-3 as up-flow with a toluene concentration of 0.9-1.2 g m(-3) and with an empty-bed retention time of 26-52 sec. Nutrient solutions were fed to all packed segments once a day by means of immersion. The nutrient solution was used repeatedly and replenished by the addition of (NH4)2SO4. The result at 155 days showed nitrogen depletion was particularly obvious and the lack of nitrogen affected toluene removal. By adding 161 g of nitrogen solution per volumetric cubic meter of reactor, toluene removal efficiency was immediately increased to greater than 99%. With long-term biofilter operation, 21%-32% of ammonium was utilized for nitrification because of the growth of nitrifying bacteria such as Nitrosomonas sp. Based on the carbon-nitrogen balance, the daily nitrogen demand for toluene removal was estimated 2.1 g day(-1) at a toluene load of 70 g m(-3) hr(-1).  相似文献   

13.
The treatment of waste air containing phenol vapors in biotrickling filter   总被引:2,自引:0,他引:2  
Moussavi G  Mohseni M 《Chemosphere》2008,72(11):1649-1654
This research aimed at investigating the biodegradation of phenol contaminated-air streams in biotrickling filter. The effect of inlet concentration (200-1000 ppmv) and empty bed contact time (EBCT) (15-60 s) were investigated under steady state, transient and shock loading, and shutdown periods. Upon rapid start up operation, inlet phenol concentrations of up to 1000 ppmv did not significantly affect the performance of the biotrickling filter at EBCT of 60 s, so that removal efficiency was well greater than 99%. In addition, the EBCT as low as 30 s did not have detrimental effects on the efficiency of the bioreactor and phenol removal was greater than 99%. Decreasing the EBCT to 15s reduced the removal efficiency to around 92%. The maximum elimination capacity obtained in the biotrickling filter was 642 g(phenol) m(-3) h(-1), where the removal efficiency was only 57%. Results from the transient loading experiments revealed that the biotrickling filter could effectively handle the variations of the inlet loads without the phenol removal capacity being significantly affected.  相似文献   

14.
A soil core, obtained from a contaminated field site, contaminated with a mixture of volatile and semivolatile organic compounds (VOC and SVOC) was subjected to air and steam flushing. Removal rates of volatile and semivolatile organic compounds were monitored during flushing. Air flushing removed a significant portion of the VOC present in the soil, but a significant decline in removal rate occurred due to decreasing VOC concentrations in the soil gas phase. Application of steam flushing after air flushing produced a significant increase in contaminant removal rate for the first 4 to 5 pore volumes of steam condensate. Subsequently, contaminant concentrations decreased slowly with additional pore volumes of steam flushing. The passage of a steam volume corresponding to 11 pore volumes of steam condensate reduced the total VOC concentration in the soil gas (at 20 degrees C) by a factor of 20 to 0.07 mg/l. The corresponding total SVOC concentration in the condensate declined from 11 to 3 mg/l. Declines in contaminant removal rates during both air and steam flushing indicated rate-limited removal consistent with the persistence of a residual organic phase, rate-limited desorption, or channeling. Pressure gradients were much higher for steam flushing than for air flushing. The magnitude of the pressure gradients encountered during steam flushing for this soil indicates that, in addition to rate-limited contaminant removal, the soil permeability (2.1 x 10(-9) cm2) would be a limiting factor in the effectiveness of steam flushing.  相似文献   

15.
The use of sorbents has been proposed to remove volatile organic compounds (VOCs) present in ambient air at concentrations in the parts-per-billion (ppb) range, which is typical of indoor air quality applications. Sorbent materials, such as granular activated carbon and molecular sieves, are used to remove VOCs from gas streams in industrial applications, where VOC concentrations are typically in the parts-per-million range. A method for evaluating the VOC removal performance of sorbent materials using toluene concentrations in the ppb range is described. Breakthrough times for toluene at concentrations from 2 to 7500 ppb are presented for a hydrophobic molecular sieve at 25%) relative humidity. By increasing the ratio of challenge gas flow rate to the mass of the sorbent bed and decreasing both the mass of sorbent in the bed and the sorbent particle size, this method reduces the required experimental times by a factor of up to several hundred compared with the proposed American Society of Heating, Refrigerating, and Air-Conditioning Engineers method, ASHRAE 145P, making sorbent performance evaluation for ppb-range VOC removal more convenient. The method can be applied to screen sorbent materials for application in the removal of VOCs from indoor air.  相似文献   

16.
Abstract

The use of sorbents has been proposed to remove volatile organic compounds (VOCs) present in ambient air at concentrations in the parts-per-billion (ppb) range, which is typical of indoor air quality applications. Sorbent materials, such as granular activated carbon and molecular sieves, are used to remove VOCs from gas streams in industrial applications, where VOC concentrations are typically in the parts-per-million range. A method for evaluating the VOC removal performance of sorbent materials using toluene concentrations in the ppb range is described. Breakthrough times for toluene at concentrations from 2 to 7500 ppb are presented for a hydrophobic molecular sieve at 25% relative humidity. By increasing the ratio of challenge gas flow rate to the mass of the sorbent bed and decreasing both the mass of sorbent in the bed and the sorbent particle size, this method reduces the required experimental times by a factor of up to several hundred compared with the proposed American Society of Heating, Refrigerating, and Air-Conditioning Engineers method, ASHRAE 145P, making sorbent performance evaluation for ppb-range VOC removal more convenient. The method can be applied to screen sorbent materials for application in the removal of VOCs from indoor air.  相似文献   

17.
膜生物反应器处理甲苯废气的降解特性及传质过程强化   总被引:1,自引:1,他引:0  
设计了一种气相空间带方形扰流柱结构的平板膜生物反应器,进行了甲苯降解废气净化实验,并与未加入方形扰流柱结构的反应器进行了对比。实验研究了甲苯入口浓度和气体流量对甲苯降解效率和传质速率的影响,结果表明,随着甲苯入口浓度和气体流量的增加,膜生物反应器降解效率降低,甲苯的传质速率增大,气相空间加入方形扰流柱后,甲苯在反应器中的传输得到了强化,降解效率最大提高了8%。  相似文献   

18.
The effects of hydrogen sulfide (H2S) diffusion into activated sludge (AS) on odor and volatile organic compound (VOC) concentrations in offgas were studied over an 8-week period. Most VOCs detected in the offgas of both aeration tanks were aromatic hydrocarbons. The VOC concentrations generally decreased when H2S was introduced to the AS compared with the control, indicating a negative effect of H2S on VOC removal. Two volatile organic sulfur compounds present in the test AS offgas showed an increase followed by a decrease during H2S peak loads. Six VOCs and odor concentration increased during the introduction of an H2S peak; however no correlation was observed between H2S and odor concentration. The increase in odor concentration resulted from the increase in the concentration of six aromatic VOCs, which had their removal slowed down during a 100-ppmv H2S peak. Activated sludge diffusion provides effective H2S removal with minimal affect on odor emissions.  相似文献   

19.
Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong   总被引:21,自引:0,他引:21  
Lee SC  Chiu MY  Ho KF  Zou SC  Wang X 《Chemosphere》2002,48(3):375-382
The assessment of volatile organic compounds (VOCs) has become a major issue of air quality network monitoring in Hong Kong. This study is aimed to identify, quantify and characterize volatile organic compounds (VOCs) in different urban areas in Hong Kong. The spatial distribution, temporal variation as well as correlations of VOCs at five roadside sampling sites were discussed. Twelve VOCs were routinely detected in urban areas (Mong Kok, Kwai Chung, Yuen Long and Causeway Bay). The concentrations of VOCs ranged from undetectable to 1396 microg/m3. Among all of the VOC species, toluene has the highest concentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the major constituents (more than 60% in composition of total VOC detected), mainly contributed from mobile sources. Similar to other Asian cities, the VOC levels measured in urban areas in Hong Kong were affected both by automobile exhaust and industrial emissions. High toluene to benzene ratios (average T/B ratio = 5) was also found in Hong Kong as in other Asian cities. In general, VOC concentrations in the winter were higher than those measured in the summer (winter to summer ratio > 1). As toluene and benzene were the major pollutants from vehicle exhausts, there is a necessity to tighten automobile emission standards in Hong Kong.  相似文献   

20.
Cheng WH  Chou MS  Perng CH  Chu FS 《Chemosphere》2004,54(7):935-942
The single equilibration technique (SET) was adopted to determine the partitioning coefficients (pc) at an air-water interface for volatile organic compounds (VOCs), including ethanol, iso-propanol (IPA), iso-butanol (IBA), methyl ethyl ketone (MEK) and toluene, all extensively used in industrial processes. Standard SET procedures were established. The liquid concentrations (CL) of tested VOCs ranged from 10 to 125 mg l(-1) for alcohols and MEK, and from 0.5 to 20 mg l(-1) for toluene. The temperatures (Tw) of aqueous VOC solutions were maintained at 27, 32, 38 and 42 degrees C to determine the gaseous concentrations at equilibrium (Cg*) and pc of VOCs, using the formula pc=(Cg*/CL). Results reveal that the pc values of all tested components increase slowly with Tw given a constant CL, and that the pc of alcohols and MEK fall as CL increases at a constant Tw. In contrast, the pc of toluene is not significantly impacted by a variation in CL at a constant Tw. However, the effect of CL concentration has seldom been discussed. The heats of liquid and gaseous phase transfer (DeltaHtr) of VOC, and the highly linear regression (with squared correlation coefficients, R2, from 0.901 to 0.999) between lnCg* and Tw(-1) are also evaluated. The experimental results and the VOC mass transfer characteristics are helpful for evaluating the emission of VOC from the water surface of wastewater treatment facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号