首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Degradation of azo dyes by algae   总被引:8,自引:0,他引:8  
The degradation of azo dyes by algae was evaluated and it was found that certain algae can degrade a number of azo dyes to some extent. The reduction rate appears to be related to the molecular structure of the dyes and the species of algae used. The azo reductase of algae is responsible for degrading azo dyes into aromatic amine by breaking the azo linkage. The aromatic amine is then subjected to further metabolism by algae. It is proposed in this paper that in stabilization ponds, algae can play a direct role in the degradation of azo dyes, rather than only providing oxygen for bacterial growth.  相似文献   

2.
Pre-ozonation of 14 different reactive dyestuff hydrolysates at alkaline pH was investigated to assess possible relationships between ozone transfer efficiency, first order decolourization kinetics, release of initially complexed heavy metals and relative changes in the biodegradability of the partially oxidized dye waste samples. Biocompatibility of the raw (untreated) and ozonated dye hydrolysates was comparatively tracked through specific oxygen uptake rate measurements from which the respirometric inhibition of biological activated sludge imparted by raw and ozonated reactive dye wastewater with respect to synthetic domestic wastewater was determined. It could be demonstrated that preliminary ozonation of reactive azo dyes increases their biological compatibility more significantly than formazan copper complex, copper complex azo and phythalocyanine dyes as a consequence of heavy metal release associated with the cleavage of associated chromophoric groupings right at the initial stages of pre-ozonation.  相似文献   

3.
亚铁羟基络合物还原转化水溶性偶氮染料   总被引:1,自引:1,他引:0  
偶氮染料是印染工艺中应用最广泛的一类染料,目前染料废水脱色是污水处理难题。亚铁混凝处理染料废水过程中可能存在亚铁的还原作用,本实验制备了比溶解态亚铁更具还原反应活性的亚铁羟基络合物(ferrous hydroxycomplex,FHC),以5种不同类型的水溶性偶氮染料为目标污染物,研究FHC还原水溶性偶氮染料的脱色性能。实验结果表明,FHC对活性艳红X-3B、酸性大红GR和阳离子红X-GRL有较好的还原脱色效果,仅投加含铁89.6 mg/L的FHC,染料脱色率达到90%以上,继续增大FHC投加量可以完全脱色;中性枣红GRL的FHC还原脱色效果较差,需加入313.6 mg/L的FHC才能达到90%以上脱色率;134.4 mg/L的FHC能够将直接耐酸大红4BS完全脱色,但其脱色主要以混凝沉淀为主;溶液pH对FHC的还原性能产生重要影响,FHC还原染料脱色的适宜的pH值范围为4~10。该研究为亲水性染料脱色提供了一种新的技术,也为FHC运用于印染废水脱色提供了理论基础。  相似文献   

4.
Advanced Oxidation Processes (AOPs) have been used as emerging wastewater treatment technologies which can effectively handle various hazardous organics in wastewater and groundwater. The photooxidation of two non-biodegradable azo dyes, acid red 1 and acid yellow 23, were studied in an UV/hydrogen peroxide photochemical reactor with a 5 kW low pressure mercury lamp. It was observed that the decomposition of both azo dyes were pseudo-first order reactions with respect to the azo dye concentrations. Simultaneously, the effects of hydrogen peroxide dosage, pH, initial concentration of the azo dyes and intensity of UV light were also studied. Moreover, the time required for the 50% removal of azo dyes and observed pseudo-first order rate constants were used as parameters to show the efficiency of azo dye treatment.  相似文献   

5.
采用蒸发壁式超临界水氧化反应器对染料分散红C.I.60和活性艳红M-2B配制的模拟废水进行降解实验.实验结果表明,2种染料的COD和TN去除率随着反应温度、氧化剂过量比(r)的升高而上升.COD去除率活性红要高于分散红,而TN去除率则相反.根据GC-MS分析和陶瓷膜SEM图像,分析测得2种染料主要反应中间产物均含有苯酚和苯甲酸,2种染料的反应对陶瓷膜均有轻微的腐蚀.  相似文献   

6.
缺氧-好氧生物滤池中高效菌对活性红KN-3B的降解特性   总被引:1,自引:1,他引:0  
为了研究高效脱色菌在缺氧好氧生物滤池(A/O biofilter)中对偶氮染料的降解特性,以活性红KN-3B(C.I. reactive red 180)为降解对象,缺氧生物滤池以火山碎石为填料,接种高效脱色菌CK3柯氏柠檬酸杆菌启动,好氧生物滤池以牡蛎壳为填料,接种污水处理厂活性污泥启动。试验考察了不同工况下缺氧-好氧生物滤池对色度和COD的去除效果,结果表明:生物滤池中微生物对偶氮染料活性红KN-3B的脱色和对COD降解的最适pH条件为弱酸性;缺氧滤池中高效菌对色度的去除需要外加碳源,且增加外加碳源有助于脱色率的提高;该高效菌为耐盐菌,当进水NaCl浓度达30 g/L时,色度去除率仍可达93%以上;当染料负荷达500 mg/L时,脱色率仍可达95%。通过紫外-可见扫描图谱分析初步推断CK-3柯氏柠檬酸杆菌对偶氮染料活性红KN-3B的脱色主要是生物降解作用。  相似文献   

7.
In this study, advanced oxidation process utilizing Fenton's reaction was investigated for the decolorization and degradation of two commercial dyes viz., Red M5B, Blue MR and H-acid, a dye intermediate used in chemical industries for the synthesis of direct, reactive and azo dyes. Effect of Fe2 +, H2O2, pH, and contact time on the degradation of the dyes was studied. Maximum color and COD removal was obtained for Red MSB, H-acid and Blue MR at 10-25 mg/l of Fe2+ dose and 400-500 mg/l of H2O2 dose at pH 3.0. The initial oxidation reaction was found to fit into first order rate kinetics and the rate of oxidation of H-acid was higher than the other dyes. Release of chloride and sulfate from the Fenton's treated Red M5B dye and sulfate from H-acid and Blue MR indicates that the dye degradation proceeds through cleavage of the substituent group.  相似文献   

8.
Feng W  Nansheng D  Helin H 《Chemosphere》2000,41(8):1233-1238
We have made a comparison of the UV-VIS spectra of three azo dyes, C. I. reactive red 2, orange II and C. I. reactive black 8, in aqueous solutions during treatment with iron powder reduction and photooxidation. From this, we propose their mechanisms for reduction photooxidation. GC/MS analyses of the degradation products of the dye C. I. reactive red 2 demonstrated some important steps producing hydrogenated azo structure, substituted benzene and substituted naphthalene.  相似文献   

9.
Azo dye decolourisation by anaerobic granular sludge   总被引:8,自引:0,他引:8  
The decolourisation of 20 selected azo dyes by granular sludge from an upward-flow anaerobic sludge bed (UASB) reactor was assayed. Complete reduction was found for all azo dyes tested, generally yielding colourless products. The reactions followed first-order kinetics and reaction rates varied greatly between dyes: half-life times ranged from 1 to about 100 h. The slowest reaction rates were found for reactive dyes with a triazine reactive group. There was no correlation between a dye's half-life time and its molecular weight, indicating that cell penetration was probably not an important factor. Since granular sludge contains sulphide, eight dyes were also monitored for direct chemical decolourisation by sulphide. All these dyes were reduced chemically albeit at slower rates than in the presence of sludge at comparable sulphide levels. Increasing sulphide concentrations, even when present in huge excess, stimulated the azo reduction rate. The results indicate that granular sludge can decolourise a broad spectrum of azo dye structures due to non-specific extracellular reactions. Reducing agents (e.g., sulphide) in sludge play an important role. The presence of anaerobic biomass is probably beneficial for maintaining the pools of these reduced compounds.  相似文献   

10.
Toxicity of two azo dyes (Reactive Orange 16 (RO16); Congo Red (CR)) and two anthraquinone dyes (Remazol Brilliant Blue R (RBBR); Disperse Blue 3 (DB3)) were compared using bacterium Vibrio fischeri, microalga Selenastrum capricornutum and ciliate Tetrahymena pyriformis. The following respective endpoints were involved: acute toxicity measured as bacterial luminescence inhibition, algal growth inhibition, and the effects on the protozoa including viability, growth inhibition, grazing effect and morphometric effects. In addition, mutagenicity of the dyes was determined using Ames test with bacterium Salmonella typhimurium His(-). DB3 dye was the most toxic of all dyes in the bacterial, algal and protozoan tests. In contrast to other dyes, DB3 exhibited mutagenic effects after metabolic activation in vitro in all S. typhimurium strains used. Of the methods applied, the algal test was the most sensitive to evaluate toxicity of the dyes tested.  相似文献   

11.
Işik M  Sponza DT 《Chemosphere》2004,55(1):119-128
Decolorization and inhibition kinetic characteristics of two azo dyes namely Reactive Black 5 (RB 5) and Direct Brown 2 (DB 2) were investigated with partially granulated anaerobic mixed culture using glucose (3000 mg l(-1) COD) as carbon source and electron donor during batch incubation. Monod, zero-, first-, and second-order reaction kinetic models were tested in order to determine the most suitable rate model of substrate and color removal kinetic. The course of the decolorization and substrate removal process approximates to first-order kinetic model under batch conditions. Decolorization, and substrate removal were achieved effectively under test conditions but ultimate removal of azo dyes and substrate were not observed at high dye concentrations. Aromatic amine and volatile fatty acid accumulation were observed proportionally at a higher azo dye concentration. A competitive kinetic model that describes the anaerobic co-metabolism of increasing RB 5 and DB 2 dye concentrations with glucose as co-substrate has been developed based on the experimental data.  相似文献   

12.
Wang C  Yediler A  Lienert D  Wang Z  Kettrup A 《Chemosphere》2003,52(7):1225-1232
The effect of ozonation (20.5 mgl(-1)) on the degradation processes of an azo dye, Remazol Black 5 (RB5; CI) was studied. Conventional parameters such as chemical oxygen demand (COD), total organic carbon (TOC), pH, conductivity, colour removal, biodegradability (BOD(5/28)), and toxic potential of the dye and its degradation products were monitored during the process. The results obtained indicated that ozonation is a highly effective way to remove the colour of a corresponding dye solution. However, a considerable organic load still remained as indicated by high COD and TOC residues. The COD, TOC reductions were about 40% and 25% for 6 h ozonation of 2 gl(-1) RB5 aqueous solution. During the ozonation process the rapid decrease of pH and the sharp increase of conductivity indicated the formation of acidic by-products and small fragments and ions which were identified by high performance ion chromatography. The BOD28 data revealed that first by-products after partial ozonation (10-150 min) of RB5 were more biodegradable than the parent compound and ozonation can enhance the biodegradability of azo dyes. During the first 150 min of total 360 min of oxidation, the formation of first by-products with high toxic potential took place as it could be confirmed by two acute toxicity-screening tests, the bioluminescence test (Vibrio fischerii) and the neutral red cytotoxicity assay (rat hepatoma cells). The significant enhancement of microbial biodegradability after long-term ozonation could also be seen as a decrease of toxic intermediates in correlation with the ozonation time as indicated in BOD28 biological degradation test results.  相似文献   

13.
The role of algal concentration in the transfer of organic contaminants in a food chain has been studied using the ubiquitous model polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) as the contaminant, Isochrysis galbana as the phytoplankton food source, and the common mussel (Mytilus edulis) as the primary consumer. The effect of algal concentration on BaP uptake by M. edulis was determined by feeding M. edulis daily with I. galbana which had previously been kept in the presence of BaP for 24 h. Four combinations of concentrations of algae and BaP were used to give final exposure concentrations of 30,000 or 150,000 algal cells ml(-1) in combination with either 2 or 50 microg BaP l(-1). BaP concentrations were determined fluorometrically in rest tissues (excluding digestive glands) and digestive gland microsomal fractions of M. edulis after 1, 7 and 15 days exposure, and also in isolated algae. Potentially toxic effects of BaP on M. edulis were examined in terms of blood cell lysosomal membrane damage (neutral red dye retention assay) and induction of digestive gland microsomal mixed-function oxygenase (MFO) parameters [BaP hydroxylase (BPH) and NADPH-cytochrome c (P450) reductase activities]. BaP bioaccumulation in rest tissues (and to a lesser extent in digestive gland microsomes) of M. edulis increased with both increasing BaP and algal exposure concentrations, and over time, producing maximal bioconcentration factors in rest tissues after 15 days exposure to 150,000 algal cells ml(-1) and 50 microg BaP l(-1) of 250,000. The five-fold higher concentration of algae increased BaP bioaccumulation by a factor of approximately 2 for 50 microg BaP l(-1) at day 15. Blood cell neutral red dye retention time decreased linearly with increasing log(10) tissue BaP body burden, indicating an increased biological impact on M. edulis with increasing BaP exposure possibly due to a direct effect of BaP on blood cell lysosomal membrane integrity. An increase was seen in NADPH-cytochrome c reductase activity, and indicated in BPH activity, with 1 but not 7 or 15 days exposure to BaP, indicating a transient response of the digestive gland microsomal MFO system to BaP exposure.  相似文献   

14.
Electrochemical decolourisation of structurally different dyes   总被引:8,自引:0,他引:8  
The electrochemical decolourisation of structurally different dyes (bromophenol blue, indigo, poly R-478, phenol red, methyl orange, fuchsin, methyl green and crystal violet) by means of the application of DC electric current was assessed. It was found that the electrochemical process allowed a colour removal of all dyes studied, although the decolourisation rate largely depended on the chemical structure of the different dyes. Nearly complete decolourisation was achieved for bromophenol blue followed by methyl orange and methyl green, whereas phenol red was hardly decolourised (30% in 60 min). In mixtures of two dyes, the decolourisation rate became similar for both dyes. However, the addition of a redox mediator, (Co(2+/3+)) clearly enhanced the degradation rate of all tested dyes, but the simplest dye molecules were attacked firstly, followed by dyes with more complex chemical structures. The results revealed the suitability of the process to effectively decolourise wastewaters from dyeing process.  相似文献   

15.
The objective of this research is to evaluate an integrated system coupling zero-valent iron (Fe(0)) and aerobic biological oxidation for the treatment of azo dye wastewater. Zero-valent (elemental) iron can reduce the azo bond, cleaving dye molecules into products that are more amenable to aerobic biological treatment processes. Azo dye reduction products, including aniline and sulfanilic acid, were shown to be readily biodegradable at concentrations up to approximately 25 mg/L. Batch reduction and biodegradation data support the proposed integrated iron pretreatment and activated sludge process for the degradation of the azo dyes orange G and orange I. The integrated system was able to decolorize dye solutions and yield effluents with lower total organic carbon concentrations than control systems without iron pretreatment. The success of the bench-scale integrated system suggests that iron pretreatment may be a feasible approach to treat azo dye containing wastewaters.  相似文献   

16.
利用青霉菌P 1(Penicilliumsp )对 2种染浴废水中的染料进行吸附去除 ,研究结果表明 ,吸附处理 3h ,黑色和红色染浴废水色度基本被去除 ,去除率分别达 98 0 %和 74 5 % ,但去色处理后废水的CODCr值仍偏高。对去除色度的废水进一步用活性污泥进行深度处理 ,黑色和红色废水的CODCr去除率分别为 75 9%和 89 7%。青霉菌菌丝通过吸附作用从废水中抽提出的染料分子在有染料降解细菌L 1和L 2的降解池中脱色降解 ,菌丝吸附脱色能力得到再生。  相似文献   

17.
Matto M  Husain Q 《Chemosphere》2007,69(2):338-345
The present paper demonstrates the effect of salt fractionated turnip (Brassica rapa) proteins on the decolorization of direct dyes, used in textile industry, in the presence of various redox mediators. The rate and extent of decolorization of dyes was significantly enhanced by the presence of different types of redox mediators. Six out of 10 investigated compounds have shown their potential in enhancing the decolorization of direct dyes. The performance was evaluated at different concentrations of mediator and enzyme. The efficiency of each natural mediator depends on the type of dye treated. The decolorization of all tested direct dyes was maximum in the presence of 0.6mM redox mediator at pH 5.5 and 30 degrees C. Complex mixtures of dyes were also maximally decolorized in the presence of 0.6mM redox mediator (1-hydroxybenzotriazole/violuric acid). In order to examine the operational stability of the enzyme preparation, the enzyme was exploited for the decolorization of mixtures of dyes for different times in a stirred batch process. There was no further change in decolorization of an individual dye or their mixtures after 60 min; the enzyme caused more than 80% decolorization of all dyes in the presence of 1-hydroxybenzotriazole/violuric acid. However, there was no desirable increase in dye decolorization of the mixtures on overnight stay. Total organic carbon analysis of treated dyes or their mixtures showed that these results were quite comparable to the loss of color from solutions. However, the treatment of such polluted water in the presence of redox mediators caused the formation of insoluble precipitate, which could be removed by the process of centrifugation. The results suggested that catalyzed oxidative coupling reactions might be important for natural transformation pathways for dyes and indicate their potential use as an efficient means for removal of dyes color from waters and wastewaters.  相似文献   

18.
Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts   总被引:7,自引:0,他引:7  
Liu Y  Chen X  Li J  Burda C 《Chemosphere》2005,61(1):11-18
This study examined the photocatalytic degradation of three azo dyes, acid orange 7 (AO7), procion red MX-5B (MX-5B) and reactive black 5 (RB5) using a new type of nitrogen-doped TiO2 nanocrystals. These newly developed doped titania nanocatalysts demonstrated high reactivity under visible light (lambda>390 nm), allowing more efficient usage of solar light. The doped titania were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Experiments were conducted to compare the photocatalytic activities of nitrogen-doped TiO2 nanocatalysts and commercially available Degussa P25 powder using both UV illumination and solar light. It is shown that nitrogen-doped TiO2 after calcination had the highest photocatalytic activity among all three catalysts tested, with 95% of AO7 decolorized in 1 h under UV illumination. The doped TiO2 also exhibited substantial photocatalytic activity under direct sunlight irradiation, with 70% of the dye color removed in 1h and complete decolorization within 3 h. Degussa P25 did not cause detectable dye decolorization under identical experimental conditions using solar light. The decrease of total organic carbon (TOC) and evolution of inorganic sulfate (SO4(2-)) ions in dye solutions were measured to monitor the dye mineralization process.  相似文献   

19.
Effects of pulp mill chlorate on Baltic Sea algae   总被引:1,自引:0,他引:1  
The long-term effects of pulp mill chlorate on different algal species of the Baltic Sea were studied in land-based model ecosystems simulating the littoral zone. Brown algae (Phaeophyta) exhibited an extraordinarily high sensitivity to chlorate and pulp mill effluents containing chlorate. All brown algal species ceased growth or showed major signs of toxicity at all concentrations tested, down to microgram per litre levels. EC50 levels for growth of Fucus vesiculosus were about 80-100 microg ClO3- litre(-1). Blue-green algae (Cyanophyta) were not deleteriously affected nor were green algae (Chlorophyta). The perennial and annual species of red algae (Rhodophyta) were also unaffected by the effluents. Diatoms did not show any sensitivity and phytoplankton (fresh- and brackish water) were particularly insensitive. A phanerogam, Zostera marina was also unaffected by the treatments.  相似文献   

20.
We tried to decolorize mixtures of four reactive textile dyes, including azo and anthraquinone dyes, by a white-rot basidiomycete Phanerochaete sordida. P. sordida decolorized dye mixtures (200 mg l-1 each) by 90% within 48 h in nitrogen-limited glucose-ammonium media. Decolorization of dye mixtures needed Mn2+ and Tween 80 in the media. Manganese peroxidase (MnP) played a major role in dye decolorization by P. sordida. Decolorization of dye mixtures by P. sordida was partially inhibited by polyvinyl alcohol (PVA) that wastewaters from textile industries often contain. This was caused by an inhibitory effect of PVA on the decolorization of Reactive Red 120 (RR120) with MnP reaction system. Second addition of Tween 80 to the reaction mixtures in the presence of PVA improved the decolorization of RR120. These results suggest that PVA could interfere with lipid peroxidation or subsequent attack to the dye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号