首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ozone Transport     
Elevated concentrations of ozone, often above the national ambient air quality standard for photochemical oxidants, have been measured in both urban and rural areas of Connecticut. One such episode took place on June 10, 1974. Ozone levels, after stabilizing at values slightly above the standard (i.e., 80 to 110 ppb; Connecticut generated ozone concentrations), rose sharply late in the afternoon reaching concentrations as high as 310 ppb (almost 4 times the standard) in Hartford. The trajectory of the air mass, which arrived in Hartford at the time of maximum O3 occurence, had its origin in the metropolitan New York area during the early morning rush hour on the episode day. This illustrates that the advective transport of O3 and O3 precursors into Connecticut from New York are probably responsible for a significant portion (approximately two-thirds) of the elevated O3 concentrations measured throughout Connecticut on days when winds are from the south-southwest direction. The fact that peak O3 levels occur late in the afternoon, several hours after maximum sunlight intensity, reinforces the conclusion that excessive O3 concentrations developed as O3 and ozone precursors were generated in the vicinity of New York City and then drifted inland into Connecticut on the afternoon sea breeze.

It appears to be unrealistic to develop a hydrocarbon control strategy for Connecticut in order to meet the photochemical oxidant ambient air quality standard when O3 and/or ozone precursors ad-vectively transported into the State cause oxidant levels to exceed the standard. The complete cessation of all anthropogenic hydrocarbon emissions in Connecticut would not necessarily assure that the standard would be attained here. The implication is that a regional (i.e., the eastern part of the United States) hydrocarbon control strategy is needed to reduce adequately ozone formation and transport so as to allow Connecticut to meet the current oxidant standard.  相似文献   

2.
Atmospheric CO2 concentrations were measured prior to dawn and in the middle of the afternoon at a height of 2 m above the ground along four transects through the metropolitan area of Phoenix, Arizona on 14 consecutive days in January 2000. The data revealed the existence of a strong but variable urban CO2 dome, which at one time exhibited a peak CO2 concentration at the center of the city that was 75% greater than that of the surrounding rural area. Mean city-center peak enhancements, however, were considerably lower, averaging 43% on weekdays and 38% on weekends; and averaged over the entire commercial sector of the city, they were lower still, registering 30% on weekdays and 23% on weekends. Over the surrounding residential areas, on the other hand, there are no weekday–weekend differences in boundary-layer CO2 concentration. Furthermore, because of enhanced vertical mixing during the day, near-surface CO2 concentrations in the afternoon are typically reduced from what they are prior to sunrise. This situation is additionally perturbed by the prevailing southwest-to-northeast flow of air at that time of day, which lowers afternoon CO2 concentrations on the southern and western edges of the city still more, as a consequence of the importation of pristine rural air. The southwest-to-northeast flow of air also sometimes totally compensates for the afternoon vertical-mixing-induced loss of CO2 from areas on the northern and eastern sides of the city, as a consequence of the northeastward advection of CO2 emanating from the central, southern and western sectors of the city. Hence, although complex, the nature of the urban CO2 dome of Phoenix, Arizona, is readily understandable in terms of basic meteorological phenomena and their interaction with human activities occurring at the land/air interface.  相似文献   

3.
Advancing the understanding of spatiotemporal aspects of air pollution in the urban environment is an area where improved methods can be of great benefit to exposure assessment and policy support. This paper explores the potential of a technique known as kriging with external drift (KED) to provide high resolution maps of fine particulate matter for a downtown region of Cusco, Peru. There were three stages in this research. The first was to conduct a pilot level monitoring campaign to investigate ambient, regional, and street-level air pollutant concentrations for particulate matter (PM2.5, PM10) and carbon monoxide (CO) in the Province of Cusco. The second was to compile observations within a geographic information system (GIS) in order to characterize the proximal effect of the local transportation network, elevation, and land use classifications on PM2.5. Third, regression, ordinary kriging and kriging with external drift were used to model PM2.5 for three select time periods during a 24-h day. Statistical evaluations indicate kriging with external drift resulted in the strongest models explaining 64% of variability seen with morning particle concentrations, 25% for afternoon particles, and 53% in evening particles. These models capture spatial and temporal variability for air pollution in Cusco. These variations seem to be influenced, to varying degrees, by elevation, meteorological conditions, spatial location, and transportation characteristics. In conclusion, combining GIS, meteorological data and geostatistics proved to be a complementary suite of tools for incorporating spatiotemporal analysis into the air quality assessment.  相似文献   

4.
Comparisons were made between three sets of meteorological fields used to support air quality predictions for the California Regional Particulate Air Quality Study (CRPAQS) winter episode from December 15, 2000 to January 6, 2001. The first set of fields was interpolated from observations using an objective analysis method. The second set of fields was generated using the WRF prognostic model without data assimilation. The third set of fields was generated using the WRF prognostic model with the four-dimensional data assimilation (FDDA) technique. The UCD/CIT air quality model was applied with each set of meteorological fields to predict the concentrations of airborne particulate matter and gaseous species in central California. The results show that the WRF model without data assimilation over-predicts surface wind speed by ~30% on average and consequently yields under-predictions for all PM and gaseous species except sulfate (S(VI)) and ozone(O3). The WRF model with FDDA improves the agreement between predicted and observed wind and temperature values and consequently yields improved predictions for all PM and gaseous species. Overall, diagnostic meteorological fields produced more accurate air quality predictions than either version of the WRF prognostic fields during this episode. Population-weighted average PM2.5 exposure is 40% higher using diagnostic meteorological fields compared to prognostic meteorological fields created without data assimilation. These results suggest diagnostic meteorological fields based on a dense measurement network are the preferred choice for air quality model studies during stagnant periods in locations with complex topography.  相似文献   

5.
Prediction performance of various air pollution episode models are first compared with that of a persistence model which is based on the assumption that present concentrations persist to a future time. The comparisons are made by computing a correlation coefficient for different lead times between the observed and predicted values, and an auto-correlation function of the air quality data to which the episode model is applied. The persistence of high levels of air pollution is next examined, using existing air quality data, by constructing frequency distributions of air pollution episode duration for various concentration thresholds. Based on the results of persistence analysis, the flaws of currently used episode management schemes are discussed and some alternative episode management schemes are presented. Methodologies and parameters to evaluate the anticipated performances of episode management schemes are developed and some examples are worked out. In conclusion, it is suggested that a combination of episode persistence analysis and air pollution meteorological forecasting could lead to a workable air pollution episode management scheme.  相似文献   

6.
A summer air quality monitoring campaign focusing on the evolution of ultrafine (<180 nm in diameter) particle concentrations was conducted at an urban site in Los Angeles during June–July 2006. Previous observations suggest that ultrafine aerosol at this site are generally representative of the Los Angeles urban environment. Continuous and intermittent gas and aerosol measurements were made over 4 weeks with consistent daily meteorological conditions. Monthly averages of the data suggest the strong influence of commute traffic emissions on morning observations of ultrafine particle concentrations. By contrast, in the afternoon our measurements provide evidence of secondary photochemical reactions becoming the predominant formation mechanism of ultrafine aerosols. The ultrafine number concentration peak occurs in the early afternoon, before the maximum ozone concentration is observed. The source of this offset is unknown and requires further investigation. It is possible that the chemical mechanisms responsible for secondary organic aerosol formation evolve as atmospheric conditions change and/or secondary semi-volatile components of the aerosol re-volatilize due to the elevated peak temperatures observed (ca. 30–35 °C) combined with the increased atmospheric dilution during that time. Measurements of the volatility of the ultrafine aerosol are consistent with this interpretation as overall volatility increases in the afternoon and there is less evidence of external mixing. Composition data presented in the companion paper support these conclusions [Ning et al., 2007. Daily variation in chemical characteristics of urban ultrafine aerosols and inference of their sources. Environmental Science and Technology, in press].  相似文献   

7.
Carbonyl sulphide (COS) concentrations in air and dissolved in seawater were determined during a cruise in summer 1997 in the northeast Atlantic Ocean. Seawater characteristics and meteorological parameters were monitored. Dissolved COS concentrations throughout the entire cruise exhibited a strong diel cycle with maximum concentrations in late afternoon and minimum concentrations at sunrise. This is in good agreement with the theory that COS is photochemically produced from dissolved organic matter during the day and removed by hydrolysis. The overall mean concentration of dissolved COS was 23.6 pmol dm-3; the daily mean varied according to water mass characteristics and was highest in upwelling areas owing to increased dissolved organic matter. Atmospheric COS concentrations, varying from about 450 to 800 pptv with an average value of 657 pptv, showed some dependency on air mass history and local COS flux from the sea surface. The exchange of COS between the ocean and the atmosphere depended on dissolved COS concentrations and wind speed. The daily integrated flux was always from the sea into the air, and the average was 1.3±0.8 g COS km-2 d-2. The collected data were used to test a mixed layer box model and a one-dimensional model, both describing the behaviour of COS in seawater. We found that the one-dimensional model simulates the data more closely, especially during the night.  相似文献   

8.
Measurements of ambient carbon dioxide (CO2), made at the Continuous Air Monitoring Program station in downtown Cincinnati, Ohio, and at a rural location near Cincinnati are presented and evaluated to determine the significance of CO2 data in urban air quality monitoring programs. Through analysis of rural CO2 data and evaluation of combustion-sources by means of a diffusion model, it is demonstrated that the variation of urban CO2 concentrations around the prevailing atmosphere background level results from combustion-and noncombustion {natural) sources. The concentration from natural sources can be substantial and in fact override the combustion sources. Because it is not yet practical to predict the contribution of natural sources to urban CO2 concentrations, data obtained for-this gas have only limited utility as an index of air quality. Significant statistical relationships between CO2 data and air quality measurements for summer months are shown to result from similar meteorological effects rather than similar sources. A seasonal and spatial variation of ih-ese relationships is postulated and subsequently demonstrated by analysis of CO2 and air quality measurements from New Orleans, Louisiana, and SU Louis, Missouri.  相似文献   

9.
This paper is directed to those individuals concerned with preserving the local air quality in areas affected by power plant operations. A meteorological forecast and field measurement program has been developed by the Tennessee Valley Authority for limiting stack emissions at the Paradise Steam Plant to preserve the air quality during adverse atmospheric dispersion conditions. Meteorological and plume dispersion criteria, developed from analysis of prior experience, govern the program. The criteria values are designed for limiting surface sulfur dioxide (SO2) concentrations below an established threshold level.

Daily forecasts of vertical wind and temperature distribution, maximum surface temperature, and sky condition are issued each afternoon by the National Oceanic and Atmospheric Administration National Weather Service, Knoxville, Tennessee. Through use of power plant computer facilities, the forecast data are processed to determine quantitative criteria values. If the values indicate that the threshold level may be exceeded, an Air Pollution Control Notice (APCN) is issued that afternoon for the period 0900–1400 CST the following day, which is the expected period of maximum SO2, surface concentrations. The APCN specifies the allowable SO2 emission rate, in terms of megawatt load generation, which should prevent surface SO2 concentrations from exceeding the established threshold level. Confirmation or cancellation of the APCN is made the following morning, based on plant-site meteorological field measurements taken at 0700–0730 CST. If confirmed, plant load generation is reduced to the designated level by 0900 CST and is continued no later than 1400 CST during the expected period of maximum SO2 surface concentrations.

The APCN conditions identified with the newer and larger TV A power plants with high stacks are associated with one principal regional weather pattern—a large surface high-pressure system, with weak-to-moderate anticyclonic circulation and pronounced stability throughout the lowest few thousand meters. With the limited mixing layer, or sometimes referred to as trapping- or capping-type dispersion associated with this weather condition, relatively high surface concentrations may persist 2–5 hours between 0900–1400 CST.  相似文献   

10.
In this study, prediction capacities of multi-linear regression (MLR) and artificial neural networks (ANN) onto coarse particulate matter (PM10) concentrations were investigated. Different meteorological factors on particulate pollution were chosen for operating variables in the model analyses. Two different regions (urban and industrial) were identified in the region of Kocaeli, Turkey. All data sets were obtained from air quality monitoring network of the Ministry of Environment and Urban Planning, and 120 data sets were used in the MLR and ANN models. Regression equations explained the effects of the meteorological factors in MLR analyses. In the ANN model, backpropagation network with two hidden layers has achieved the best prediction efficiency. Determination coefficients and error values were examined for each model. ANN models displayed more accurate results compared to MLR.  相似文献   

11.
In the present study, personal exposure to fine particulate matter (particulate matter with an aerodynamic diameter <2.5 μm [PM2.5]) concentrations in an urban hotspot (central business district [CBD]) was investigated. The PM monitoring campaigns were carried out at an urban hotspot from June to October 2015. The personal exposure monitoring was performed during three different time periods, i.e., morning (8 a.m.?9 a.m.), afternoon (12.30 p.m.–1.30 p.m.), and evening (4 p.m.–5 p.m.), to cover both the peak and lean hour activities of the CBD. The median PM2.5 concentrations were 38.1, 34.9, and 40.4 µg/m3 during the morning, afternoon, and evening hours on the weekends. During weekdays, the median PM2.5 concentrations were 59.5, 29.6, and 36.6 µg/m3 in the morning, afternoon, and evening hours, respectively. It was observed that the combined effect of traffic emissions, complex land use, and micrometeorological conditions created localized air pollution hotspots. Furthermore, the total PM2.5 lung dose levels for an exposure duration of 1 hr were 8.7 ± 5.7 and 12.3 ± 5.2 µg at CBD during weekends and weekdays, respectively, as compared with 2.5 ± 0.8 µg at the urban background (UB). This study emphasizes the need for mobile measurement for short-term personal exposure assessment complementing the fixed air quality monitoring.

Implications: Personal exposure monitoring at an urban hotspot indicated space and time variation in PM concentrations that is not captured by the fixed air quality monitoring networks. The short-term exposure to higher concentrations can have a significant impact on health that need to be considered for the health risk–based air quality management. The study emphasizes the need of hotspot-based monitoring complementing the already existing fixed air quality monitoring in urban areas. The personal exposure patterns at hotspots can provide additional insight into sustainable urban planning.  相似文献   

12.
An atmospheric dispersion model, where the inputs of meteorological field were calculated using a meteorological model, was used to reproduce the observed air pollution conditions for the typical fine day in summer period, especially the concentration of the photochemical oxidants. As well, the effects of an increase in the urban temperature and VOC emissions on the concentration of photochemical oxidants were also considered. The following conclusions were drawn.The observed air pollution levels were well modeled by the atmospheric dispersion model using in this study, although modeled NO levels were slightly lower than the observed levels. An analysis of the temperature data showed that a 1 °C increase in temperature leads to a maximal photochemical oxidant concentration of 5.3 ppb, which is an increase of 11%. Additionally, the effect on the photochemical oxidant concentration due to an increase in the vegetation-derived VOCs was more than double the effect due to an increase in the photochemical reactions. It was found that the temperature and photochemical oxidant concentration were linearly related up to a temperature increase of 3 °C. When the temperature increases up to 3 °C, the concentration of photochemical oxidants increases by 19 ppb. An analysis of the effect of vegetation-derived VOCs on photochemical oxidant concentrations showed that, the concentration of photochemical oxidants was 30 ppb higher in the afternoon by the effect of vegetation-derived VOCs, so even in metropolitan areas with relatively little vegetation, vegetation-derived VOCs have a strong impact on photochemical oxidant concentrations.  相似文献   

13.
This paper presents measurements of daily sampling of fine particulate matter (PM2.5) and its major chemical components at three urban and one rural locations in North Carolina during 2002. At both urban and rural sites, the major insoluble component of PM2.5 is organic matter, and the major soluble components are sulfate (SO4(2-)), ammonium (NH4(+)), and nitrate (NO3(-)). NH4(+) is neutralized mainly by SO4(2-) rather than by NO3(-), except in winter when SO4(2-) concentration is relatively low, whereas NO3(-) concentration is high. The equivalent ratio of NH4(+) to the sum of SO4(2-) and NO3(-) is < 1, suggesting that SO4(2-) and NO3(-) are not completely neutralized by NH4(+). At both rural and urban sites, SO4(2-) concentration displays a maximum in summer and a minimum in winter, whereas NO3(-) displays an opposite seasonal trend. Mass ratio of NO3(-) to SO4(2-) is consistently < 1 at all sites, suggesting that stationary source emissions may play an important role in PM2.5 formation in those areas. Organic carbon and elemental carbon are well correlated at three urban sites although they are poorly correlated at the agriculture site. Other than the daily samples, hourly samples were measured at one urban site. PM2.5 mass concentrations display a peak in early morning, and a second peak in late afternoon. Back trajectory analysis shows that air masses with lower PM2.5 mass content mainly originate from the marine environment or from a continental environment but with a strong subsidence from the upper troposphere. Air masses with high PM2.5 mass concentrations are largely from continental sources. Our study of fine particulate matter and its chemical composition in North Carolina provides crucial information that may be used to determine the efficacy of the new National Ambient Air Quality Standard (NAAQS) for PM fine. Moreover, the gas-to-particle conversion processes provide improved prediction of long-range transport of pollutants and air quality.  相似文献   

14.
An episode selection procedure was developed and applied to select sets of days representing characteristic meteorological conditions leading to high ozone episodes over the Swiss Plateau. The selection procedure was applied to data extending from January 1991 through December 1998, and is comprised of two steps: First, days were classified according to observed air quality and meteorological characteristics using classification and regression trees analysis (CART). Second, the CART results were used in conjunction with observed air quality data to identify sets of days characteristic of those leading to elevated ozone. These sets of days were selected to optimise how well a limited number of days represented seasonal air quality, and that formed longer episodes for use in the air quality modelling. CART analysis was performed for three zones of the Swiss Plateau that have different air quality and meteorological characteristics. The results for two zones were used together in the episode selection procedure in order to identify days representative for the whole Plateau. Meteorological analysis for a third zone suggested that it would be strongly impacted by pollutants transported in from outside the country. One thousand and eight hundred optimisation runs were performed to minimise the likelihood that the set of days was a local optimum, increasing the robustness for use in air quality modelling analysis. Fifteen days, grouped in four episodes ranging from 3 to 5 days were selected along with their calculated representativeness (or weight) to recreate a seasonal metric. The variety of local as well as regional meteorological characteristics showed that the episode selection procedure chose days representing a diverse set of meteorological situations which are associated with elevated ozone. This set of episodes can now be used to test air quality strategies.  相似文献   

15.
An impact related daily air quality index (DAQx), calculated for 15 air quality monitoring stations (traffic, background, and industry) in Belgium, France, Germany and Luxembourg, was compared to mesoscale atmospheric patterns between 2001 and 2007. Meteorological conditions were described by the Hess and Brezowsky synoptic weather classification system and gridded data of the EU FP6 ENSEMBLES project of total precipitation and mean surface temperature. DAQx values indicate sufficient to poor air quality in the urban area of Brussels and at urban traffic stations, as well as satisfactory air quality at the background stations. The air quality index refers to more than 90% to the presence of high PM10, O3 and NO2 concentrations. SO2 and CO play only a minor role. The investigation of weather regimes indicates that zonal and mixed cyclonic circulation regimes are associated with better air quality than meridional and anticyclonic weather regimes. In general, weather regimes with high daily precipitation lead to better air quality than dryer air masses because of lower contribution of PM10 to the air quality index. A trend analysis of weather regimes from 1978 to 2007 shows significant (α = 0.05) positive trends for weather classes associated with lower PM10 concentrations. The results of a case study at a German station examining the relationship between PM10 concentrations and local meteorological quantities (wind speed and precipitation) confirm the results of the regional analysis.  相似文献   

16.
Data from multiple satellite remote sensors are integrated with ground measurements and meteorological data to study the impact of Greek forest fires in August 2007 on the air quality in Athens. Two pollution episodes were identified by ground PM10 measurements between August 23 and September 4. In the first episode, Evia and Peloponnese fires contributed substantially to the air pollution levels in Athens. In the second episode, transport of industrial pollution from Italy and Western Europe as well as forest fires in Albania contributed substantially to the air pollution levels in Athens. Local air pollution sources also contributed to the observed particle levels during these episodes. Satellite data provide valuable insights into the spatial distribution of particle concentrations, thus they can be used identify pollution sources. In spite of a few weaknesses in current satellite data products identified in this analysis, combining satellite aerosol remote sensing data with trajectory models and ground measurements is a powerful tool to study intensive particle pollution events such as forest fires.  相似文献   

17.
Ozone measurements made from 5 sites in Hong Kong have been analyzed, including those from one upwind, one downwind, and three urban locales. The data are analyzed in terms of the seasonal and diurnal trends. A subset of data in autumn is further analyzed to study the relationship between the ozone spatial pattern and wind flow as well as other meteorological parameters. The results show that averaged ozone levels at most sites exhibit maxima in autumn, which appears to be a unique feature for eastern Asia. On average the daily maximum 1-h concentrations are found to be higher in the western (normally downwind) site than those on the eastern side and in urban areas. Examination of surface wind patterns and other meteorological parameters suggest that elevated ozone concentrations on the western side occur during the days with intense solar radiation, light winds, and in the presence of a unique wind circulation. The wind reversal in the western parts under the “convergence” flow is believed to be an important cause of the high-ozone events observed there. Such wind flow may re-circulate/transport nearby urban plumes (in this case the Hong Kong–Shenzhen urban complex). Examination of chemical data from the western site has shown that averaged afternoon SO2 to NOx ratios on days with wind reversal are larger than those of typical urban Hong Kong and that a significant SO2 enhancement was clearly indicated on several occasions. The SO2 enhancement may be interpreted as being the evidence to suggest the contribution of regional sources and/or Hong Kong’s power plants (both containing high SO2). A case study has shown that when moderately strong northwesterly wind prevails, elevated ozone and SO2 can be transported to western Hong Kong from the inner Pearl Delta region. This study has also indicated that under the impact of ENE winds the eastern side of Hong Kong is not frequently affected by the re-circulating ozone plumes present in the western side.  相似文献   

18.
ABSTRACT

This paper presents a detailed analysis of the meteorological conditions that are associated with strong air pollution episodes in Ankara, Turkey. Based on climatological and air quality data [SO2 and TSP (total suspended par-ticulates)] obtained for the winter months during 19891994, the analysis showed that the presence of weak atmospheric pressure gradients and warm air advection were the most important factors leading to high SO2 and TSP concentrations. In addition, the onset of the high air pollution episodes was generally associated with a trend toward negative vorticity at the 850-hPa level.  相似文献   

19.
ABSTRACT

The spatial and temporal distributions of particle mass and its chemical constituents are essential for understanding the source-receptor relationships as well as the chemical, physical, and meteorological processes that result in elevated particulate concentrations in California’s San Joaquin Valley (SJV). Fine particulate matter (PM2.5), coarse particulate matter (PM10), and aerosol precursor gases were sampled on a 3-hr time base at two urban (Bakersfield and Fresno) and two non-urban (Kern Wildlife Refuge and Chowchilla) core sites in the SJV during the winter of 1995–1996.

Day-to-day variations of PM2.5 and PM10 and their chemical constituents were influenced by the synoptic-scale meteorology and were coherent among the four core sites. Under non-rainy conditions, similar diurnal variations of PM2.5 and coarse aerosol were found at the two urban sites, with concentrations peaking during the nighttime hours. Conversely, PM2.5 and coarse aerosol peaked during the morning and afternoon hours at the two non-urban sites. Under rainy and foggy conditions, these diurnal patterns were absent or greatly suppressed.

In the urban areas, elevated concentrations of primary pollutants (e.g., organic and elemental carbons) during the late afternoon and nighttime hours reflected the impact from residential wood combustion and motor vehicle exhaust. During the daytime, these concentrations decreased as the mixed layer deepened. Increases of secondary nitrate and sulfate concentrations were found during the daylight hours as a result of photochemical reactions. At the non-urban sites, the same increases in secondary aerosol concentrations occurred during the daylight hours but with a discernable lag time. Concentrations of the primary pollutants also increased at the non-urban sites during the daytime. These observations are attributed to mixing aloft of primary aerosols and secondary precursor gases in urban areas followed by rapid transport aloft to non-urban areas coupled with photochemical conversion.  相似文献   

20.
In recent years, the rapid increase in population density has caused increases in the consumption of fuel, and the outdoor air quality has deteriorated in the crowded urban areas of Turkey. Erzurum, a city in the eastern part of Turkey, is influenced by air pollutants such as SO2 and suspended particles. It is known that, in general, the air pollution concentrations have a close relationship with meteorological factors. In this study, the relationship between outdoor air quality data and meteorological factors, such as wind speed, rainfall, temperature, sunshine hours and relative humidity, is statistically analysed, using the code SPSS. According to the results obtained through multiple linear regression analysis, there are moderate levels of correlation between SO2 and particle concentrations and meteorological factors in Erzurum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号