首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An emission inventory was compiled for heavy metal air emissions from road transport in Europe (EU-40). For the database, country-specific data was taken such as the diesel and gasoline fuel consumption per country, the content of Pb in gasoline and diesel fuel and the share of different vehicle types. For tyre and brake wear emissions, average wear rates and heavy metal contents of different materials were used to develop emission factors for tyre and brake wear. It covers exhaust emissions (Pb from gasoline and diesel) as well as non-exhaust emissions (As, Cd, Cr, Ni and Pb from the wear of brake linings and vehicle tyres). The base year is 2000, and two scenarios were developed for 2010, a business as usual (BAU) scenario and a maximum feasible technical reduction (MFTR) scenario. Both result in a remarkable decrease in Pb exhaust emissions and a rising share of non-exhaust emissions. To assess the results, the inventory is (a) compared to an inventory compiled with a top-down approach that covers the same area and years but only emissions from combustion processes and (b) added to an inventory covering all sectors for heavy metal air emissions.  相似文献   

2.
To increase U.S. petroleum energy independence, the University of Texas at Arlington (UT Arlington) has developed a direct coal liquefaction process which uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This sweet crude can be refined to form JP-8 military jet fuel, as well as other end products like gasoline and diesel. This paper presents an analysis of air pollutants resulting from using UT Arlington's liquefaction process to produce crude and then JP-8, compared with 2 alternative processes: conventional crude extraction and refining (CCER), and the Fischer-Tropsch process. For each of the 3 processes, air pollutant emissions through production of JP-8 fuel were considered, including emissions from upstream extraction/production, transportation, and conversion/refining. Air pollutants from the direct liquefaction process were measured using a LandTEC GEM2000 Plus, Draeger color detector tubes, OhioLumex RA-915 Light Hg Analyzer, and SRI 8610 gas chromatograph with thermal conductivity detector.

According to the screening analysis presented here, producing jet fuel from UT Arlington crude results in lower levels of pollutants compared to international conventional crude extraction/refining. Compared to US domestic CCER, the UTA process emits lower levels of CO2-e, NOx, and Hg, and higher levels of CO and SO2. Emissions from the UT Arlington process for producing JP-8 are estimated to be lower than for the Fischer-Tropsch process for all pollutants, with the exception of CO2-e, which were high for the UT Arlington process due to nitrous oxide emissions from crude refining. When comparing emissions from conventional lignite combustion to produce electricity, versus UT Arlington coal liquefaction to make JP-8 and subsequent JP-8 transport, emissions from the UT Arlington process are estimated to be lower for all air pollutants, per MJ of power delivered to the end user.

Implications: The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. At current use rates, U.S. coal reserves (262 billion short tons, including 23 billion short tons lignite) would last 236 years. Accordingly, the University of Texas at Arlington (UT Arlington) has developed a process that converts lignite to crude oil, at about half the cost of regular crude. According to the screening analysis presented here, producing jet fuel from UT Arlington crude generates lower levels of pollutants compared to international conventional crude extraction/refining (CCER).  相似文献   

3.
Chin JY  Batterman SA 《Chemosphere》2012,86(9):951-958
The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (<10% ethanol), E85 (85% ethanol and 15% gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C9 to C16n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished.  相似文献   

4.
ABSTRACT

We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results.

We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C2H5OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C2H5OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.  相似文献   

5.
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C2H5OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C2H5OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.  相似文献   

6.
Abstract

Idle emissions data from 19 medium heavy-duty diesel and gasoline trucks are presented in this paper. Emissions from these trucks were characterized using full-flow exhaust dilution as part of the Coordinating Research Council (CRC) Project E-55/59. Idle emissions data were not available from dedicated measurements, but were extracted from the continuous emissions data on the low-speed transient mode of the medium heavy-duty truck (MHDTLO) cycle. The four gasoline trucks produced very low oxides of nitrogen (NOx) and negligible particulate matter (PM) during idle. However, carbon monoxide (CO) and hydrocarbons (HCs) from these four trucks were approximately 285 and 153 g/hr on average, respectively. The gasoline trucks consumed substantially more fuel at an hourly rate (0.84 gal/hr) than their diesel counterparts (0.44 gal/hr) during idling. The diesel trucks, on the other hand, emitted higher NOx (79 g/hr) and comparatively higher PM (4.1 g/hr), on average, than the gasoline trucks (3.8 g/hr of NOx and 0.9 g/hr of PM, on average). Idle NOx emissions from diesel trucks were high for post-1992 model year engines, but no trends were observed for fuel consumption. Idle emissions and fuel consumption from the medium heavy-duty diesel trucks (MHDDTs) were marginally lower than those from the heavy heavy-duty diesel trucks (HHDDTs), previously reported in the literature.  相似文献   

7.
To obtain the characteristic factors or signatures of particulate polycyclic aromatic hydrocarbons (PAHs) to help identify the sources of particulate PAHs in the atmosphere, different carbonaceous aerosols were generated by burning different fossil fuels and biomass under different conditions in the laboratory, and the chemical characteristics of 14 PAHs were studied in detail. The results showed that (1) carbonaceous aerosols derived from domestic burning of coal, diesel fuel, and gasoline have much higher concentrations of PAHs than those derived from domestic burning of biomass; (2) carbonaceous aerosols derived from domestic burning of diesel fuel/gasoline have similar PAH components as those derived from high-temperature combustion of diesel fuel/gasoline, although the former have much higher concentrations of PAHs than the latter, suggesting that the burning temperature obviously affects the emitting amount of particulate PAHs, but only slightly influences the PAHs components; and (3) the ratios of benzo[b]fluoranthene/acenaphthylene, benzo[b]fluoranthene/fluorene, dibenzo[a,h]anthracene/acenaphthylene, dibenzo[a,h]anthracene/fluorine, and benzo[b]fluoranthene/benzo[k]fluoranthene in carbonaceous aerosols are sensitively dependent on their sources, indicating that these ratios are suitable for use as characteristic factors or signatures of particulate PAHs in the atmosphere.  相似文献   

8.
The body of information presented in this paper is directed towards engineers in the field of environmental sciences involved in measuring and/or evaluating the emissions from a variety of diesel engines or vehicles. This paper summarizes recent data obtained by EPA on identification and quantification of different emissions (i.e. characterization) from a variety of diesel engines.

Extensive work has been done comparing emissions from some light duty diesel and gasoline passenger cars. The work on the diesel vehicles was expanded to include tests with five different diesel fuels to determine how fuel composition affects emissions. This work showed that use of a poorer quality fuel frequently made emissions worse. The investigation of fuel composition continued with a project in which specific fuel parameters were systematically varied to determine their effect on emissions. EPA is presently testing a variety of fuels derived from coal and oil shale to determine their effects on emissions.

EPA has also tested a heavy duty Volvo diesel bus engine designed to run on methanol and diesel fuel, each injected through its own injection system. The use of the dual fuel resulted in a reduction in particulates and NO x but an increase in HC and CO compared to a baseline Volvo diesel engine running on pure diesel fuel.

Finally, some Ames bioassay tests have been performed on samples from the diesel passenger cars operated on various fuels and blends. An increase in Ames test response (mutagenicity) was seen when the higher aromatic blend was used and also when a commercial cetane improver was used. Samples from the Volvo diesel bus engine fueled with methanol and diesel fuel showed that use of a catalyst increased the Ames response.  相似文献   

9.
Free radical generation potential of automobile exhaust gas was examined by measuring hydroxyl (OH) radical photo-formation rates in exhaust gas-scrubbing water. Effects of automobile exhausts on physiological status of Japanese red pine trees (Pinus densiflora Sieb. et Zucc.) were also investigated to elucidate the mechanism how the free radicals derived from exhaust gas damage higher plants. Gasoline and diesel exhaust gases were scrubbed into pure water. Potential photo-formation rates of OH radical in aqueous phase (normalized to sun light intensity of clear sky midday on May 1 at 34°N) for gasoline and diesel cars were ave. 51 and 107 μM h−1 m−3 of exhaust gas, respectively. Nitrite was a dominant source (ca. 70-90%) of photochemical formation of OH radical in both gasoline and diesel car exhausts. The scrubbed solution of diesel car exhaust gas was sprayed for six times per week to needles of pine tree seedlings in open top chambers. Control, exhaust + mannitol (added as OH radical scavenger), and nitrite + nitrate standard solution (equivalent levels existed in the exhaust gas) were also sprayed. Two months sprays indicated that the sprayed solutions of diesel exhaust and nitrite + nitrate caused a decrease of maximum photosynthetic rate and stomata conductance in pine needles while the control and exhaust + mannitol solution showed no effects on photosynthetic activities of pine needles. These results indicated that OH radicals generated mainly from photolysis of nitrite occurring in the scrubbing solution of exhaust gas are responsible for the decrease of photosynthetic activities of pine needles.  相似文献   

10.

Size, morphology, and composition of airborne particles strongly affect human health and visibility, precipitation, and the kinetic characteristics of particles. In this study, the morphology and chemical composition of particles emitted from conventional (diesel and gasoline) and alternative (CNG and methanol) fuel vehicles were characterized through scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The SEM images revealed that the size of primary particles (without agglomeration) was approximately 10 nm in the exhaust from all the tested vehicles. The particles emitted from gasoline vehicle (GV), CNG vehicle (CNGV), and methanol vehicle (MV) had the same median diameter, 62 nm, which was smaller than those from heavy diesel vehicle (HDV) and light diesel vehicle (LDV). Soot was observed in the HDV, LDV, and GV samples but not in the CNGV and MV. The fractal dimension, which was used to quantify the degree of irregularity of soot, was 1.752 ± 0.014, 1.789 ± 0.076, and 1.769 ± 0.006 in the exhaust from HDV, LDV, and GV samples, respectively. The particles discharged by all tested vehicles contained the elements C, O, Fe, and Na. The main element in the samples of HDV, LDV, and GV was C, while O was the main element in the samples of alternative fuel vehicles. The profiles of minor elements were more complex in the emissions of alternative fuel vehicles than those in the emissions of conventional fuel vehicles. The results improved our understanding of the morphology and elemental composition of particles emitted from vehicles powered by diesel, gasoline, CNG, and methanol.

  相似文献   

11.
加油站气液比检测方法及其影响   总被引:2,自引:0,他引:2  
气液比(A/L)是加油站油气回收系统的一项重要控制指标,利用A/L测试仪、光离子化VOCs检测仪和油气排放因子测试装置,研究了不同A/L检测连接方式对A/L检测结果、检测人员暴露浓度、油气排放和油气回收效率等的影响。结果表明,不同连接方式和是否预先向检测油桶注油会导致A/L检测结果不一致,如果油桶与流量计不连接,A/L检测值将是实际A/L的1.04倍,当按照A/L=1.00~1.20调整加油枪A/L时,实际A/L将在0.96~1.15之间;按照国标GB20952-2007连接方式检测A/L可以减少检测过程中约80%的加油油气排放,夏季检测人员暴露油气浓度将由451×10-6(体积浓度)下降至91×10-6(体积浓度),油气排放因子将由1 056 mg/L下降至242 mg/L,更可减少因油罐吸入空气造成额外的汽油挥发排放,但不能减少倒油油气排放。  相似文献   

12.

Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  相似文献   

13.
Exhaust emissions of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners, tetra-octa PCDD/F homologues, 12 WHO 2005 polychlorinated biphenyl (PCB) congeners, mono-nona chlorinated biphenyl homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from three legacy diesel engines were investigated. The three engines tested were a 1985 model year GM 6.2 J-series engine, a 1987 model year Detroit Diesel Corporation 6V92 engine, and a 1993 model year Cummins L10 engine. Results were compared to United States’ mobile source inventory for on-road diesel engines, as well as historic and modern diesel engine emission values. The test fuel contained chlorine at 9.8 ppm which is 1.5 orders of magnitude above what is found in current diesel fuel and 3900 ppm sulfur to simulate fuels that would have been available when these engines were produced. Results indicate PCDD/F emissions of 13.1, 7.1, and 13.6 pg International Toxic Equivalency (I-TEQ) L−1 fuel consumed for the three engines respectively, where non-detects are equal to zero. This compares with a United States’ mobile source on-road diesel engine inventory value of 946 pg I-TEQ L−1 fuel consumed and 1.28 pg I-TEQ L−1 fuel consumed for modern engines equipped with a catalyzed diesel particle filter and urea selective catalytic reduction. PCB emissions are 2 orders of magnitude greater than modern diesel engines. PAH results are representative of engines from this era based on historical values and are 3-4 orders of magnitude greater than modern diesel engines.  相似文献   

14.
Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer, and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However, the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction.
Implications:The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use of water-emulsified diesel helps improve the effectiveness of the testing program. The analyzed consequences provide useful information to the government for setting policies to curb pollutant emissions from a light-duty diesel engine generator more effectively.  相似文献   

15.
The impact of vehicular emissions on air depends, among other factors, on the composition of fuel and the technology used to build the engines. The reduction of vehicular emissions requires changes in the fuel composition, and improving the technologies used in the manufacturing of engines and for the after-treatment of gases. In general, improvements to diesel engines have targeted not only emission reductions, but also reductions in fuel consumption. However, changes in the fuel composition have been shown to be a more rapid and effective alternative to reduce pollution. Some factors should been taken into consideration when searching for an alternative fuel to be used in diesel engines, such as emissions, fuel stability, availability and its distribution, as well as its effects on the engine durability. In this work, 45 fuel blends were prepared and their stability was evaluated. The following mixtures (v/v/v) were stable for the 90-day period and were used in the emission study: diesel/ethanol – 90/10%, diesel/ethanol/soybean biodiesel – 80/15/5%, diesel/ethanol/castor biodiesel – 80/15/5%, diesel/ethanol/residual biodiesel – 80/15/5%, diesel/ethanol/soybean oil – 90/7/3%, and diesel/ethanol/castor oil – 90/7/3%. The diesel/ethanol fuel showed higher reduction of NOx emission at a lower load (2 kW) when compared with pure diesel. The other fuels showed a decrease of NOx emissions in the ranges of 6.9–75% and 4–85% at 1800 rpm and 2000 rpm, respectively. The combustion efficiencies of the diesel can be enhanced by the addition of the oxygenate fuels, like ethanol and biodiesel/vegetable oil, resulting in a more complete combustion in terms of NOx emission. In the case of CO2 the decreases were in the ranges of 5–24% and 4–6% at 1800 rpm and 2000 rpm, respectively. Meanwhile, no differences were observed in CO emission. The carbonyl compounds (CC) studied were formaldehyde, acetaldehyde, propionaldehyde, acrolein, acetone, crotonaldehyde, butyraldehyde, butanone, benzaldehyde, isovaleraldehyde, valeraldehyde, o-toluenaldehyde, m-toluenaldehyde, p-toluenaldehyde, hexaldehyde, octaldehyde, 2,5-dimethylbenzaldehyde, and decaldehyde. Among them, formaldehyde, acetaldehyde, acetone, and propionaldehyde showed the highest emission concentrations. When ternary blend contains vegetable oil, there is a strong tendency to increase the emissions of the high weight CC and decrease the emissions of the low weight CC. The highest concentration of acrolein was observed when the fuel contains diesel, ethanol and biodiesel. With the exception of NOx, the use of ternary blended fuels resulted on the increase in the emission rates of the studied compounds.  相似文献   

16.
Background, aim, and scope  To enforce the implementation of the Kyoto Protocol targets, a number of governmental/international institutions have launched emission trade schemes as an approach to specify CO2 caps and to regulate the emission trade in recent years. These schemes have been basically applied for large industrial sectors, including energy producers and energy-intensive users. Among them, cement plants are included among the big greenhouse gas (GHG) emitters. The use of waste as secondary fuel in clinker kilns is currently an intensive practice worldwide. However, people living in the vicinity of cement plants, where alternative fuels are being used, are frequently concerned about the potential increase in health risks. In the present study, a cost–benefit analysis was applied after substituting classical fuel for sewage sludge as an alternative fuel in a clinker kiln in Catalonia, Spain. Materials and methods  The economical benefits resulting in the reduction of CO2 emissions were compared with the changes in human health risks due to exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and carcinogenic metals (As, Cd, Co, and Cr) before and after using sewage sludge to generate 20% of the thermal energy needed for pyro-processing. The exposure to PCDD/Fs and metals through air inhalation, soil ingestion and dermal absorption was calculated according to the environmental levels in soil. The carcinogenic risks were assessed, and the associated cost for the population was estimated by considering the DG Environment’s recommended value for preventing a statistical fatality (VPF). In turn, the amount of CO2 emitted was calculated, and the economical saving, according to the market prices, was evaluated. Results  The use of sewage sludge as a substitute of conventional energy meant a probability cancer decrease of 4.60 for metals and a cancer risk increase of 0.04 for PCDD/Fs. Overall, a net reduction of 4.56 cancers for one million people can be estimated. The associated economical evaluation due to the decreasing cancer for 60,000 people, the current population living near the cement plant, would be of 0.56 million euros (US$ 0.83 million). In turn, a reduction of 144,000 tons of CO2 emitted between 2003 and 2006 was estimated. Considering a cost of 20 euros per ton of CO2, the global saving would be 2.88 million euros (US$ 4.26 million). Discussion  After the partial substitution of the fuel, the current environmental exposure to metals and PCDD/Fs would even mean a potential decrease of health risks for the individuals living in the vicinity of the cement plant. The total benefit of using sewage sludge as an alternative fuel was calculated in 3.44 million euros (US$ 5.09 million). Environmental economics is becoming an interesting research field to convert environmental benefits (i.e., reduction of health risks, emission of pollutants, etc.) into economical value. Conclusions  The results show, that while the use of sewage sludge as secondary fuel is beneficial for the reduction in GHG emissions, no additional health risks for the population derived from PCDD/F and metal emissions are estimated. Recommendations and perspectives  Cost–benefit analysis seems to be a suitable tool to estimate the environmental damage and benefit associated to industrial processes. Therefore, this should become a generalized practice, mainly for those more impacting sectors such as power industries. On the other hand, the extension of the study could vastly be enlarged by taking into account other potentially emitted GHGs, such as CH4 and N2O, as well as other carcinogenic and non-carcinogenic micropollutants.  相似文献   

17.
Mercury (Hg) emissions from gasoline, diesel, and liquefied petroleum gas (LPG) vehicles were measured and speciated (particulate, oxidized, and elemental mercury). First, three different fuel types were analyzed for their original Hg contents; 571.1±4.5 ng L−1 for gasoline, 185.7±2.6 ng L−1 for diesel, and 1230.3±23.5 ng L−1 for LPG. All three vehicles were then tested at idling and driving modes. Hg in the exhaust gas was mostly in elemental form (Hg0), and no detectable levels of particulate (Hgp) or oxidized (Hg2+) mercury were measured. At idling modes, Hg concentrations in the exhaust gas of gasoline, diesel, and LPG vehicles were 1.5–9.1, 1.6–3.5, and 10.2–18.6 ng m−3, respectively. At driving modes, Hg concentrations were 3.8–16.8 ng m−3 (gasoline), 2.8–8.5 ng m−3 (diesel), and 20.0–26.9 ng m−3 (LPG). For all three vehicles, Hg concentrations at driving modes were higher than at idling modes. Furthermore, Hg emissions from LPG vehicle was highest of all three vehicle types tested, both at idling and driving modes, as expected from the fact that it had the highest original fuel Hg content.  相似文献   

18.
Background Aims, and Scope. Lead (Pb) is a naturally occurring element that poses environmental hazards when present at elevated concentration. It is being released into the environment because of industrial uses and from the combustion of fossil fuels. Hence, Pb is ubiquitous throughout global ecosystems. The existence of potentially harmful concentrations of Pb in the environment must be given full attention. Emissions from vehicles are major source of environmental contamination by Pb. Thus, it becomes imperative that concentrations of Pb and other hazardous materials in the environment not only in the Philippines, but elsewhere in the world be adequately examined in order that development of regulations and standards to minimize risk associated with these materials in urban areas is continued. The objectives of this study were: (1) to determine the levels of Pb in soil from selected urbanized cities in central region of the Philippines; (2) to identify areas with soil Pb concentration values that exceed estimated natural concentrations and allowable limits; and (3) to determine the possible sources that contribute to elevated soil Pb concentration (if any) in the study area. Methods This study was limited to the determination of Pb levels in soils of selected urbanized cities located in central region in the Philippines, namely: Site 1 – Tarlac City in Tarlac; Site 2 – Cabanatuan City in Nueva Ecija; Site 3 – Malolos City in Bulacan; Site 4 – San Fernando City in Pampanga; Site 5 – Balanga City in Bataan; and Site 6 – Olongapo City in Zambales. Soil samples were collected from areas along major thoroughfares regularly traversed by tricycles, passenger jeepneys, cars, vans, trucks, buses, and other motor vehicles. Soil samples were collected from five sampling sites in each of the study areas. Samples from the selected sampling sites were obtained approximately 2 to 3 meters from the road. Analysis of the soil samples for Pb content was conducted using an atomic absorption spectrophotometer. This study was conducted from 2003 to 2004. Since this study assumed that vehicular emission is the major source of Pb contamination in urban soil, other information which the researchers deemed to have bearing on the study were obtained such as relative quantity of each gasoline type disposed of in each city within a given period and volume of traffic in each sampling site. A survey questionnaire for gasoline station managers was prepared to determine the relative quantity of each fuel type (diesel, regular gasoline, premium gasoline, and unleaded gasoline) disposed of or sold within a given period in each study area. Results and Discussion Analysis of soil samples for Pb content showed the presence of Pb in all the soil samples collected from the 30 sampling sites in the six cities at varying concentrations ranging from 1.5 to 251 mg kg–1. Elevated levels of Pb in soil (i.e. greater than 25 mg kg–1 Pb) were detected in five out of the six cities investigated. Site 4 recorded the highest Pb concentration (73.9 ± 94.4 mg kg–1), followed by Site 6 (56.3 ± 17.1 mg kg–1), Site 3 (52.0 ± 33.1 mg kg–1), Site 5 (39.3 ± 19.0 mg kg–1), and Site 2 (38.4 ± 33.2 mg kg–1). Soil Pb concentration in Site 1 (16.8 ± 12.2 mg kg–1) was found to be within the estimated natural concentration range of 5 to 25 mg kg–1. Site 1 registered the least Pb concentration. Nonetheless, the average Pb concentration in the soil samples from the six cities studied were all found to be below the maximum tolerable limit according to World Health Organization (WHO) standards. The high Pb concentration in Site 4 may be attributed mainly to vehicular emission. Although Site 4 only ranked 3rd in total volume of vehicles, it has the greatest number of Type B and Type C vehicles combined. Included in these categories are diesel trucks, buses, and jeepneys which are considered the largest contributors of TSP (total suspended particles) and PM10 (particulate matter less than 10 microns) emissions. Conclusion Only one (San Juan in Site 4) of the thirty sampling sites recorded a Pb concentration beyond the WHO permissible limit of 100 mg kg–1. San Juan in Site 4 had a Pb concentration of >250 mg kg–1. On the average, elevated Pb concentration was evident in the soil samples from San Fernando, Olongapo, Malolos, Balanga, and Cabanatuan. The average soil Pb concentrations in these cities exceeded the maximum estimated natural soil Pb concentration of 25 mg kg–1. Average soil Pb concentration in Site 1 (16.8 mg kg–1) was well within the estimated natural concentration range of 5 to 25 mg kg–1. Data gathered from the study areas showed that elevated levels of Pb in soil were due primarily to vehicular emissions and partly to igneous activity. Recommendation and Outlook The findings of this study presented a preliminary survey on the extent of Pb contamination of soils in urban cities in central region of Philippines Island. With this kind of information on hand, government should develop a comprehensive environmental management strategy to address vehicular air pollution in urban areas, which shows as one of the most pressing environmental problems in the country. Basic to this is the continuous monitoring of Pb levels and other pollutants in air, soil, and water. Further studies should be conducted to monitor soil Pb levels in the six cities studied particularly in areas with elevated Pb concentration. The potential for harm from Pb exposure cannot be understated. Of particular concern are children who are more predisposed to Pb toxicity than adults. Phytoremediation of Pb-contaminated sites is strongly recommended to reduce Pb concentration in soil. Several studies have confirmed that plants are capable of absorbing extra Pb from soil and that some plants, grass species in particular, and can naturally absorb far more Pb than others.  相似文献   

19.
Tansel B  Pascual B 《Chemosphere》2011,85(7):1182-1186
In coastal areas, estuaries, and inland waters, dispersant use after oil spills is not allowed due to sensitivity of the ecosystems. The purpose of this study was to investigate the removal of emulsified fuel oils from brackish and pond water by dissolved air flotation (DAF) with and without use of coagulants. Experiments were conducted with a 60 L DAF system. Fuel oil-water emulsions were prepared with regular unleaded gasoline, jet fuel, and diesel fuel mixed at 1:1:1 (v/v/v) ratio. Batch and continuous runs were conducted at air pressurization of 354.6 kPa. During both batch and continuous modes, significant petroleum hydrocarbon (PHC) removal was achieved within 10 min. Coagulant addition initially increased the PHC removal by about 5-15%. However, effectiveness of the coagulant was not significant after 20 min due to breakage of the aggregates. In general, the pond water had higher PHC removal than the brackish water. With longer run times, PHC removal improved slightly and the effluent contained increasing fractions of higher molecular weight compounds indicating that PHC removal was due to both DAF and stripping processes. Results indicate that DAF process can be effective both with and without the use of coagulants for removing PHCs from brackish and pond waters.  相似文献   

20.
《Chemosphere》1987,16(7):1475-1487
The literature concerning the fate of light hydrocarbon fuel spills on water is reviewed. The review focuses on jet fuels and contains some discussion of gasoline, diesel, marine and kerosene fuel spills. The two major fates of light hydrocarbon spill on water are evaporation and dissolution, although biodegradation, photooxidation and adsorption onto suspended sediments can also be of some importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号