首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SBR中SRT对总细菌群落结构的影响研究   总被引:1,自引:0,他引:1  
为了揭示序批式反应器不同污泥停留时间(SRT)下总细菌群落结构的异同及SRT变化对总细菌群落结构的影响,应用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)进行研究。通过克隆测序发现,不同的SRT条件下生物多样性和种群结构会有所差异,既存在各SRT条件下相同的优势菌群(Escherichia coli和Aeromonas sp.),也存在某些SRT下特有的优势菌群(Uncultured Peptostreptococcaceae),SRT为40 d时检测到以降解硫酸盐获得能源的优势微生物。研究还表明,SRT为40 d时多样性指数取得最大值,各SRT条件下微生物的种群相似性差别较大。  相似文献   

2.
利用以生物絮凝剂(1 g/L MBF-28)与化学絮凝剂(5 g/L PAC)复配后的复合絮凝剂CBF28C处理景观水体,考虑了复配比、投加量、pH和投加顺序对处理景观水的影响。实验结果表明:对于反应体系为100 mL景观水体,当MBF-28与PAC溶液复配体积比为3∶1,反应体系pH为7.0,1 mL 1%CaCl2作助凝剂,1.5 mL CBF28C时,其絮凝效果最好,其COD,色度,TN,TP的去除率分别为90.7%,54.1%、46.6%和51.5%。最佳水力条件为:快速320 r/min,快搅时间45 s,慢速80 r/min,慢搅时间100 s。并且得出了前10 min内絮凝率的反应关系方程式。  相似文献   

3.
微波预处理对制革污泥絮凝脱水性能的影响   总被引:2,自引:0,他引:2  
分别采用微波、絮凝剂和微波联合絮凝剂对制革污泥进行脱水预处理,考察不同处理条件下制革污泥沉降速率(SV30)、毛细吸水时间(CST)和污泥比阻(SRF)的变化,并通过粘度、水分分布和微观结构的变化探讨相关的脱水机理。结果表明,在微波输出功率为648 W、辐射时间为60 s的预处理条件下,阳离子聚丙烯酰胺(CPAM)投加剂量为8 mg/L时,污泥脱水性能达到最佳。与单独添加絮凝剂的污泥脱水相比,该条件下的SV30、CST和SRF分别降低了25.0%、48.9%和34.7%。污泥絮凝脱水前进行微波预处理能够进一步提高污泥的脱水性能,微波辐射联合CPAM进行污泥脱水时,CPAM则起主要脱水作用。微波辐射通过破坏污泥絮体结构,改变污泥中的水分分布,降低污泥的粘度,从而提高污泥的脱水性能。  相似文献   

4.
研究有机碳源对SBBR厌氧氨氧化菌群等微生物的影响。采用16S rDNA序列与PCR-DGGE分析技术相结合的方法,对稳定运行的反应器内的活性污泥和生物膜样品,进行细菌多样性图谱分析,同时采用巢式PCR-DGGE技术对浮霉状菌属(Planctomycetes)细菌进行分析。结果表明,在有机碳源反应系统细菌条带数和多样性指数均高于无机系统,与活性污泥相比,生物膜表尤为明显。当进水不含有机碳源时,氨氧化细菌(ammonia oxidizing bacteria,AOB),厌氧氨氧化菌(anaerobic ammonia oxidizing bacteria,ANAMMOX)为优势功能菌;当进水含有机碳源时,系统中存在的AOB以亚硝化单胞菌(Nitrosomonas sp.)为优势菌群,同时存在反硝化菌,如索氏菌(Thauera sp.)以及厌氧氨氧化菌,它们共同作用完成N的去除。此外,与无机碳源系统相比,有机碳源的存在,有利于浮霉状菌的积累,但压缩了ANAMMOX的生存空间。本研究可为厌氧氨氧化工艺处理低C/N比有机废水提供了理论依据。  相似文献   

5.
在温室条件下进行了15周的盆栽实验,考察了施用城市污泥堆肥后,土壤中养分含量的变化规律,重点研究了施用城市污泥堆肥对土壤微生物群落结构变化的影响。实验发现,污泥堆肥能改善土壤养分,有机质和氮、磷含量得到显著提高。经PCR—DGGE分析,施肥1周后土壤中细菌和真菌的群落结构均发生了较大的变化。随着施肥时间的延长,细菌在富含有机质及氮、磷等养分的土壤环境下大量生长,多样性提高,其优势菌群属于γ变形菌、α变形菌和芽单胞菌;随着有机质的不断消耗,细菌的生长活性受到抑制,最终由于养分的缺乏,细菌种群多样性呈现小幅度的降低,优势菌群变为绿弯菌门、γ变形菌亚纲和厚壁菌门。对于真菌,其多样性指数在堆肥前3周逐渐提升,在第3~12周的监测中呈现相对稳定的变化趋势,优势菌群主要为座囊菌纲和散囊菌纲。  相似文献   

6.
Carbofuran (CBF) removal in a continuous-flow photocatalytic reactor with granular activated carbon supported titanium dioxide (GAC-TiO2) catalyst was investigated. The effects of feed flow rate, TiO2 concentration and addition of supplementary oxidants on CBF removal were investigated. The central composite design (CCD) was used to design the experiments and to estimate the effects of feed flow rate and TiO2 concentration on CBF removal. The outcome of CCD experiments demonstrated that reactor performance was influenced mainly by feed flow rate compared to TiO2 concentration. A second-order polynomial model developed based on CCD experiments fitted the experimental data with good correlation (R2 ~ 0.964). The addition of 1 mL min?1 hydrogen peroxide has shown complete CBF degradation and 76% chemical oxygen demand removal under the following operating conditions of CBF ~50 mg L?1, TiO2 ~5 mg L?1 and feed flow rate ~82.5 mL min?1. Rate constant of the photodegradation process was also calculated by applying the kinetic data in pseudo-first-order kinetics. Four major degradation intermediates of CBF were identified using GC-MS analysis. As a whole, the reactor system and GAC-TiO2 catalyst used could be constructive in cost-effective CBF removal with no impact to receiving environment through getaway of photocatalyst.  相似文献   

7.
Wu CY  Peng YZ  Wang RD  Zhou YX 《Chemosphere》2012,86(8):767-773
The granulation of activated sludge was investigated using two parallel sequencing batch reactors (SBRs) operated in biological nitrogen and phosphorus removal conditions though the reactor configuration and operating parameters did not favor the granulation. Granules were not observed when the SBR was operated in biological nitrogen removal period for 30 d. However, aerobic granules were formed naturally without the increase of aeration intensity when enhanced biological phosphorus removal (EBPR) was achieved. It can be detected that plenty of positive charged particles were formed with the release of phosphorus during the anaerobic period of EBPR. The size of the particles was about 5-20 μm and their highest positive ζ potential was about 73 mV. These positive charged particles can stimulate the granulation. Based on the experimental results, a hypothesis was proposed to interpret the granulation process of activated sludge in the EBPR process in SBR. Dense and compact subgranules were formed stimulated by the positive charged particles. The subgranules grew gradually by collision, adhesion and attached growth of bacteria. Finally, the extrusion and shear of hydrodynamic shear force would help the maturation of granules. Aerobic granular SBR showed excellent biological phosphorus removal ability. The average phosphorus removal efficiency was over 95% and the phosphorus in the effluent was below 0.50 mg L−1 during the operation.  相似文献   

8.

The purpose of this study is to investigate the enhancement of polycaprolactone (PCL) on total nitrogen (TN) removal of coal pyrolysis wastewater (CPW) with low COD to nitrogen ratio by partial nitrification-denitrification bioprocess (PNDB) in one single reactor. With the innovative combination of PCL and PNDB, the TN removal efficiency in the experimental reactor (signed as R1) was 10.21% higher than control reactor (R2). Nitrite accumulation percentage (NAP) in R1 was 82.02%, which was 17.49% higher than R2 at the dissolved oxygen (DO) concentration of 0.9–1.5 mg/L, for the reason that the extra DO was consumed by PCL biodegradation at the aerobic period. Gel permeation chromatography (GPC) results demonstrated that organics with the molecular weight of 185 Da, which could serve as additional carbon sources for denitrifiers, were generated during the PCL hydrolysis process at the anoxic period. PCL was hydrolyzed by extracellular enzymes with the break of the ester bond which was confirmed by FT-IR spectrometer. Microbial community analysis revealed that Ferruginibacter was the dominant hydrolysis bacteria in R1. Nitrosomonas were the main ammonium-oxidizing bacteria (AOB) and Hyphomicrobium were the denitrifiers in this study.

  相似文献   

9.

Performance and microbial community composition were evaluated in a two-phase anaerobic and aerobic system treating sulfate-rich cellulosic ethanol wastewater (CEW). The system was operated at five different chemical oxygen demand (COD)/SO4 2− ratios (63.8, 26.3, 17.8, 13.7, and 10.7). Stable performance was obtained for total COD removal efficiency (94.5%), sulfate removal (89.3%), and methane production rate (11.5 L/day) at an organic loading rate of 32.4 kg COD/(m3·day). The acidogenic reactor made a positive contribution to net VFAs production (2318.1 mg/L) and sulfate removal (60.9%). Acidogenic bacteria (Megasphaera, Parabacteroides, unclassified Ruminococcaceae spp., and Prevotella) and sulfate-reducing bacteria (Butyrivibrio, Megasphaera) were rich in the acidogenic reactor. In the methanogenic reactor, high diversity of microorganisms corresponded with a COD removal contribution of 83.2%. Moreover, methanogens (Methanosaeta) were predominant, suggesting that these organisms played an important role in the acetotrophic methanogenesis pathway. The dominant aerobic bacteria (Truepera) appeared to have been responsible for the COD removal of the SBR. These results indicate that dividing the sulfate reduction process could effectively minimize sulfide toxicity, which is important for the successful operation of system treating sulfate-rich CEW.

  相似文献   

10.
Background, aim, and scope  In this work, the potential for using olive-mill solid waste as an organic amendment for biochemical and biological restoration of a trichloroethylene-contaminated soil, which has previously been stabilized through vermicomposting processes, has been explored. Materials and methods  Trichloroethylene-contaminated water was pumped into soil columns with a layer of vermicompost at 10-cm depth (biobarrier system). The impacts of the trichloroethylene on the microbial community were evaluated by determining: (1) the overall microbial activity (estimated as dehydrogenase activity) and enzyme activities related to the main nutrient cycles (β-glucosidase, o-diphenoloxidase, phosphatase, urease, and arylsulphatase activities). In addition, isoelectric focusing of the soil extracellular humic-β-glucosidase complexes was performed to study the enzymatically active humic matter related to the soil carbon cycle. (2) The soil bacterial diversity and the molecular mechanisms for the bacterial resistance to organic solvents were also determined. For this, polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) was used to detect changes in bacterial community structure and PCR-single-strand conformational polymorphism (SSCP) was developed and optimised for detection and discrimination of the resistance-nodulation-division (RND) genes amplified from the contaminated soils. Results  Vermicompost reduced, with respect to the unamended soil, about 30% of the trichloroethylene leaching during the first month of the experiment. Trichloroethylene had a marked negative effect on soil dehydrogenase, β-glucosidase, urease, phosphatase, and arylsulphatase activities. Nevertheless, the vermicompost tended to avoid this toxic effect. Vermicompost also displays stable humic-β-glucosidase complexes that increased the extracellular activity related to C-cycle in the contaminated soils. The isoelectric focusing technique showed a more biochemically active humic matter in the soil sampled under the vermicompost. The behaviour of the three main phyla of bacteria isolated from the DGGE bands was quite different. Bands corresponding to Actinobacteria disappeared, whereas those affiliated with Proteobacteria remained after the trichloroethylene contamination. The disappeared Actinobacteria became visible in the soil amended with the vermicompost. Bands corresponding to Bacteriodetes appeared only in columns of contaminated soils. In this study, six types of RND proteins were detected by PCR-SSCP in the natural soil, three in the trichloroethylene-contaminated soil and 7/5 in trichloroethylene-contaminated soil above/below the vermicompost in the biobarrier columns. Trichloroethylene tended to reduce or eliminate all the clones detected in the uncontaminated soil, whereas new efflux pumps appeared in the biobarrier columns. Discussion  Although enzymes incorporated into the humic substances of vermicomposted olive wastes are quite stable, trichloroethylene also inhibited the background levels of the soil extracellular β-glucosidase activity in the amended soils. The decrease was less severe in the biobarrier system, but in any case, no relation was found between the levels of trichloroethylene in soil and extracellular β-glucosidase activity, or between the latter and the quantity of humic carbon in soils. The isoelectric focusing technique was carried out in the humic fraction to determine whether the loss of activity occurred in overall extracellular β-glucosidase or in that linked to stable humic substances (humic–enzyme complexes). The contaminated soils showed the lower enzyme activities, whereas contaminated and amended soils presented greater quantity of focalised (and therefore stable) humic carbon and spectra heterogeneity: very different bands with higher enzyme activities. No clear relationship between trichloroethylene concentration in soil and diversity of the bacterial population was noted. Similar patterns could be found when the community structures of bacteria and microbial activity were considered. Since the use of the dehydrogenase assay has been recognised as a useful indicator of the overall measure of the intensity of microbial metabolism, these results could be attributed to PCR-DGGE methodology, since the method reveals the presence of dominant populations regardless of their metabolic state. Trichloroethylene maintained or even increased the number of clones with the DNA encoding for RND proteins, except for the contaminated soil located above the vermicompost. However, the main effect of trichloroethylene was to modify the structure of the community in contaminated soils, considering the type of efflux pumps encoded by the DNA extracted from soil bacteria. Conclusions  Trichloroethylene inhibited specific functions in soil and had a clear influence on the structure of the autochthonous bacterial community. The organic matter released by the vermicomposted olive waste tended to avoid the toxic effect of the contaminant. Trichloroethylene also inhibited the background levels of the soil extracellular β-glucosidase activity, even when vermicompost was present. In this case, the effect of the vermicompost was to provide and/or to stimulate the humic-β-glucosidase complexes located in the soil humic fraction >104, increasing the resistance of the enzyme to the inhibition. The bacterial community from the soil presented significantly different mechanisms to resistance to solvents (RND proteins) under trichloroethylene conditions. The effect of the vermicompost was to induce these mechanisms in the autochthonous bacterial community and/or incorporated new bacterial species, able to grow in a trichloroethylene-contaminated ambient. Coupled biochemical and molecular methodologies are therefore helpful approaches in assessing the effect of an organic amendment on the biochemical and biological restoration of a trichloroethylene-contaminated soil. Recommendations and perspectives  Since the main biochemical and biological effects of the organic amendment on the contaminated soil seem to be the incorporation of biochemically active humic matter, as well as new bacterial species able to grow in a trichloroethylene-contaminated ambient, isoelectric focusing and PCR-SSCP methodologies should be considered as parts of an integrated approach to determine the success of a restoration scheme.  相似文献   

11.
The long-term operational stability (159 d) in removal of organics and ammonia from synthetic wastewater was investigated. The experiment was carried out in two identical plug flow membrane bioreactors (MBR) (each with a submerged A4 Kubota membrane) operated under aerobic conditions. The vacuum distillate of a crude oil fraction in the emulsified state, which was used to model the petroleum pollutants, was added into the feed medium. The performance of biological treatment was evaluated by physicochemical analyses such as nitrogen forms, COD, and BOD. Additionally, monitoring of PAHs in the wastewaters was performed using HPLC-diode array detector. Moreover, the community structure of bacteria was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis. The MBR treatment was very effective with reduction by more than 90% of COD and Total Organic Carbon. Nearly complete removal of petroleum originated non-polar micropollutants was observed. The influence of the highest dosage of petroleum pollutants (1000 μLL(-1)) on the bacterial community was noted.  相似文献   

12.
Effects of Cd and Pb on soil microbial community structure and activities   总被引:6,自引:0,他引:6  

Background, aim, and scope  

Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied.  相似文献   

13.
采用A/O工艺膜生物反应器(MBR),以生活污水为处理对象,考察了系统的脱氮特性,并采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)与荧光原位杂交(FISH)技术对系统中硝化菌群进行了分子检测.结果表明,A/O工艺MBR处理生活污水,TN去除率在85%左右,NH3-N去除率在95%以上;DGGE图谱显示,随着系统运行时间的延长,硝化菌群数量逐渐增加,并且不同菌种的丰度也发生了变化;FISH检测显示,系统中硝化菌的优势菌种为氨氧化菌和亚硝酸氧化菌.应用Motic Fluo 1.0软件对FISH结果进行分析,结果显示,系统运行初期到末期,氨氧化菌占硝化菌的比例一直保持在25%左右;亚硝酸氧化菌占硝化菌的比例由系统运行初期的35%逐渐增加到系统运行末期的55%左右.  相似文献   

14.
Koenig A  Zhang T  Liu LH  Fang HH 《Chemosphere》2005,58(8):1041-1047
The 16S rDNA-based molecular technique was applied to analyze the microbial community of autotrophic denitrification bacteria in a biofilm developed on the surface of sulfur particles and then the biochemistry process involved in this biofilm was discussed based on the microbial community analysis. Six key operational taxonomy units were identified, which were all unknown species belonging to a wide range of bacteria from four major subdivisions (alpha, beta, gamma and delta) of the kingdom Proteobacteria and from the kingdom Chlorobia (green sulfur bacteria). One species was chemoautotrophic and related to Thiobacillus denitrificans, two species were photoautotrophic, and three were chemoheterotrophic. Contrary to expectation, T. denitrificans-like bacteria constituted only 32% of the microbial community. As a result of the study, the entire microbiology of the autosulfurotrophic denitrification process as well as the interactions between the different microbial groups in the biofilm may need to be reconsidered.  相似文献   

15.
生物化学协同除磷研究   总被引:7,自引:0,他引:7  
采用聚合硅酸铝和聚合硅酸铁两种混凝剂,比较了将混凝剂直接投加到反应器中和对生物反应器出水再进行混凝沉淀2种工艺的除磷效果,并对2种混凝剂的除磷效果进行了比较。结果表明:对于聚合硅酸铝,没有生物协同作用;对于聚合硅酸铁,投加量在40mg/L以下时具有生物协同作用,30mg/L时协同作用最明显;而且聚合硅酸铁的除磷效果好于聚合硅酸铝。  相似文献   

16.
采用聚合硅酸铝和聚合硅酸铁两种混凝剂,比较了将混凝剂直接投加到反应器中和对生物反应器出水再进行混凝沉淀2种工艺的除磷效果,并对2种混凝剂的除磷效果进行了比较.结果表明:对于聚合硅酸铝,没有生物协同作用;对于聚合硅酸铁,投加量在40 mg/L以下时具有生物协同作用,30 mg/L时协同作用最明显;而且聚合硅酸铁的除磷效果好于聚合硅酸铝.  相似文献   

17.
流态对活性污泥硝化性能及菌群结构的影响   总被引:1,自引:0,他引:1  
生化反应器流态会影响基质分布,从而影响反应器内微生物的性能与菌群结构。在相同氮负荷下运行SBR和CSTR以对比分析2种典型流态(推流式和完全混合式)对活性污泥中硝化菌性能及其菌群结构的影响。结果表明,SBR中,氨氧化速率(AUR)和亚硝酸盐氧化速率(NUR)分别为(16.55±2.05)mg N/(L·g VSS·h)和(15.33±2.02)mg N/(L·g VSS·h),CSTR中AUR和NUR分别为(10.13±0.73)mg N/(L·g VSS·h)和(9.34±2.56)mg N/(L·g VSS·h);SBR中,氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)含量分别为(3.4±0.3)%和(5.4±1.2)%,优势菌分别为Nitrosomonas europaea-Nitrosococcus mobilis lineage和Nitrobacter,CSTR中,AOB和NOB含量分别(3.1±0.4)%和(6.8±1.1)%,优势菌分别为Nitrosospira和Nitrospira。虽然2个流态下的硝化菌含量接近,但推流式的硝化速率比完全混合式高64%,这是因为推流式更有利于反应速率较快的r-strategist(Nitrosomonas europaea-Nitrosococcus mobilis lineage和Nitrobacter)生存,而完全混合式则更利于反应速率较慢K-strategist(Nitrosospira和Nitrospira)生存。  相似文献   

18.
This study investigated the nitrifying community structure in a single-stage submerged attached-growth bioreactor (SAGB) that successfully achieved stable nitrogen removal over nitrite of a high-strength ammonia wastewater. The reactor was operated with intermittent aeration and external carbon addition (methanol). With influent ammonia and total Kjeldahl nitrogen ranging from 537 to 968 mg/L and 643 to 1510 mg/L, respectively, 85% nitrogen removal was obtained, and effluent was dominated by nitrite (NO2-/NOx > 0.95). Nitrifying community analysis using fluorescence in situ hybridization (FISH), with a hierarchical set of probes targeting known ammonia-oxidizing bacteria (AOB) within beta-proteobacteria, showed that the AOB community of the biofilter consists almost entirely of members of the Nitrosomonas europaea/eutropha and the Nitrosococcus mobilis lineages. Image analysis of FISH pictures was used to quantify the identified AOB, and it was estimated that Nitrosomonas europaea/eutropha-like AOB accounted for 4.3% of the total volume of the biofilm, while Nitrosococcus mobilis-like AOB made up 1.2%; these numbers summed up to a total AOB fraction of 5.5% of the total volume on the biofilm. Nitrite-oxidizing bacteria (NOB) were not detectable in the biofilm samples with probes for either Nitrospira sp. or Nitrobacter sp., which indicated that NOB were either absent from the biofilters or present in numbers below the detection limit of FISH (< 0.1% of the total biofilm). Nitrite oxidizers were likely outcompeted from the system because of the free ammonia inhibition and the possibility that the aeration period (from intermittent aeration) was not sufficiently long for the NOB to be released from the competition for oxygen with heterotrophs and AOB. The nitrogen removal via nitrite in a SAGB reactor described in this study is applicable for high-ammonia-strength wastewater treatment, such as centrate or industrial wastes.  相似文献   

19.
刘娟  暴勇超 《环境工程学报》2009,3(7):1209-1212
研究了有机高分子絮凝剂NCTS-M对中性兰染料的絮凝性能。通过测量絮体的Zeta电位以及对絮体进行彩色电视显微扫描初步探讨了该絮凝过程的絮凝机理。结果表明,当投加量为30 mg/L,pH=6时,絮凝效果最明显,脱色率可达93.1%。其絮凝机理主要是压缩双电层以及高分子吸附架桥作用,以压缩双电层为基础。絮凝剂中镁离子在中性条件下对絮凝过程也起到了较强的助凝作用。  相似文献   

20.
运用连续式生物吸收处理工艺,以废糖蜜发酵液作为碳源进行了微生物法去除SO2气体的研究,在简单粗放的实验条件下,研究了脱硫脱硫弧菌对较大气量SO2气体的去除效果,并对产物H2S在第二级生物反应器中的去除率进行了测定。实验结果表明,随着进气量由0.18 m3/h增大至5 m3/h,脱硫率会降低,但是随之提高搅拌速度和补料速度后,脱硫率又恢复到较高水平,当搅拌速度为590 r/min时,5 L生物反应液可以处理5 m3/h的SO2气体,1#反应器SO2去除率和2#反应器H2S去除率分别达到92%和98%以上。在气量增至5 m3/h时,1#和2#反应器补料流速分别为175 mL/h和200 mL/h时,没有亚硫酸盐和硫化物的积累,pH值和菌体浓度稳定,系统运行良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号