首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult Cancer magister make forays into hyposaline estuarine habitats during times of high food abundance. However, as weak osmoregulators, they are poorly equipped to deal with the concurrent demands of osmoregulation and digestion. Therefore, the potential interaction between nutritional status and feeding in a physiologically challenging environment was investigated. Changes in the proportion of crabs feeding, the amount of food consumed, the time spent feeding, and the efficiency with which a meal was consumed were examined in response to the length and severity of hyposaline exposure, and the duration of starvation. Reductions in the (a) number of animals feeding, (b) the amount of food consumed, and (c) the time spent feeding were observed in salinities where C. magister actively osmoregulates the concentration of its internal fluids. Although this reduction in feeding was likely a stress response, the crabs were able evaluate the level of salinity stress: there was a dose-dependent reduction in feeding, and they were able to discriminate between salinities separated by as little as 3.5‰. The likelihood that animals would feed in low salinity increased with starvation. Thus, the aversion to food uptake in physiologically stressful conditions may be overridden by the need to procure nutrients. In the natural environment, we suggest that C. magister are employing an ‘eat and run’ strategy, moving into the estuary, consuming a meal, and retreating to higher salinities to digest.  相似文献   

2.
Episodes of hypoxia are common in the marine environment, and their ecological effects depend, in part, on their severity and duration. Many species of decapod crustaceans reside in areas with fluctuating oxygen regimens. Physiological mechanisms enhance the ability of these crustaceans to cope with acute episodes of hypoxia. Southern king crab, Lithodes santolla, fishery is important in the south of South America, and some data describe fishing zones with low dissolved oxygen (DO) levels (3.5 mgO2 l−1, i.e., 8.3 kPa). Our main objective was to evaluate the effect of dissolved oxygen level on respiratory metabolism, nutritional physiology, and immunological condition of L. santolla juveniles. Individual animals were exposed for 10 days to different oxygen tensions (2.1, 4.2, 8.5, 12.7, and 21.1 kPa) to quantify the oxygen consumption rate; thereafter, blood oxyhemocyanin (Hc), protein concentration, as well as hemocytes, were sampled. Freeze-dried animals were dissected, and digestive gland metabolites (glycogen, protein, glucose, cholesterol, acylglycerol, and lactate) and digestive enzyme activity (general protease, trypsin, and chymotrypsin), as well as gill lactate dehydrogenase (LDH) activity, were quantified. In the present study, Lithodes santolla showed a critical oxygen tension between 4 and 9 kPa, indicating that this crab species is more sensitive to DO than other crustacean species. Protein and Hc concentrations followed a similar pattern to that of oxygen consumption. Digestive gland glycogen and protein concentration did not change after 10 days at different oxygen exposures, but glucose, cholesterol, and acylglycerol concentrations decreased linearly and proportionally to the available oxygen in the water. As in other decapods, chymotrypsin showed over 90% of the total quantified proteases activity. Chymotrypsin activity together with total proteases and trypsin was not affected by the environmental oxygen tension. Gill LDH and digestive gland lactate followed a similar increase at lower environmental oxygen tension but dropped sharply at the lowest tension (2.1 kPa). Dissolved oxygen affected also the immune system through reduction of hemocytes. This could provide a critical window for opportunistic pathogens to become established when crabs are exposed to hypoxic conditions. L. santolla juveniles show a moderate tolerance to low oxygen availability by modifying the concentration of hemolymph proteins, mainly OxyHc, some digestive gland metabolites, and by activating the anaerobic metabolism. This allows L. santolla juveniles to inhabit temporarily low oxygen zones in the deep ocean and suggests an advantage for culture conditions.  相似文献   

3.
Bivalves demonstrate various morphological and behavioural adaptations to reduce the risk of being attacked by predators. This paper examines how the presence of the crab Carcinus maenas (L.), a natural predator of the cockle Cerastoderma edule (L.), affects its burrowing depth and clearance or feeding rate. Cockles were placed in experimental tanks and treated with three levels of predatory disturbance: (1) unfed crab loose inside the tank, (2) unfed crab inside a cage suspended in the water column and (3) no crab present. Cockles’ burrowing depth was measured in two sediment types: mud and sand. Cockles burrowed more deeply in treatments with no crabs. Burrowing depth in sand was significantly greater than in mud. Two factors may contribute to the reduction in burial depth of C. edule in the presence of C. maenas: the change in the vertical orientation of the cockle and the ‘cough response’. No significant difference was found in the cockles’ clearance rate among the different levels of predator threat.  相似文献   

4.
Atlantic cod, Gadus morhua, were exposed to a progressive stepwise decline in water oxygen pressure Fish swimming speed and indicators of primary and secondary stress (e.g. blood cortisol and lactate) were measured to assess whether a severe shift in physiological homeostasis (i.e. stress) preceded any change in behaviour or vice versa. Swimming speed increased by 18% when was reduced rapidly from 19.9 kPa to 13.2 kPa and was interpreted as an initial avoidance response. However, swimming speed was reduced by 21% at a moderate level of steady (8.4 kPa) and continued to drop by 41% under progressively deep hypoxia (4.3 kPa). Elevations in plasma cortisol and blood lactate indicated major physiological stress but only at 4.3 kPa, which corresponds to the critical oxygen tension of this species. We propose that the drop in speed during hypoxia aids to offset major stress and is adaptive for the survival of cod in extensive areas of low oxygen.  相似文献   

5.
We examined physiological stress responses in the edible crab, Cancer pagurus, subjected to the commercial fishery practice of manual de-clawing. We measured haemolymph glucose and lactate, plus muscular glycogen and glycogen mobilisation, in three experiments where the crabs had one claw removed. In the first, crabs showed physiological stress responses when ‘de-clawed’ as compared to ‘handled only’ over the short term of 1–10 min. In the second, de-clawing and the presence of a conspecific both increased the physiological stress responses over the longer term of 24 h. In the third, de-clawing was shown to be more stressful than ‘induced autotomy’ of claws. Further, the former practice caused larger wounds to the body and significantly higher mortality than the latter. Since the fishery practice is to remove both claws, the stress response observed and mortality data reported are conservative.  相似文献   

6.
The annual occurrence of hypoxia (<25% oxygen saturation) in the bottom waters along the Swedish west coast coincides with the postlarval settlement of Norway lobster, Nephrops norvegicus (L.). This study investigates behaviour and the experimental effects of low oxygen concentrations in juvenile N. norvegicus of different ages. All experimental individuals were reared to the juvenile (postlarval) stage in the laboratory and then given sediment as a substratum. Behavioural responses to low oxygen concentrations were tested in early and late Postlarvae 1 exposed to normoxia (>80% oxygen saturation, pO2 > 16.7 kPa), moderate hypoxia (30% oxygen saturation, pO2 = 6.3 kPa) and hypoxia (25% oxygen saturation, pO2 = 5.2 kPa). The experiments were run for a maximum period of 24 h or until individuals died. Behaviour was studied using sequential video recordings of four behavioural activities: digging, walking, inactivity or flight (escape swimming up into the water column). Behaviour and mortality changed with lowered oxygen concentrations; energetically costly activities (such as walking) were reduced, and activity in general declined. In normoxia, juveniles initially walked and then burrowed, but when exposed to hypoxia they were mainly inactive with occasional outbursts of escape swimming. To increase oxygen availability the juveniles were observed to raise their bodies on stilted legs (similar to adults in hypoxic conditions), but oxygen saturations of 25% were lethal within 24 h. The results suggest that the main gas exchanges of early postlarval stages occur over the general body surface. Burrowing behaviour was tested in Postlarvae 1 and 2 of different ages held in >80% oxygen saturation for 1 wk. The difference in time taken to complete a V-shaped depression or a U-shaped burrow was measured. The results showed a strong negative relationship between postlarval age and burrowing time, but all individuals made a burrow. Juveniles were more sensitive to hypoxia than adults. Thus, the possible consequences of episodic hypoxia for the recruitment of Nephrops norvegicus and for the recolonization of severely affected areas are discussed. Received: 4 August 1996 / Accepted: 11 October 1996  相似文献   

7.
Although both chronic and episodic hypoxia (O2<2 mg l–1) alter the distribution and abundance patterns of mobile animals within estuaries, recent evidence suggests that some animals may be more likely to remain within hypoxic or anoxic water than others, due to differences in physiological tolerance and movement responses to the dynamics of hypoxia. Determining avoidance responses to hypoxia is important for identifying the species most susceptible to the direct and indirect impacts of these events. A trawl survey was used to examine the avoidance responses of blue crabs (Callinectes sapidus) and several fish [pinfish (Lagodon rhomboides), spot (Leiostomus xanthurus), Atlantic croaker (Micropogonias undulatus), bay anchovy (Anchoa mitchilli), and paralichthid flounders (Paralichthys dentatus and Paralichthys lethostigma)] to chronic hypoxia and episodic hypoxic upwelling events in the Neuse River Estuary, North Carolina, USA. Trawl collections were made in three depth strata (3.0–4.6 m, 1.7–3.0 m, and 0.9–1.7 m depth) to quantify changes in the depth-specific distribution and abundance patterns of the six most common estuarine taxa during three dissolved oxygen conditions: normoxia, chronic hypoxia, and episodic hypoxic upwelling events. Pinfish, anchovies, blue crabs, and paralichthid flounder abundance increased with increasing dissolved oxygen concentrations. The two taxa most closely associated with the bottom (blue crabs and flounder) showed the strongest avoidance response to hypoxia. All taxa showed a stronger avoidance response to chronic hypoxia as compared to episodic hypoxic upwelling events. This difference is attributed to a reduced ability to avoid the rapid intrusions of hypoxic water during episodic events, or to increased risks of injury and predation in shallow refuge habitats, which may force some individuals back into hypoxic water.Communicated by J.P. Grassle, New Brunswick  相似文献   

8.
Specimens of the Dungeness crab Cancer magister, were collected subtidally and intertidally from an estuary in Washington State, USA in June and September 1980, and January, April, May and July, 1981. Gut contens of freshly collected crabs were analyzed by the Index of Relative Importance; for each prey taxon, this method measured frequency of occurrence, percentage of total biomass, and percentage of total numbers consumed. The most important higher taxon eaten was fish; however, the most important prey genus was the shrimp Crangon spp. There was greater predation on Crangon spp. at night at the intertidal site, and during winter and spring when the shrimp were most abundant there. Feeding activity, as indicated by a weight-specific gut-fullness index, showed no consistent diel pattern. There were significant ontogenetic changes in feeding patterns: first-year crabs preyed primarily on very small bivalves or small crustaceans including their conspecifics; second-year crabs preferred Crangon spp. and fish, and third-year crabs preyed less on Crangon spp. and more on fish. Such changes in feeding habits with ege could be purely due to mechanics of food handling, but might also reduce competition among age groups of crabs, possibly partitioning resources within the estuary. Findings are discussed in terms of optimal foraging and compared to other similar studies.Contribution No. 599, School of Fisheries, University of Washington, Seattle, Washington 98195, USA  相似文献   

9.
This study evaluated whether larvae of the Indo-Pacific vermetid gastropod Dendropoma maximum are obligate planktotrophs, or whether they exhibit an intermediate feeding strategy. Experiments were conducted in Moorea, French Polynesia (149°50′W, 17°30′S), Sep–Oct 2009, to examine D. maximum larval growth and metamorphic responses to different diets and amounts of food. Dendropoma maximum larvae required particulate food to undergo metamorphosis, but were able to survive and grow in the absence of food for up to 20 days. Larvae in Low and Unfed food treatments exhibited phenotypic plasticity by growing a larger velum (the larval feeding structure) compared with those in high food. Unfed D. maximum larvae had a slower initial growth rate; however, by 11-day post-hatch fed and unfed larvae had converged on the same mean shell height (553 μm), which was only 10% larger than the initial size at hatching. Therefore, although the nutritional strategy of D. maximum larvae is best described as obligate planktotrophy, it appears to approach an intermediate feeding strategy.  相似文献   

10.
A complete energy balance equation was estimated for the common octopus Octopus vulgaris at a constant temperature of 20°C, fed ad libitum on anchovy fillet (Engraulis encrasicolus). Energy used for growth and respiration or lost with faeces and excreted ammonia was estimated, along with total energy consumption through food, for six specimens of O. vulgaris (with masses between 114 and 662 g). The energy balance equation was estimated for the specimens at 10-day intervals. During each 10-day interval, food consumed, body mass increase and quantity of faeces voided were measured. The calorific values of octopus flesh, anchovy flesh and faeces were measured by bomb calorimetry. Oxygen consumption and ammonia excretion rates were monitored for each specimen during three 24-h experiments and daily oxygen consumption and ammonia excretion were estimated. It was found that 58% of the energy consumed was used for respiration. The amount of energy invested in somatic and gonadal growth represented 26% of the total energy budget. The energy discarded through faeces was 13% of consumed energy. The estimated assimilation efficiency (AE) values of O. vulgaris feeding on anchovy (80.9–90.7%) were lower than the AE values estimated for other cephalopod species with different diets of lower lipid content such as crabs or mussels. Specific growth rates (SGR) ranged 0.43–0.95 and were similar to those reported for other high-lipid diets (bogue, sardine) and lower than SGR values found for low-lipid, high-protein diets (squid, crab, natural diet). Ammonia excretion peak (6 h after feeding) followed the one of oxygen consumption (1 h after feeding). The values of atomic oxygen-to-nitrogen (O:N) ratio indicated a protein-dominated metabolism for O. vulgaris.  相似文献   

11.
Animals show specific morphological, physiological and behavioural adaptations to diurnal or nocturnal activity. Cathemeral species, i.e. animals with activities distributed over the 24-h period, have to compromise between these specific adaptations. The driving evolutionary forces and the proximate costs and benefits of cathemerality are still poorly understood. Our goal was to evaluate the role of predator avoidance, food availability and diet quality in shaping cathemeral activity of arboreal mammals using a lemur species as an example. For this, two groups of collared lemurs, Eulemur collaris, were studied for 14 months in the littoral forest of southeastern Madagascar. Data on feeding behaviour were collected during all-day and all-night follows by direct observation. A phenological transect containing 78 plant species was established and monitored every 2 weeks to evaluate food availability during the study period. Characteristics of food items and animal nutritional intake were determined via biochemical analyses. The ratio of diurnal to nocturnal feeding was used as response variable in the analyses. The effects of abiotic environmental variables were removed statistically before the analyses of the biotic variables. We found that diurnal feeding lasted longer during the hot–wet season (December–February), whereas nocturnal feeding peaked during the hot–dry and cool–wet seasons (March–August). Although the lemurs foraged mostly in lower forest strata during daylight and used emergent trees preferably at night, the variables which measured animal exposure to birds of prey failed to predict the variation of the ratio of diurnal/nocturnal feeding. Ripe fruit availability and fiber intake are the two variables which best predicted the annual variation of the lemur diurnality. The data indicate that feeding over the whole 24-h cycle is advantageous during lean periods when animals have a fibre-rich, low-quality diet.  相似文献   

12.
The infaunal bivalve Ruditapes decussatus L. was collected from Ria Formosa, Faro, southern Portugal, and subjected to a range of hypoxic conditions and anoxia. Physiological measurements, clearance rates, respiration rates and absorption efficiency were undertaken at slightly different oxygen partial pressures (11, 6, 3 and 1.2 kPa for clearance rates and absorption efficiency and 12, 7, 5, 1.9 and 0.9 kPa for respiration rates). Metabolic rates under hypoxia were measured as oxygen consumption and anoxic metabolism was measured using direct calorimetry. Increasing hypoxia resulted in lower clearance rates, leading to lower ingestion rates and reduced faeces production. Clearance and ingestion rates declined below ˜6 kPa, reflecting decreasing ventilation and feeding activity, although complete cessation was not observed even at 1.2 kPa. Under extreme hypoxia (< 2 kPa) clams showed an irregular behaviour, with valves either closed or only slightly open, and siphons compressed or retracted. Clearance rate was 12% and respiration rate was 35% of normoxic rates. R. decussatus responded to increasing hypoxia by lowering its metabolic rate. Regulation of respiration was absent through moderate hypoxia (˜␣7␣kPa), but was observed in the lower hypoxia range (7 to 0.9 kPa). Under anoxia, rates of heat dissipation were 3.6% of normoxic rates. The low anoxic metabolic rate is indicative of a reduced energy expenditure, and this energy-saving mechanism is common in bivalves. Scope for growth was always pos itive, and even at low oxygen levels clams did not have to utilize their energy reserves. The ability to reduce metabolic costs but still meet the maintenance costs by aerobic catabolism enables R. decussatus to tolerate hypoxia. Such conditions can occur, particularly in the summer, in southern Portugal. Received: 19 July 1996 / Accepted: 17 September 1996  相似文献   

13.
In the rocky subtidal ecosystem of the western North Atlantic outbreaks of the introduced epiphytic bryozoan Membranipora membranacea cause defoliation of kelp beds and facilitate the introduction of other non-native benthic species. We quantified size- and temperature-dependent growth rates of M. membranacea colonies in the field and the laboratory for durations of 8–23 days. Also, we examined the interaction between food abundance and temperature on growth rates of newly settled colonies in the laboratory. Growth rates were positively related to temperature and increased exponentially with size of colonies over the ranges examined (5.7–16.2°C and 0.5–192 mm, respectively), and were significantly higher in the field than in the laboratory. There was an interactive effect between food and temperature on the size and growth rates of colonies, with the most pronounced effects of food limitation on colonies grown at the warmest temperatures, and no effect of food on colonies grown at the coldest temperatures. Quantifying the growth rates of introduced species is essential to understanding their population dynamics, particularly when outbreaks can have severe impacts on the native community.  相似文献   

14.
Food availability is highly variable in the ocean. Many species of marine invertebrates have a larval form that depends upon exogenous nutrients for growth, yet there are few biochemical and physiological indices for determining changes in the nutritional status of larvae. In this study, the effects of food availability on biochemical compositions and metabolic processes of larvae of the sea urchin, Strongylocentrotus purpuratus, were determined. Larvae were cultured under different food concentrations (fed-to-excess and unfed) and a suite of biological processes assayed, ranging from measurements at the level of the whole organism to that of specific molecules. These data were normalized to DNA content (an index of cell number) to allow comparisons of physiological rates in larvae of different sizes. Changes in the following were measured during larval growth: free amino acid pool, protein, lipid classes (cholesterol, free fatty acids, hydrocarbons, phospholipids, triacylglycerol), enzyme activities (Na+, K+-ATPase and citrate synthase), and respiration rates. In growing larvae, the two key components that showed differential cell-specific content relative to unfed larvae were glycine in the free amino acid pool and phospholipids. Additionally, several lipid classes were detectable only in fed larvae (cholesterols, free fatty acids, and hydrocarbons). While triacylglycerols were present in eggs and utilized during pre-feeding development, they were not re-accumulated at detectable levels in feeding larvae. Respiration rates, protein content, and enzyme activities were all similar on a cell-specific basis, showing that these variables did not provide useful indices of differences in physiological state between fed and unfed larvae. In contrast, measurements of the cell-specific content of glycine and certain lipid classes did provide useful indices of physiological state of larvae. Application of these indices could potentially allow for determinations of nutritional state of larvae in the ocean.  相似文献   

15.
J. Vidal 《Marine Biology》1980,56(3):195-202
Weight-specific rates of oxygen consumption of actively feeding copepodite stages ofCalanus pacificus Brodsky were measured under various combination of phytoplankton concentration and temperature. The rate decreased logarithmically with a logarithmic increase in dry body weight of copepods, and the relationship between these variables was described using a log-transformed allometric equation. The body-size dependence of the metabolic rate was independent of changes in food concentration and temperature, but the metabolic level increased linearly with a logarithmic increase in temperature and was not significantly affected by changes in food concentration. Respiration rates measured in this study forC. pacificus were about twice as high as rates reported for unfed closely related species of the same genus. An analysis of the metabolic cost of feeding processes suggests that metabolic models derived from feeding models may be of little ecological value at present.Contribution No. 1129 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

16.
Atlantic herring, Clupea harengus, increase their swimming speed during low O2 (hypoxia) and it has been hypothesised that the behavioural response is modulated by the degree of “respiratory distress” (i.e. a rise in anaerobic metabolism and severe physiological stress). To test directly whether a deviation in physiological homeostasis is associated with any change in behavioural activity, we exposed C. harengus in a school to a progressive stepwise decline in water oxygen pressure and measured fish swimming speed and valid indicators of primary and secondary stress (i.e. blood cortisol, lactate, glucose and osmolality). Herring in hypoxia increased their swimming speed by 11–39% but only when was <8.5 kPa and in an unsteady (i.e. declining) state. In parallel with the shift in behaviour, plasma cortisol also exhibited an increase with plasma osmolality was subject to a transient rise at 8.5 kPa and plasma glucose was generally reduced at However, without any rise in anaerobically derived lactate levels, there was no evidence of respiratory distress at any set We show that a shift in physiological homeostasis is indeed linked with an increase in the swimming speed of herring but the physiological response reflects a hypoxia-induced shift in metabolic fuel-use rather than respiratory distress per se. The significance of this behavioural–physiological reaction is discussed in terms of behavioural-energetic trade-offs, schooling dynamics and the hypoxia tolerance of herring.  相似文献   

17.
Shallow-water octopuses have been reported as major predators of motile species in benthonic marine communities, capturing their prey by different foraging techniques. This study assessed for the first time the feeding ecology, foraging behavior, and defensive strategy during foraging, including the use of body patterns, to construct a general octopus foraging strategy in a shallow water-reef system. Octopus insularis was studied in situ using visual observations and video recordings. The diet included at least 55 species of crustaceans (70%), bivalves (17.5%), and gastropods (12.5%); however, only four species accounted for half of the occurrences: the small crabs Pitho sp. (26.8%) and Mithrax forceps (23.9%), the bivalve Lima lima (5.3%), and the gastropod Pisania pusio (4.9%). Poke and crawl were most frequent foraging behaviors observed in the video recordings. The foraging behaviors were associated with environmental variables and octopus body size. The sequences of foraging behavior showed characteristics of a tactile saltatory searching predator, as well as a visual opportunist. Body patterns showed a relationship with foraging behavior, habitat variables, and octopus body size. Mottle was the most frequent pattern, especially during poke and crawl, in shallower depths. Dorsal light–ventral blue green was more frequent during swimming at mid-water, and Blotch was the normal pattern during web-over by large animals. The large proportion of two species of small crabs in den remains, the intense search for food during short hunting trips, and the intense use of cryptic body patterns during foraging trips, suggest that this species is a ‘time-minimizing’ forager instead of a ‘rate-maximizer’.  相似文献   

18.
The frequency of low O2 (hypoxia) has increased in coastal marine areas but how fish avoid deleterious water masses is not yet clear. To assess whether the presence and oxygen pressure (PO2) level of an O2 refuge affects the hypoxia avoidance behaviour of fish, individual Atlantic cod (Gadus morhua L.) were exposed to a range of O2 choices in a 2-way choice chamber at 11.4°C over two different experiments. Cod in the first experiment were allowed access to a fixed O2 refuge (fully air-saturated seawater) whilst oxygen pressure (PO2) on the other side was reduced in steps to a critically low level, i.e. 4.3 kPa—a point where cod can no longer regulate O2 consumption. Under these conditions, cod did not avoid any level of hypoxia and fish swimming speed also remained unchanged. In contrast, strong avoidance reactions were exhibited in a second experiment when fish were again exposed to 4.3 kPa but the safety, i.e. PO2, of the refuge was reduced. Fish not only spent less time at 4.3 kPa as a result of fewer sampling visits but they also swam at considerably slower speeds. The presence of an avoidance response was thus strongly related to refuge PO2 and it is unlikely that cod, and possibly other fish species, would enter low O2 to feed in the wild if a sufficiently safe O2 refuge was not available. It is therefore hypothesized that the feeding range of fish may be heavily compressed if hypoxia expands and intensifies in future years.  相似文献   

19.
Curvemysella paula is a markedly crescent-shaped bivalve that lives inside snail shells occupied by hermit crabs. Here, we describe the unique symbiotic life, growth pattern, and reproductive biology of this bivalve, based on specimens collected from the shallow, muddy bottom of the Seto Inland Sea, Japan. C. paula was found attached to columellae in the siphonal canal, mainly of nassariid snail shells occupied by two types of hermit crabs: Diogenes edwardsii (Diogenidae) and Spiropagurus spiriger (Paguridae). The crescent-shaped shell of C. paula is an adaptation to symbiotic life in the narrow interspace between the snail shell and the hermit-crab abdomen. C. paula is a protandric hermaphrodite. In our samples, each host snail shell harbored one (or rarely a few) large female and several males. All the female bivalves settled on the host shells with their anterior end facing outward and benefited from currents created by the hermit crab when feeding. In the muddy bottom, snail shells are a limited resource for both the hermit crabs and symbiotic bivalves. The bivalves benefit from the mobility of the hermit crabs, which prevent the shells from becoming buried in the mud. C. paula represents the only example of obligate commensalism with hermit crabs found in Bivalvia.  相似文献   

20.
Predictions of short and long term changes in Sepia officinalis metabolism are useful, since this species is both economically important for aquaculture and also is an ideal experimental laboratory organism. In this study standard and routine oxygen consumption rates of newly hatched and juvenile laboratory raised cuttlefish S. officinalis ranging between 0.04 and 18.48 g dry body mass (Dm), were measured over a range of temperatures (10, 15, 20 and 25°C). The mass exponent (b) ranged between 0.706 and 0.992 for standard oxygen consumption and between 0.694 and 0.990 for routine oxygen consumption. Oxygen consumption scaled allometrically (b = 0.7) with body mass for cuttlefish <2 g Dm and isometrically (b = 1) thereafter. No significant differences were apparent amongst the slopes of oxygen consumption and body mass at different temperatures for standard and routine oxygen consumption. However, the intercepts differed significantly amongst the regression lines, indicating a significant effect of temperature on the magnitude of oxygen consumption. The combined effect of temperature (T) and dry body mass (Dm) are best described by the following equations: cuttlefish <2 g, MO2 = 0.116Dm0.7111.086 T and >2 g, MO2 = 0.076Dm0.9831.091 T for standard oxygen consumption; cuttlefish <2 g, MO2 = 0.538Dm0.7291.057 T and >2 g, MO2 = 0.225Dm0.9621.081 T for routine oxygen consumption. Using these equations it was estimated that a cuttlefish of 1 g Dm held at 20°C, eating 5% Dm day−1 and undergoing standard and routine metabolism consumes 21.3 and 35.4%, respectively of its total daily energy intake. Juvenile cuttlefish (3.32–5.08 g Dm) held at 15°C and deprived of food for 27 days maintained a stable standard oxygen consumption rate for the first 6 days following starvation. By the 18th day without food, oxygen consumption rate had declined by 53% and further declined to 65% below the standard oxygen consumption rate on the 27th day. Upon resumption of feeding, the respiration rate returned immediately to the initial level prior to food deprivation. The present study defines the basic energy requirements and general physiological state of young cuttlefish at temperatures of 10–25°C with and without food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号