首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The concentrations of six metals (Ag, Cd, Cu, Hg, Pb, and Zn) were investigated and compared in three tissues (arms, digestive gland, and mantle) of three cephalopod species from the Tunisian waters: the common octopus (Octopus vulgaris), the common cuttlefish (Sepia officinalis), and the European squid (Loligo vulgaris). Whatever the species or the sites, the digestive gland displayed the highest concentrations of Ag, Cd, Cu, Pb, and Zn, highlighting its major role in their bioaccumulation and detoxification. This is also true for Hg but only for the digestive gland of O. vulgaris. Muscle from the arms and the mantle contained thus relatively low trace metal concentrations except for Hg in L. vulgaris and S. officinalis. Geographic comparison of metal concentrations in Tunisian cephalopods from three locations indicates that higher concentrations of Ag, Pb, and Hg were observed in cephalopods from northern and eastern coasts, whereas the highest Cd levels were detected in the southeastern, reflecting different conditions of exposure. Comparing the trace element concentrations between species, Ag, Cd, Cu, Hg, and Zn concentrations were the highest in the digestive gland of octopuses. This may be related to the differences in ecological features and swimming behavior among different cephalopod species. Effects of length and sex on metal levels were also considered, indicating a limited influence of sex on metal concentration.  相似文献   

2.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

3.
An assessment on heavy metal (Al, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn) accumulation by seven seagrass species of Lakshadweep group of islands was carried out using multivariate statistical tools like principal component analysis (PCA) and cluster analysis (CA). Among all the metals, Mg and Al were determined in higher concentration in all the seagrasses, and their values varied with respect to different seagrass species. The concentration of the four toxic heavy metals (Cd, Pb, Zn and Cu) was found higher in all the seagrasses when compared with the background values of seagrasses from Flores Sea, Indonesia. The contamination factor of these four heavy metals ranged as Cd (1.97–12.5), Cu (0.73–4.40), Pb (2.3–8.89) and Zn (1.27–2.787). In general, the Pollution Load Index (PLI) calculated was found to be maximum for Halophila decipiens (58.2). Results revealed that Halophila decipiens is a strong accumulator of heavy metals, followed by Halodule uninervis and Halodule pinifolia, among all the tested seagrasses. Interestingly, the small-leaved seagrasses were found to be efficient in heavy metal accumulation than the large-leaved seagrass species. Thus, seagrasses can better be used for biomonitoring, and seagrasses can be used as the heavy metal sink as the biomass take usually long term to get remineralize in nature.  相似文献   

4.
The biomonitors Hypnum cupressiforme and Xanthoria parietina were used to assess the deposition of trace elements and their possible origin in the Prades Mountains, a protected Mediterranean forest area of NE Spain with several pollution sources nearby. Al, As, Cd, Co, Cu, Cr, Ni, Pb, Sb, Ti, V, and Zn were determined in 16 locations within this protected area. Soil trace element concentrations were also ascertained to calculate enrichment factors (EF) and use them to distinguish airborne from soilborne trace element inputs. In addition, lichen richness was measured to further assess atmospheric pollution. EF demonstrated to be useful not only for the moss but also for the lichen. Cd, Cr, Cu, Ni, and Zn presented values higher than three in both biomonitors. These trace elements were also the main ones emitted by the potential sources of pollutants. The distance between sampling locations and potential pollution sources was correlated with the concentrations of Cu, Sb, and Zn in the moss and with Cr, Ni, and Sb in the lichen. Lichen richness was negatively correlated with lichen Cu, Pb, and V concentrations on dry weight basis. The study reflected the remarkable influence that the pollution sources have on the presence of trace elements and on lichen species community composition in this natural area. The study highlights the value of combining the use of biomonitors, enrichment factors, and lichen diversity for pollution assessment to reach a better overview of both trace elements’ impact and the localization of their sources.  相似文献   

5.
Trace metal dynamics in fishes from the southwest coast of India   总被引:1,自引:0,他引:1  
The concentration of Fe, Co, Ni, Cu, Zn, Cd, and Pb in the muscle tissue of marine fishes like Lates calcarifer, Nemipterus japonicus, Caranx melampygus, Rastrelliger kanagurta, and Cyanoglossus macrostomus was estimated from samples collected in the continental shelf waters off Kochi and Mangalore on southwest coast of India. Species-specific and spatially heterogeneous patterns of tissue metals loads were apparent within the pelagic and demersal fish species for the two regions. The concentration ranges of Fe (541.60 to 649.60 ppm), Ni (12.12 to 13.92 ppm), and Cu (3.09 to 3.62 ppm) were higher in the demersal species C. melampygus, whereas Co (9.10 to 11.80 ppm) and Zn (79.30 to 84.30 ppm) were higher in the pelagic species L. calcarifer and Cd (4.35 to 6.38 ppm) were higher in the demersal species N. japonicus, possibly due to enhanced bioavailability of these metals from ecological processes associated with upwelling during the summer monsoon. The fish species showed a great capacity to accumulate metals, with highest bioaccumulation for the essential element iron and lowest bioaccumulation for the non-essential element lead. Among the demersal species, C. melampygus and N. japonicus had high concentration factors for the metals Fe (280,268 to 322,808), Ni (88,252 to 96,891), Cu (2,351 to 2,600), and Cd (29,637 to 32,404). In contrast, the pelagic species L. calcarifer and R. kanagurta had high concentration factors for the metals Zn (40,812 to 46,892), Co (280,285 to 423,037), and Pb (854 to 1,404).  相似文献   

6.
Metals (Cd, Cr, Cu, Fe, Mn and Zn) in coastal seawaters and soft tissues of macroalga Fucus spiralis from the northwest coast of Portugal were determined to assess spatial variations of metal bioavailabilities and bioaccumulation factors to compare different ecological quality classifications. Both coastal seawaters and soft tissues of F. spiralis showed significant spatial variations in their metal concentrations along the coast. The macroalgae F. spiralis accumulated more efficiently Cd, Mn and Zn and showed low bioaccumulation factors to Cr, Cu and Fe. Regarding the metal guidelines of the Norwegian Pollution Control Authority, the entire northwest (NW) coast of Portugal in April 2013 should be classified as ‘class I—unpolluted’ for all metals, except in Ave for Cu (‘class II—moderately polluted’) and Cavado for Cd and Cu (‘class II—moderately polluted’), revealing the low metal bioavailabilities of these seawaters. As there were always significant positive correlations between all metals in seawaters and F. spiralis, this macroalga species was considered a suitable monitoring tool of metal contamination in the NW coast of Portugal and a useful aquatic organism to be included in the European Environmental Specimen Banks in order to establish a real-time environmental monitoring network under the European Water Framework Directives.  相似文献   

7.
This replicated 4×2 factorial study investigated the bioaccumulation of selected metals (Mn, Pb, Zn, Hg and Cr) in four tissues (gills, liver, muscle and skin) of common carp (Cyprinus carpio) domiciled in two sites (upstream and downstream) of Indus River in Mianwali district of Pakistan. The data were statistically compared for the main effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals in fish organs at P?P?相似文献   

8.
Suspended particulate matter (SPM), sediments and clams were collected at three sites in Jiaozhou Bay to assess the magnitude of trace metal pollution in the area. Metal concentrations in SPM (Cu: 40.11-203; Zn: 118-447; Pb: 50.1-132; Cd: 0.55-4.39; Cr: 147.6-288; Mn: 762-1670 microg/g), sediments (Cu: 17.64-34.26; Zn: 80.79-110; Pb: 24.57-49.59; Cd: 0.099-0.324; Cr: 41.6-88.1; Mn: 343-520 microg/g) and bivalves (Cu: 6.41-19.76; Zn: 35.5-85.5; Pb: 0.31-1.01; Cd: 0.51-0.67; Mn: 27.45-67.6 microg/g) are comparable to those reported for other moderately polluted world environments. SPM showed a less clear pattern. Metal concentrations in sediments displayed a clear geographical trend with values increasing with proximity to major urban centers. The clams (on dry weight) showed a complex pattern due to the variability introduced by age-related factors. Cd showed an apparent reverse industrial trend with higher concentrations in clams collected at distant stations. Zn, Pb and Mn showed no clear geographical pattern, whereas Cu increased in the clams collected in the most industrialized area. In addition, the bioaccumulation factors (BAF) were calculated. The result indicated that the studied Ruditapes philippinarum in Jiaozhou Bay possessed different bioaccumulation capacities for Cd, Zn, Cu, Pb and Mn, and Cd, Zn had a relatively high assimilation of those metals from sediment particles. A significant relationship with clam age was observed for Zn (positive) and Cu (negative) suggesting different physiological requirements for both metals with age. Trace metal concentrations measured in the tissue of the investigated clam were in the range considered safe by the WHO for human use.  相似文献   

9.
The coastal population in East Africa is growing rapidly but sewage treatment and recycling facilities in major cities and towns are poorly developed. Since estuarine mangroves are the main hotspots for pollutants, there is a potential for contaminants to accumulate in edible fauna and threaten public health. This study analysed trace metals in muscle tissues of the giant mud crabs (Scylla serrata) and the giant tiger prawns (Penaeus monodon) from the Tanzanian coast, in order to determine the extent of bioaccumulation and public health risks. A total of 180 samples of muscle tissues of S. serrata and 80 of P. monodon were collected from nine sites along the coast. Both species showed high levels of trace metals in the wet season and significant bioaccumulation of As, Cu and Zn. Due to their burrowing and feeding habits, mud crabs were more contaminated compared to tiger prawns sampled from the same sites. Apart from that, the measured levels of Cd, Cr and Pb did not exceed maximum limits for human consumption. Based on the current trend of fish consumption in Tanzania (7.7 kg/person/year), the measured elements (As, Cd, Co, Cu, Mn, Pb and Zn) are not likely to present health risks to shellfish consumers. Nevertheless, potential risks of As and Cu cannot be ruled out if the average per capita consumption is exceeded. This calls for strengthened waste management systems and pollution control measures.  相似文献   

10.
Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for essential macro-elements (Ca and Na), essential trace elements (Fe, Cu, Zn, Mn, Se, Cr, Co and Ni) and non-essential trace elements (As, Pb, Cd and Hg) using ICP-MS and AAS. Baby cereals were an excellent source of most of the essential elements (Ca, Fe, Cu, Mn and Zn). Sodium content was high in pureed foods to improve their flavour; fish products were also rich in Se. USA pure baby rice samples had the highest contents of all studied essential elements, showing a different nutrient pattern compared to those of other countries. Mineral fortification was not always properly stated in the labelling of infant foods. Complementary infant foods may also contain significant amounts of contaminants. The contents of Hg and Cd were low enough to guarantee the safety of these infant foods. However, it will be necessary to identify the source and reduce the levels of Pb, Cr and As in Spanish foods. Pure baby rice samples contained too much: Pb in Spain; As in UK; As, Cr and Ni in USA; and Cr and Cd in China.  相似文献   

11.
The river Ganges has been one of the major recipients of industrial effluents in India. The present paper deals with the study related to occurrence and bioaccumulation of heavy metals (Cu, Cr, Cd, Pb, Zn) in the riverine water, sediment, and the muscles of two cat fish species, Channa punctatus (C. punctatus) and Aorichthys aor (A. aor) procured from the river Ganges at Allahabad. The data obtained after water analysis reflected the order of occurrence of heavy metals to be Zn > Pb > Cu > Cr > Cd, respectively. The analysis of heavy metals in sediment indicated that among the five heavy metals tested; Zn was maximally accumulated followed by Pb, Cr, Cu and Cd. The trend of heavy metals accumulation in fish muscles was found to be similar to that observed in sediment and water such as Zn > Pb > Cu > Cr > Cd. Data indicated that Zn accumulated maximally in the sediment as well as muscles of both of the fish species in comparison to other metals.  相似文献   

12.
The sea bream??s nematode and Sparus aurata, sampled from the Iskenderun Bay, Mediterranean, in March 2008 were analyzed by inductively coupled plasma?Catomic emission spectrometry for their some heavy metal (Cd, Cr, Cu, Fe, Hg, Mn, Mg, Pb, and Zn) levels. The metal concentrations of the parasites were compared to different organs (liver, muscle, gill, intestine, and skin) of the fish hosts. There were significant differences in Cd, Cr, Cu, Fe, Mn, Zn, Hg, Mg, and Pb concentrations in tissues of fish and its parasite. The parasite Cd, Cu, and Pb concentration was higher than the other tissues. Furthermore, significant differences were detected in the heavy metal accumulations between the parasitized and unparasitized fish tissues in Cd, Cu, Hg, and Pb concentrations. The Cd, Hg, and Pb concentrations were found in fish muscle at mean concentrations over the permissible limits proposed by the Food and Agriculture Organization.  相似文献   

13.
The amount of the trace elements As, Ba, Cd, Cr, Cu, Hg, Li, Mn, Ni, Pb, Rb, Se, Sr, and Zn was measured in top soils and edible mushrooms, Boletus edulis, Macrolepiota procera, collected at five distinct green microhabitats inside the Lucca province, North-Central Italy (years 2008–2009). Results showed a top soil element content within the Italian statutory limits. Concerning the amount of mushroom elements, we observed significant species-differences obtaining higher levels of Ni, Rb, and Se in B. edulis or As, Pb, Cu in M. procera. Bioaccumulation factors (BCFs: element in mushroom/element in soil) resulted species-dependent and element-selective: in particular, B. edulis preferentially accumulated Se (BCFs varying from 14 to 153), while M. procera mainly concentrated Cu (BCFs varying from 5 to 15). As well, both species displayed between-site BCF differences. By a multivariate principal component approach, cluster analysis (CA), we could resolve two main clusters of soil element composition, corresponding to the most ecologically divergent sites. Besides, CA showed no cluster relating to element contents of B. edulis at the different collection sites, while a separation in groups was found for M. procera composition with respect to harvesting locations, suggesting uptake systems, in this saprotrophic species, sensitive to microhabitat. Regarding consumer safety, Cd, Hg, Pb levels resulted sometime relevant in present samples, never reaching values from current literature on mushrooms collected in urban-polluted areas. Our findings encourage a deeper assessment of the molecular mechanisms of metal intake by edible mushrooms, encompassing genetic biochemical and geo-ecological variables, with particular awareness to element bioavailability in soils and fungi.  相似文献   

14.
The content of nutrients (N, P, K, Ca and Mg) and of trace metals (Fe, Cu, Mn, Zn, Pb, Cd, Co and Ni) in water, bottom sediments and various organs of Glyceria maxima from 19 study sites selected in the Jeziorka River was determined. In general, the concentrations of nutrients recorded in the plant material decreased in the following order: leaf>root>rhizome>stem, while the concentrations of the trace elements showed the following accumulation scheme: root>rhizome>leaf>stem. The bioaccumulation and transfer factors for nutrients were significantly higher than for trace metals. G. maxima from agricultural fields was characterised by the highest P and K concentrations in leaves, and plants from forested land contained high Zn and Ni amounts. However, the manna grass from small localities showed high accumulation of Ca, Mg and Mn. Positive significant correlations between Fe, Cu, Zn, Cd, Co and Ni concentrations in water or sediments and their concentrations in plant indicate that G. maxima may be employed as a biomonitor of trace element contamination. Moreover, a high degree of similarity was noted between self-organizing feature map (SOFM)-grouped sites of comparable quantities of elements in the water and sediments and sites where G. maxima had a corresponding content of the same elements in its leaves. Therefore, SOFM could be recommended in analysing ecological conditions of the environment from the perspective of nutrients and trace element content in different plant species and their surroundings.  相似文献   

15.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

16.
The accumulation of selected trace metals (Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb, V and Zn) was studied in a sediment core collected at Espejo de los Lirios lake, a precipitation-dominated seepage lake in Northern Mexico City Metropolitan Zone (MCMZ). A (210)Pb-derived chronology, obtained from the same core, was used to reconstruct the historical metal fluxes at the site, allowing evaluation of the impact of environmental changes promoted by the development of the City during the last approximately 125 years. The highest levels of metal enrichment above natural concentration levels (NCL) in the sediments from Espejo de los Lirios lake were found for Ag and Pb (approximately 250%) as well as a slight enrichment for Cd (55%), Cr (84%), Co (20%), Cu (60%), Hg (47%), Ni (45%), V (59%) and Zn (66%). Fluxes of trace metals appeared to have noticeably increased from the last 45 years showing the maximum increments for Cd, Co, Cr, Ni, V and Zn during the 1980's (9 to 13 fold natural fluxes), for Ag and Cu (17 and 12 fold, respectively) during the 1990's and for Hg and Pb (2 and 13 fold) during the middle 1970's. Low levels of metal enrichment observed have evidenced that the most conspicuous consequences of the expansive growth of this area of the MCMZ, are mostly related to deforestation and erosion of the surrounding areas, rather than to trace metal pollution. Based on PCA, it can be assumed that atmospheric deposition, weathering of bedrock and soil within the watershed and authigenic production, are the most important processes that explain the trace metal distribution in the site.  相似文献   

17.
The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5–637.9 for As, 6.5–103.9 for Cd, 12.2–21.9 for Co, 90.6–516.0 for Cr, 258.1–1,791.5 for Cu, 2.6–19.0 for Hg, 70.5–174.5 for Ni, 126.9–1,405.8 for Pb, 3.7–260.0 for Sb, 38.4–100.4 for V, and 503–4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.  相似文献   

18.
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L?1; Zn = 5.00 μg L?1; Pb = 0.03 μg L?1; Cd = 0.05 μg L?1; Hg = 0.05 μg L?1); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.  相似文献   

19.
BouIsmail (BIB) and Algiers (AB) are the most important bays in Algeria, where busy shipping activities and various industry complexes introduce different pollutants including heavy metals to the aquatic environment. The main goal of this study was to assess the contamination levels of heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in surface sediments and red mullet (Mullus barbatus) of the BIB and AB and to examine the possibility of the use of their enrichment factors (EFs) to track down the sources of metals (natural processes or human activity). The geoaccumulation index (I geo) was calculated as a criterion to indicate the contamination level for each heavy metal. Moreover, geographical information systems based on spatial analysis methods (inverse distance weighting (IDW)) and statistical approaches (the principal component (PCA)) were performed to assess the spatial influences of multiple anthropogenic sources in different sampled areas. The results of both EF and I geo revealed that the study area is exposed to various anthropogenic activities. The pollution load index (PLI) values of sediment samples in the different sites of Algiers and BIB ranged from 0.2 to 3.4 illustrating highly contaminated sediments. Significant bioaccumulation of Cd, Cu, Hg, Pb, and Zn (bioaccumulation factor >100%) were observed in muscle and liver of red mullet, suggesting potential health risks through consuming this fish species.  相似文献   

20.
Cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) were analyzed in the breast feather of white-fronted geese (Anser albifrons, n?=?15), mallards (Anas platyrhynchos, n?=?4), and spot-billed ducks (Anas poecilorhyncha, n?=?13) found dead in Gimpo, Korea. All of the mallards and eight of the 13 spot-billed ducks had embedded shot. Concentrations of Pb, Cr, Cu, Mn, Zn, and Fe were significantly different among waterfowl species. Mallards with embedded shot had relatively higher Pb, Cr, Mn, and Fe concentrations than the other species. Cd and Cr in feathers of waterfowl species were within the range reported for other birds, and no specimen exceeded the tentative threshold effect levels of Cd (2 μg/g dry weight (dw)) and Cr (2.8 μg/g dw) for birds. However, Pb in feathers of all four mallards and two spot-billed ducks exceeded the threshold for deleterious effects (>4 μg/g dw). Essential elements such as Cu, Mn, Zn, and Fe in the feather of waterfowl species were not at toxic levels and within the background or normal range for the homeostatic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号