首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dust storm events and their relation to climate changes in Northern China during the past 1000 years were analyzed by using different paleoclimate archives such as ice cores, tree rings, and historical documents. The results show that in the semiarid region, the temperature and precipitation series were significantly negatively correlated to the dust storm frequency on a decadal timescale. Compared with temperature changes, however, there was a closer correlation between precipitation changes and dust storm events on a centennial timescale. At this timescale, precipitation accounts for 40% of the variance of dust fall variations during the last 1700 years, inferring precipitation control on the formation of dust storms. In the western arid region, both temperature and precipitation changes are important forcing factors for the occurrence of dust storms in the region on a centennial timescale. In the eastern arid region, the relationship between dust storm events and climate changes are similar like in the semiarid region. As a result, the effects of climate change on dust storm events were manifested on decadal and centennial timescales during the last millennium. However, there is a phase shift in the relation between climate change and the dust storm frequency. A 1400 years reconstruction of the strength of the Siberian High reveals that long-term variations of spring Siberian High intensity might provide a background for the dynamic conditions for the frequency of historical dust storm events in Northern China.  相似文献   

2.
The pH of rainfall in central Missouri was monitored at four sites during the fall of 1983. Several pH values were well above 5.6, the theoretical pH of pure water in equilibrium with ambient levels of CO2. Most of the higher pHs were measured on rainfall of short duration or rainfall collected during the first few hours of extended rainfall events. Furthermore, the rainfall associated with storm events lasting several days exhibited a trend of decreasing pH with time approaching values as low as 4.0 during the late stages of rainfall. Precipitation pH values above 5.6 apparently reflect neutralization reactions between wet precipitation and various components of airborne dust, especially clays and carbonates. During extended rainfalls, the neutralization effects gradually diminish as suspended dust is washed from the atmosphere yielding more accurate values of the wet precipitation pH. The results of this study suggest that airborne particulate matter generated from the dust bowl region of the U.S. may affect the chemistry of precipitation in areas hundreds of km downwind.  相似文献   

3.
Measurements of size-resolved particle number concentrations during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field campaign were made at the Gosan super-site, South Korea. In East Asia, dust and precipitation phenomena play a crucial role in atmospheric environment and climate studies because they are major sources and sinks of atmospheric aerosols, especially in the springtime. Total Ozone Mapping Spectrometer (TOMS) Aerosol Index and backward trajectories are analyzed to investigate the spatial and temporal evolution of dust storms. The size distributions between dust and non-dust periods and times with and without precipitation are compared. In order to understand the temporal evolution of the aerosol size distribution during dust and precipitation events, a simple aerosol dynamics model is employed. The model predicted and observed size distributions are compared with the measured data. The results show that the coarse mode particle number concentrations increase by a factor of 10–16 during dust events. During precipitation, however, particles in the coarse mode are scavenged by impaction mechanism. It is found that the larger particles are more efficiently scavenged. The degree of scavenged particle varies depending on the rainfall rate, raindrop size distribution and aerosol size distribution.  相似文献   

4.
Long-term surface observations indicate that soil dust represents over 30% of the annual fine (particle diameter less than 2.5 μm) particulate mass in many areas of the western US; in spring and summer, it represents an even larger fraction. There are numerous dust-producing playas in the western US, but surface dust aerosol concentrations in this region are also influenced by dust of Asian origin. This study examines the seasonality of surface soil dust concentrations at 15 western US sites using observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network from 2001 to 2004. Average soil concentrations in particulate matter less than 10 μm in diameter (PM10) were lowest in winter and peaked during the summer months at these sites; however, episodic higher-concentration events (>10 μg m−3) occurred in the spring, the time of maximum Asian dust transport to the western US. Simulated surface dust concentrations from the Navy Aerosol Analysis and Prediction System (NAAPS) suggested that long-range transport from Asia dominates surface dust concentrations in the western US in the spring, and that, although some long-range transport does occur throughout the year (1–2 μg m−3), locally generated dust plays a larger role in the region in summer and fall. However, NAAPS simulated some anomalously high concentrations (>50 μg m−3) of local dust in the fall and winter months over portions of the western US. Differences between modeled and observed dust concentrations were attributed to overestimation of total observed soil dust concentrations by the assumptions used to convert IMPROVE measurements into PM10 soil concentrations, lack of inhibition of model dust production in snow-covered regions, and lack of seasonal agricultural sources in the model.  相似文献   

5.
Polycyclic aromatic hydrocarbon (PAH) concentrations have been determined for 14 successive days in a remote site of the Mediterranean Sea situated in Corsica, France. Both particulate and gas phases were collected and analyzed. For any receptor site the concentration of adsorbed PAH on particles is determined by three parameters, in order of decreasing importance: the source area, nearby sources and precipitation along the trajectory followed by the particles. For two air masses originating from the same source area, PAH concentrations can be reduced by 60% by particle scavenging during precipitation events. The identification of the source area is in complete agreement with the classification based on the mineral elements. The gas phase concentrations are determined by the source area only; they remain high compared to the concentrations in the industrial zone, thus proving that the gaseous PAH are not strongly degraded by chemical aggressors during transport. Factor analysis clearly shows the different effects involved during transport. The gas/particle ratio is determined essentially by the temperature and molecular weight of the PAH and not by the origin of the emissions. However precipitation influences this ratio to a non-negligible extent through scavenging of the aerosols. For example, the gas/particle ratio, for pyrene, varies from 2 to 4 between two ‘dry’ episodes with a temperature difference of 2.2° C, and from 6 to 13 because of the particle scavenging by rain. These results can be used as a data base and are expected to guide the conception of transport models including the parameters considered in this study.  相似文献   

6.
Factor analysis comparisons between the MAP3S network and Minnesota precipitation chemistry data show marked differences. An assessment of ambient aerosol and precipitation chemistry data obtained at several Colorado and Minnesota sites suggests that natural source inputs may contribute to the sulfate observed in ambient aerosol and at least partly, explain the marked differences of Minnesota and Colorado precipitation chemistry data from that of MAP3S (eastern U.S.). However, a recently proposed mechanism, SO2 to SO4 conversion on the surface of dust particles, may be more important than natural sources in explaining western and midwestern precipitation chemistry data. It is concluded that these predominantly non-acidic SO4 sources may explain the poor association between the H+ and SO4 in many western and some midwestern precipitation chemistry data sets.  相似文献   

7.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 microm) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a "high-sensitivity" version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbón I and II plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years.  相似文献   

8.
This study evaluated the chemical fractionation of Cu and Zn from source to deposition in a stormwater system. Cu and Zn concentrations and chemical fractionation were determined for roadway dust, roadway runoff and pond sediments. Stormwater Cu and Zn concentrations were used to generate cumulative frequency distributions to characterize potential exposure to pond-dwelling organisms. Dissolved stormwater Zn exceeded USEPA acute and chronic water quality criteria in approximately 20% of storm samples and 20% of the storm duration sampled. Dissolved Cu exceeded the previously published chronic criterion in 75% of storm samples and duration and exceeded the acute criterion in 45% of samples and duration. The majority of sediment Cu (92-98%) occurred in the most recalcitrant phase, suggesting low bioavailability; Zn was substantially more available (39-62% recalcitrant). Most sediment concentrations for Cu and Zn exceeded published threshold effect concentrations and Zn often exceeded probable effect concentrations in surface sediments.  相似文献   

9.
Recently, a wind-blown-dust-emission module has been built based on a state-of-the-art wind erosion theory and evaluated in a regional air-quality model to simulate a North American dust storm episode in April 2001 (see Park, S.H., Gong, S.L., Zhao, T.L., Vet, R.J., Bouchet, V.S., Gong, W., Makar, P.A., Moran, M.D., Stroud, C., Zhang, J. 2007. Simulation of entrainment and transport of dust particles within North America in April 2001 (“Red Dust episode”). J. Geophys. Res. 112, D20209, doi:10.1029/2007JD008443). A satisfactorily detailed assessment of that module, however, was not possible because of a lack of information on some module inputs, especially soil moisture content. In this paper, the wind-blown-dust emission was evaluated for two additional dust storms using improved soil moisture inputs. The surface characteristics of the wind-blown-dust source areas in southwestern North America were also investigated, focusing on their implications for wind-blown-dust emissions. The improved soil moisture inputs enabled the sensitivity of other important surface characteristics, the soil grain size distribution and the land-cover, to dust emission to be investigated with more confidence. Simulations of the two 2003 dust storm episodes suggested that wind-blown-dust emissions from the desert areas in southwestern North America are dominated by emissions from dry playas covered with accumulated alluvial deposits whose particle size is much smaller than usual desert sands. As well, the source areas in the northwestern Texas region were indicated to be not desert but rather agricultural lands that were “activated” as a wind-blown-dust sources after harvest. This finding calls for revisions to the current wind-blown-dust-emission module, in which “desert” is designated to be the only land-cover category that can emit wind-blown dust.  相似文献   

10.
Many areas in Jordan suffer from elevated levels of coarse particulate matter (PM10). One potentially significant source of the observed PM is the resuspension of road dust in the vicinity of limestone quarries. To obtain data to assess the impact from this source, PM10 road dust resuspension factors near Abusiiah, a town to the north east of Amman surrounded by many quarries and brick factories, were measured. Measurements included PM10 mass, particle size distributions, wind speed, and wind direction. The results showed that PM10 concentrations could be as high as 600 microg/m3, and most of the airborne PM is in the coarse fraction. Loading trucks play a major role in resuspending road dust, with an observed PM10 emission rate of >6000 mg/km.  相似文献   

11.
Cheng MT  Lin YC  Chio CP  Wang CF  Kuo CY 《Chemosphere》2005,61(10):1439-1450
Aerosol samples for PM(2.5) and PM(2.5-10) were collected at four locations in central Taiwan from 26 to 31 March 2000, a period that experienced exceedingly high PM levels from 29 to 30 March due to the passage of an Asian dust storm. The samples were analyzed for mass, metallic elements, ions, and carbon. The purpose of this paper is to investigate the influence of the dust storm on the characteristics of local ambient particulate matter. The results indicate that the concentrations of the crustal elements Ca, Mg, Al, Fe and the sea salt species Na+ and Cl- in PM(2.5-10) during the dust episode exceed the mean concentrations in the non-dust period by factors of 3.1, 2.9, 2.6, 2.2, 2.3 and 2.1 respectively. Enrichment factors of Ca, Fe, and Mg in PM(2.5-10) during the dust event are close to unity, indicating that these elements are from soil. Reconstruction of aerosol compositions revealed that soil of coarse particulates elevated approximately 50% in the dust event. It is noted that during the dust event, the ratio of Mg/Al in PM(2.5-10) ranged from 0.21 to 0.25 while that of Ca/Al ranged from 0.6 to 0.9, levels more constant than those obtained in non-dust period.  相似文献   

12.
Scavenging coefficients are obtained for sea-salt particles at rainfall intensity of 5, 10, 15, 20 and 45 mm h−1. Evolutions of size distributions for sea-salt particles by precipitation scavenging are simulated using theoretically estimated scavenging coefficients. Results indicate that below-cloud scavenging affects mainly sea-salt particles in coarse mode. Observed concentrations of Na+ and Cl in rainwater increased with rainfall intensity and aerosol size. Comparison of predicted concentrations of Na+ and Cl in rainwater with observed ionic concentrations of short-timed wet-only samples collected during rain events on 2 August 2002 over Arabian Sea (ARMEX-2002) supports the model result.  相似文献   

13.
In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined.Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D.Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.  相似文献   

14.
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.  相似文献   

15.
We develop a method that uses both the total column aerosol optical depth (AOD) and the fractional AOD values for different aerosol types, derived from Multiangle Imaging SpectroRadiometer (MISR) aerosol data, to estimate ground-level concentrations of fine particulate matter (PM2.5) mass and its major constituents in eastern and western United States. Compared with previous research on linking column AOD with ground-level PM2.5, this method treats various MISR aerosol components as individual predictor variables. Therefore, the contributions of different particle types to PM2.5 concentrations can be estimated. When AOD is greater than 0.15, MISR is able to distinguish dust from non-dust particles with an uncertainty level of approximately 4%, and light-absorbing from non-light-absorbing particles with an uncertainty level of approximately 20%. Further analysis shows that MISR Version 17 aerosol microphysical properties have good sensitivity and internal consistency among different mixture classes. The retrieval uncertainty of individual fractional AODs ranges between 5 and 11% in the eastern United States, and between 11 and 31% in the west for non-dust aerosol components. These results provide confidence that the fractional AOD models with their inherent flexibility can make more accurate predictions of the concentrations of PM2.5 and its constituents.  相似文献   

16.
Atmospheric aerosols of four aerodynamic size ranges were collected using high volume cascade impactors in an extremely busy roadway tunnel in Lisbon (Portugal). Dust deposited on the tunnel walls and guardrails was also collected. Average particle mass concentrations in the tunnel atmosphere were more than 30 times higher than in the outside urban background air, revealing its origins almost exclusively from fresh vehicle emissions. Most of the aerosol mass was concentrated in submicrometer fractions (65%), and polycyclic aromatic hydrocarbons (PAH) were even more concentrated in the finer particles with an average of 84% of total PAH present in sizes smaller than 0.49 μm. The most abundant PAH were methylated phenanthrenes, fluoranthene and pyrene. About 46% of the total PAH mass was attributed to lower molecular weight compounds (two and three rings), suggesting a strong influence of diesel vehicle emissions on the production of local particulate PAH. The application of diagnostic ratios confirmed the relevance of this source of PAH in the tunnel ambient air. Deposited dust presented PAH profiles similar to the coarser aerosol size range, in agreement with the predominant origin of coarser aerosol particles from soil dust resuspension and vehicle wear products.  相似文献   

17.
To investigate the characteristics of Asian dust storm particles as single particles in Japan, we measured morphology, composition and concentration of single particles using Scanning Electron Microscope (SEM) coupled with an energy dispersive X-ray microanalyzer (EDX), particle induced X-ray emission (PIXE) and micro-PIXE. Particles were sampled in Kyoto, Japan from the middle of April to the end of July 1999. Mass concentration in Asian dust–storm events was roughly 3–5 times higher than that of the highest concentration measured in non-Asian dust storm seasons. Single particles were generally sharp-edged and irregular in shape and contained mostly crustal elements such as Si, Fe, Ca and Al. Particles which have more than 40% Si content comprised nearly 50% of coarse single particles in Asian dust storm events. Main concentration range of Al in single Asian dust storm particles was 10–20%, and those of Ca and Fe were below 10%. Even though S and Cl in soils of the desert and loess areas in northwest of China were not detected, significant concentration of S and Cl in coarse fraction in Asian dust storm event were detected in single particles. Especially, the maximum concentration of S in Asian dust storm event was about 5 times higher than that in non-Asian dust storm days. Every single particle in coarse fraction existed as the mixing state of soil components and S. Good agreement between the results of SEM–EDX analysis and that of micro-PIXE analysis was obtained in this study.  相似文献   

18.
裸土风蚀型开放源起尘机制研究进展   总被引:3,自引:0,他引:3  
中国北方多个城市空气颗粒物来源解析结果表明,开放源是空气颗粒物污染的主要来源,裸土风蚀型开放源是主要的排放源类.对裸土风蚀型开放源起尘机制进行了诠释,提出了裸土风蚀型开放源、裸土风蚀起尘、裸土风蚀尘的概念,并对裸土风蚀型开放源的风蚀影响因素进行了研究,为城市空气质量达标及空气颗粒物污染防治提供科学参考.  相似文献   

19.
We use the fractional aerosol optical depth (AOD) values derived from Multiangle Imaging Spectroradiometer (MISR) aerosol component measurements, along with aerosol transport model constraints, to estimate ground-level concentrations of fine particulate matter (PM2.5) mass and its major constituents in the continental United States. Regression models using fractional AODs predict PM2.5 mass and sulfate (SO4) concentrations in both the eastern and western United States, and nitrate (NO3) concentrations in the western United States reasonably well, compared with the available ground-level U.S. Environment Protection Agency (EPA) measurements. These models show substantially improved predictive power when compared with similar models using total-column AOD as a single predictor, especially in the western United States. The relative contributions of the MISR aerosol components in these regression models are used to estimate size distributions of EPA PM2.5 species. This method captures the overall shapes of the size distributions of PM2.5 mass and SO4 particles in the east and west, and NO3 particles in the west. However, the estimated PM2.5 and SO4 mode diameters are smaller than those previously reported by monitoring studies conducted at ground level. This is likely due to the satellite sampling bias caused by the inability to retrieve aerosols through cloud cover, and the impact of particle hygroscopicity on measured particle size distributions at ground level.  相似文献   

20.
Components of the near-ground urban aerosol in Beijing, China, which are derived from natural and pollution sources, have been identified by means of PIXE analysis of particle size fractionated samples and relationships among the concentrations of 18 elements. Samples were collected in city center and outlying suburban and rural locations on five days in July and December 1980. The panicle size distributions of most elements were bimodal, with a gradual progression from mainly coarse mode Ca, Ti and Al to mainly fine mode S, As, and Br. Pb, Zn and Cu occurred mainly in fine particles and were apparently pollutants derived from the combustion of coal and other fuels, but not gasoline. Fine particle Cr, Mn and Fe concentrations were especially high on one July day and may have derived from a pulse of industrial air pollution. Si concentrations were singularly high in ultra-fine particles as if from the condensation of high temperature vapors from coal combustion. Coarse particles in the city center were apparently from local surface dust raised by vehicle traffic, and they were enriched in Pb, Zn and Cu compared to a rural location, suggesting a significant degree of city soil contamination by fine pollution aerosol fallout over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号