首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
群体感应抑制剂(quorum sensing inhibitor,QSIs)广泛应用之后与环境中现有抗菌药物共存的趋势不可避免。为了评价QSIs和现有抗菌药物共存所引起的生态环境效应,本文以费氏弧菌(Vibrio fischeri)作为模式生物,磺胺类抗生素磺胺氯哒嗪(SCP)、磺胺类增效剂甲氧苄嘧啶(TMP)和群体感应抑制剂4-溴-5-溴亚甲基-2(5氢)-呋喃酮(FC-30)为研究对象,测定了以上3个化合物对Vibrio fischeri的单一/混合慢性毒性效应。单一慢性毒性结果表明,3个化合物的毒性大小如下:FC-30SCPTMP,混合慢性毒性结果表明三元混合体系联合效应为拮抗。进一步分析可知,SCP+FC-30和TMP+FC-30两个混合体系的拮抗作用是三元混合体系为拮抗效应的根本原因。最后指出,因为SCP、TMP和FC-30的三元混合体系是拮抗作用,所以从环境生态风险角度分析,三者联合用药对环境的影响小于单一用药。  相似文献   

2.
The geographic mosaic theory of coevolution states that variation in species interactions forms the raw material for coevolutionary processes, which take place over large geographic scales. One key assumption underlying the process of coevolution in plant-herbivore interactions is that herbivores exert selection on their host plants and that this selection varies among plant populations. We examined spatial variation in the existence and strength of phenotypic selection on host plant resistance exerted by specialist herbivores in 17 archipelago populations of the perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). In these highly fragmented populations, V. hirundinaria is consumed by the larvae of two specialist herbivores: the folivorous moth Abrostola asclepiadis and the seed predator Euphranta connexa. Selection imposed on host plants by these herbivores was examined by analyzing the associations between levels of herbivory, plant fitness, and contents of a number of leaf chemicals reflecting plant resistance to and quality for the herbivores. We found extensive spatial variation in the levels of herbivory and in plant fitness. More importantly, the impact of both leaf herbivory and seed predation on plant fitness varied among plant populations, indicating spatial variation in phenotypic selection. In addition, leaf chemistry varied widely among plant populations, reflecting spatial variation in plant quality as food for the herbivores. However, leaf compounds influenced folivory similarly in all the studied plant populations, and interestingly, some of the compounds were associated with the intensity of seed predation. Finally, some of the leaf compounds were associated with plant fitness, and the strength and direction of these associations varied among plant populations. The observed spatial variation in the strength of the interactions between V. hirundinaria and its specialist herbivores suggests a geographic selection mosaic. Because the occurrence and strength of spatial variation varied between the two specialist herbivores, our results highlight the importance of considering multiple enemies when trying to understand evolution of interactions between plants and their herbivores.  相似文献   

3.
Thompson JN  Fernandez CC 《Ecology》2006,87(1):103-112
Variation among sites and years in the local ecological outcome of interspecific interactions can generate a geographic mosaic of coevolution, as indicated by recent mathematical models. We evaluated whether local temporal dynamics of ecological outcome in the interaction between the moth Greya politella (Prodoxidae) and its host plant Lithophragma parviflorum (Saxifragaceae) are likely to mitigate or magnify geographic differences in ecological outcome found in earlier studies. The moths are highly host-specific pollinating floral parasites, and the mutualism can be swamped in some populations by the presence of effective co-pollinators. Hence, differing community contexts can shift the outcome of the interaction from mutualism to commensalism or antagonism. During each of four years, we evaluated the effect of Greya oviposition on seed development through a paired design that controlled for plant genotype and microenvironment. At Turnbull National Wildlife Refuge in Washington State, the interaction was significantly mutualistic in all four years. Mutualism in this population was indicated by a higher probability of development of capsules visited by ovipositing Greya than capsules not visited by Greya on the same plant. At Rapid River, Idaho, the interaction was commensalistic in three years and antagonistic in one year. Antagonism in this population was indicated by selective withering of capsules containing Greya eggs. Overall, the results suggest stable geographic differences in the range of ecological outcomes in this plant-insect interaction under different community contexts.  相似文献   

4.
Lau JA 《Ecology》2008,89(4):1023-1031
Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.  相似文献   

5.
Asplund J  Solhaug KA  Gauslaa Y 《Ecology》2010,91(10):3100-3105
The optimal defense theory (ODT) deals with defensive compounds improving fitness of a particular organism. It predicts that these compounds are allocated in proportion to the risk for a specific plant tissue being attacked and this tissue's value for plant fitness. As the benefit of defense cannot easily be measured in plants, the empirical evidence for ODT is limited. However, lichens are unique in the sense that their carbon-based secondary compounds can nondestructively be removed or reduced in concentration by acetone rinsing. By using such an extraction protocol, which is lethal to plants, we have tested the ODT by studying lichens instead of plants as photosynthetically active organisms. Prior to acetone rinsing, we found five times higher concentration of meta-scrobiculin in the reproductive parts (soralia) of Lobaria scrobiculata compared to somatic parts of this foliose epiphytic lichen species. At this stage, the lichen-feeding snail Cochlodina laminata avoided the soralia. However, after removal of secondary compounds, the snail instead preferred the soralia. In this way, we have successfully shown that grazing pattern inversely reflects the partitioning of the secondary compounds that have a documented deterring effect. Thus our study provides strong and novel evidence for the ODT.  相似文献   

6.
Alba C  Bowers MD  Hufbauer R 《Ecology》2012,93(8):1912-1921
Optimal defense theory posits that plants with limited resources deploy chemical defenses based on the fitness value of different tissues and their probability of attack. However, what constitutes optimal defense depends on the identity of the herbivores involved in the interaction. Generalists, which are not tightly coevolved with their many host plants, are typically deterred by chemical defenses, while coevolved specialists are often attracted to these same chemicals. This imposes an "evolutionary dilemma" in which generalists and specialists exert opposing selection on plant investment in defense, thereby stabilizing defenses at intermediate levels. We used the natural shift in herbivore community composition that typifies many plant invasions to test a novel, combined prediction of optimal defense theory and the evolutionary dilemma model: that the within-plant distribution of defenses reflects both the value of different tissues (i.e., young vs. old leaves) and the relative importance of specialist and generalist herbivores in the community. Using populations of Verbascum thapsus exposed to ambient herbivory in its native range (where specialist and generalist chewing herbivores are prevalent) and its introduced range (where only generalist chewing herbivores are prevalent), we illustrate significant differences in the way iridoid glycosides are distributed among young and old leaves. Importantly, high-quality young leaves are 6.5x more highly defended than old leaves in the introduced range, but only 2x more highly defended in the native range. Additionally, defense levels are tracked by patterns of chewing damage, with damage restricted mostly to low-quality old leaves in the introduced range, but not the native range. Given that whole-plant investment in defense does not differ between ranges, introduced mullein may achieve increased fitness simply by optimizing its within-plant distribution of defense in the absence of certain specialist herbivores.  相似文献   

7.
Kessler A  Halitschke R  Poveda K 《Ecology》2011,92(9):1769-1780
Although induced plant responses to herbivory are well studied as mechanisms of resistance, how induction shapes community interactions and ultimately plant fitness is still relatively unknown. Using a wild tomato, Solanum peruvianum, native to the Peruvian Andes, we evaluated the disruption of pollination as a potential ecological cost of induced responses. More specifically, we tested the hypothesis that metabolic changes in herbivore-attacked plants, such as the herbivore-induced emission of volatile organic compounds (VOCs), alter pollinator behavior and consequentially affect plant fitness. We conducted a series of manipulative field experiments to evaluate the role of herbivore-induced vegetative and floral VOC emissions as mechanisms by which herbivory affects pollinator behavior. In field surveys and bioassays in the plants' native habitat, we found that real and simulated herbivory (methyl jasmonate application) reduced attractiveness of S. peruvianum flowers to their native pollinators. We show that reduced pollinator preference, not resource limitation due to leaf tissue removal, resulted in reduced seed set. Solitary bee pollinators use floral plant volatiles, emitted in response to herbivory or methyl jasmonate treatment, as cues to avoid inflorescences on damaged plants. This herbivory-induced pollinator limitation can be viewed as a general cost of induced plant responses as well as a specific cost of herbivory-induced volatile emission.  相似文献   

8.
Barton BT 《Ecology》2010,91(10):2811-2818
Phenological effects of climate change are expected to differ among species, altering interactions within ecological communities. However, the nature and strength of these effects can vary during ontogeny, so the net community-level effects will be the result of integration over an individual's lifetime. I resolved the mechanism driving the effects of warming and spider predation risk on a generalist grasshopper herbivore at each ontogenetic stage and quantified the treatment effects on a measure of reproductive fitness. Spiders caused nymphal grasshoppers to increase the proportion of herbs in their diet, thus having a positive indirect effect on grasses and a negative indirect effect on herbs. Warming strengthened the top-down effect by affecting spiders and grasshoppers differently. In cooler, ambient conditions, grasshoppers and spiders had a high degree of spatial overlap within the plant canopy. Grasshopper position was unaffected by temperature, but spiders moved lower in the canopy in response to warming. This decreased the spatial overlap between predator and prey, allowing nymphal grasshoppers to increase daily feeding time. While spiders decreased grasshopper growth and reproductive fitness in ambient conditions, spiders had no effect on grasshopper fitness in warmed treatments. The study demonstrates the importance of considering the ontogeny of behavior when examining the effects of climate change on trophic interactions.  相似文献   

9.
A recent surge in attention devoted to the ecology of soil biota has prompted interest in quantifying similarities and differences between interactions occurring in above- and belowground communities. Furthermore, linkages that interconnect the dynamics of these two spatially distinct ecosystems are increasingly documented. We use a similar approach in the context of understanding plant defenses to herbivory, including how they are allocated between leaves and roots (constitutive defenses), and potential cross-system linkages (induced defenses). To explore these issues we utilized three different empirical approaches. First, we manipulated foliar and root herbivory on tobacco (Nicotiana tabacum) and measured changes in the secondary chemistry of above- and belowground tissues. Second, we reviewed published studies that compared levels of secondary chemistry between leaves and roots to determine how plants distribute putative defense chemicals across the above- and belowground systems. Last, we used meta-analysis to quantify the impact of induced responses across plant tissue types. In the tobacco system, leaf-chewing insects strongly induced higher levels of secondary metabolites in leaves but had no impact on root chemistry. Nematode root herbivores, however, elicited changes in both leaves and roots. Virtually all secondary chemicals measured were elevated in nematode-induced galls, whereas the impact of root herbivory on foliar chemistry was highly variable and depended on where chemicals were produced within the plant. Importantly, nematodes interfered with aboveground metabolites that have biosynthetic sites located in roots (e.g., nicotine) but had the opposite effect (i.e., nematodes elevated foliar expression) on chemicals produced in shoots (e.g., phenolics and terpenoids). Results from our literature review suggest that, overall, constitutive defense levels are extremely similar when comparing leaves with roots, although certain chemical classes (e.g., alkaloids, glucosinolates) are differentially allocated between above- and belowground parts. Based on a meta-analysis of induced defense studies we conclude that: (1) foliar induction generates strong responses in leaves, but much weaker responses in roots, and (2) root induction elicits responses of equal magnitude in both leaves and roots. We discuss the importance of this asymmetry and the paradox of cross-system induction in relation to optimal defense theory and interactions between above- and belowground herbivory.  相似文献   

10.
Ostergård H  Hambäck PA  Ehrlén J 《Ecology》2007,88(12):2959-2965
Oviposition sites of phytophagous insects should correlate with plant traits that maximize survival of the progeny. Plants, on the other hand, should benefit from traits and developmental patterns that complicate oviposition decisions. In the antagonistic interaction between plant and pre-dispersal seed predator the time lag between egg laying and seed development may allow for abortion of fruits in plants, potentially reducing fitness loss through predation. We studied the perennial herb Lathvrus vernus and the beetle pre-dispersal seed predator Bruchus atomarius in Sweden to determine the fitness consequences of nonrandom fruit abortion in the plant and oviposition patterns of the beetle. The beetle had a sophisticated ability to locate fruits with high probability of retention, partly by fruit position and phenology but also by some additional unidentified cue. Mortality of eggs was density dependent, but still the egg-laying pattern was clumped. We found no defensive strategy in the plant; instead the predictable fruit abortion pattern was associated with decreased plant fitness. We discuss how interactions may pose simultaneous selection pressures on plant and insect traits and how life history traits and other selective forces may shape the adaptive outcome of the interaction in plant and insect, respectively.  相似文献   

11.
Lignoid chemical defenses in the freshwater macrophyte Saururus cernuus   总被引:3,自引:0,他引:3  
Summary. Chemical defense against herbivores has rarely been investigated for freshwater plants, possibly due to the common misconception that herbivory on aquatic macrophytes is low and would not select for chemical defenses. In previous work, the freshwater angiosperm Saururus cernuus was shown to be a low preference food for omnivorous crayfish despite its high nutrient value and relatively soft texture. We used feeding by the crayfish Procambarus clarkii to guide fractionation of the deterrent lipid-soluble extract of this plant, leading to the identification of seven deterrent lignoid metabolites, (–)-licarin A, (+)-saucernetin, (–)-dihydroguaiaretic acid, (–)-sauriols A and B, (–)-saucerneol, and (–)-saucerneol methyl ether. Lignans have been implicated in terrestrial plant chemical defenses as insect growth inhibitors, insect toxins, nematocides, antibacterial, and antifungal agents. However, these activities have rarely been demonstrated using ecologically relevant methodologies in terrestrial systems, and never before in freshwater systems. The widespread nature of lignans amongst very distantly related plants, along with their rich diversity of molecular structure, suggests that they could play a large role in mediating plant-herbivore interactions. In addition to the lignoid compounds we identified, there were other compounds present in low concentration or unstable compounds that were deterrent, that did not appear to be lignans, but that we were unable to identify. This plant thus appears to be defended by a complex mixture of natural products. Received 6 June 2000; revised 23 August 2000; accepted 2 September 2000  相似文献   

12.
Hybridization and the Extinction of Rare Plant Species   总被引:14,自引:0,他引:14  
Much has been written about the role of interspecific competition, disease, herbivory, and the loss of key mutualisms in the extinction of rare plant species. Interspecific hybridization rarely is considered among the biotic interactions that promote extinction. We show how hybridization may contribute to the demise of rare plant species through demographic swamping and genetic assimilation by an abundant congener. We contend that the growth of the hybrid subpopulation is the key to rare species assimilation, and we show how the production of hybrid seed, the fitness of hybrids, and pest pressure affect hybrid proliferation. We also discuss how habitat disturbance, unspecialized pollinators, and weak crossing barriers promote hybridization, and how the negative consequences of hybridization are unlikely to be compensated for by immigration from conspecific populations. We also illustrate stages in the demise of species in island floras. We suggest that hybridization is an increasing threat to rare species because ecological barriers are being disrupted by human activities.  相似文献   

13.
Mixtures can be divided into simple (chemicals with comparable properties—health risk assessments on the chemicals) and complex, which can be further subdivided into defined (a reasonably distinct composition, created at a specific time and place despite dissimilar components—risk assessments on the common source) and coincidental (chemicals without similar properties or constant composition in time or space—risk assessments on the receptor). Interactions recognized are: independent action, dose addition (additivity), and potentiation (synergy and antagonism). Unpredicted outcomes need recognition. New approaches in higher education and multidisciplinary investigations are essential. The community of the Society for Environmental Geochemistry and Health should help clarify points such as when transformations in mixtures may become important enough to alter the classification and the risk assessment. The multidisciplinary community is also well placed to support the integration of nonchemical influences into mixture analysis and to contribute to the investigation of cumulative and multiple exposures.  相似文献   

14.
Carroll IT  Cardinale BJ  Nisbet RM 《Ecology》2011,92(5):1157-1165
The frequently observed positive correlation between species diversity and community biomass is thought to depend on both the degree of resource partitioning and on competitive dominance between consumers, two properties that are also central to theories of species coexistence. To make an explicit link between theory on the causes and consequences of biodiversity, we define in a precise way two kinds of differences among species: niche differences, which promote coexistence, and relative fitness differences, which promote competitive exclusion. In a classic model of exploitative competition, promoting coexistence by increasing niche differences typically, although not universally, increases the "relative yield total", a measure of diversity's effect on the biomass of competitors. In addition, however, we show that promoting coexistence by decreasing relative fitness differences also increases the relative yield total. Thus, two fundamentally different mechanisms of species coexistence both strengthen the influence of diversity on biomass yield. The model and our analysis also yield insight on the interpretation of experimental diversity manipulations. Specifically, the frequently reported "complementarity effect" appears to give a largely skewed estimate of resource partitioning. Likewise, the "selection effect" does not seem to isolate biomass changes attributable to species composition rather than species richness, as is commonly presumed. We conclude that past inferences about the cause of observed diversity-function relationships may be unreliable, and that new empirical estimates of niche and relative fitness differences are necessary to uncover the ecological mechanisms responsible for diversity-function relationships.  相似文献   

15.
Response surface methodology, often supported by factorial designs, is the classical experimental approach that is widely accepted for detecting and characterizing interactions among chemicals in a mixture. In an effort to reduce the experimental effort as the number of compounds under study is increased, ray designs have been proposed to study combinations of chemicals. When interest is restricted to relevant mixing ratios, we are only interested in making inference along the specific rays of interest, as opposed to methods which use designs that require more experimental effort to support the estimation of a response surface over a broader experimental region. Methods have been developed for the test of additivity along multiple fixed-ratio rays. Of primary importance is the detection of interactions with reasonable power. The objective of this paper is to address power and sample size issues related to the hypothesis of no interaction.  相似文献   

16.
Many plant families have aromatic species that produce volatile compounds which they release when damaged, particularly after suffering herbivory. Monarda fistulosa (Lamiaceae) makes and stores volatile essential oils in peltate glandular trichomes on leaf and floral surfaces. This study examined the larvae of a specialist tortoise beetle, Physonota unipunctata, which feed on two M. fistulosa chemotypes and incorporate host compounds into fecal shields, structures related to defense. Comparisons of shield and host leaf chemistry showed differences between chemotypes and structures (leaves vs. shields). Thymol chemotype leaves and shields contained more of all compounds that differed than did carvacrol chemotypes, except for carvacrol. Shields had lower levels of most of the more volatile chemicals than leaves, but more than twice the amounts of the phenolic monoterpenes thymol and carvacrol and greater totals. Additional experiments measured the volatiles emitted from M. fistulosa in the absence and presence of P. unipunctata larvae and compared the flower and foliage chemistry of plants from these experiments. Flowers contained lower or equal amounts of most compounds and half the total amount, compared to leaves. Plants subjected to herbivory emitted higher levels of most volatiles and 12 times the total amount, versus controls with no larvae, including proportionally more of the low boiling point chemicals. Thus, chemical profiles of shields and volatile emissions are influenced by the amounts and volatilities of compounds present in the host plant. The implications of these results are explored for the chemical ecology of both the plant and the insect.  相似文献   

17.
Experimental evolution is relevant to ecology because it can connect physiology, and in particular metabolism, to questions in ecology. The investigation of the linkage between the environment and the evolution of metabolism is tractable because these experiments manipulate a very simple environment to produce predictable evolutionary outcomes. In doing so, microbial selection experiments can examine the causal elements of natural selection: how specific traits in varying environments will yield different fitnesses. Here, we review the methodology of microbial evolution experiments and address three issues that are relevant to ecologists: genotype-by-environment interactions, ecological diversification due to specialization, and negative frequency-dependent selection. First, we expect that genotype-by-environment interactions will be ubiquitous in biological systems. Second, while antagonistic pleiotropy is implicated in some cases of ecological specialization, other mechanisms also seem to be at work. Third, while negative frequency-dependent selection can maintain ecological diversity in laboratory systems, a mechanistic (biochemical) analysis of these systems suggests that negative frequency dependence may only apply within a narrow range of environments if resources are substitutable. Finally, we conclude that microbial experimental evolution needs to avail itself of molecular techniques that could enable a mechanistic understanding of ecological diversification in these simple systems.  相似文献   

18.
Knowledge of the structure of networks of social interactions is important for understanding the evolution of cooperation, transmission of disease, and patterns of social learning, yet little is known of how environmental, ecological, or behavioural factors relate to such structures within groups. We observed grooming, dominance, and foraging competition interactions in eight groups of wild meerkats (Suricata suricatta) and constructed interaction networks for each behaviour. We investigated relationships between networks for different social interactions and explored how group attributes (size and sex ratio), individual attributes (tenure of dominants), and ecological factors (ectoparasite load) are related to variation in network structure. Network structures varied within a group according to interaction type. Further, network structure varied predictably with group attributes, individual attributes, and ecological factors. Networks became less dense as group size increased suggesting that individuals were limited in their number of partners. Groups with more established dominant females were more egalitarian in their grooming and foraging competition interactions, but more despotic in their dominance interactions. The distribution of individuals receiving grooming became more skewed at higher parasite loads, but more equitable at low parasite loads. We conclude that the pattern of interactions between members of meerkat groups is not consistent between groups but instead depends on general attributes of the group, the influence of specific individuals within the group, and ecological factors acting on group members. We suggest that the variation observed in interaction patterns between members of meerkat groups may have fitness consequences both for individual group members and the group itself.  相似文献   

19.
Grewell BJ 《Ecology》2008,89(6):1481-1488
Outbreaks of infectious agents in natural ecosystems are on the rise. Understanding host-pathogen interactions and their impact on community composition may be central to the conservation of biological diversity. Infectious agents can convey both exploitive and facilitative effects that regulate host populations and community structure. Parasitic angiosperms are highly conspicuous in many plant communities, and they provide a tractable model for understanding parasite effects in multispecies communities. I examined host identity and variation in host infectivity of a holoparasitic vine (Cuscuta salina) within a California salt marsh. In a two-year parasite removal experiment, I measured the effect of C. salina on its most frequent host, a rare hemiparasite, and the plant community. C. salina clearly suppressed the dominant host, but rare plant fitness and plant species diversity were enhanced through indirect effects. Priority effects played a role in the strength of the outcome due to the timing of life history characteristics. The differential influence of parasites on the fecundity of multiple hosts can change population dynamics, benefit rare species, and alter community structure. The continuum of negative to positive consequences of parasitic interactions deserves more attention if we are to understand community dynamics and successfully restore tidal wetlands.  相似文献   

20.
Immune defense and reproductive pace of life in Peromyscus mice   总被引:1,自引:0,他引:1  
Martin LB  Weil ZM  Nelson RJ 《Ecology》2007,88(10):2516-2528
Immune activity is variable within and among vertebrates despite the potentially large fitness costs of pathogens to their hosts. From the perspective of life history theory, immunological variability may be the consequence of counterbalancing investments in immune defense against other expensive physiological processes, namely, reproduction. In the present study, we tested the hypothesis that immune defense among captive-bred, disease-free Peromyscus mice would be influenced by their reproductive life history strategies. Specifically, we expected that small species that reproduce prolifically and mature rapidly (i.e., fast pace of life) would favor inexpensive, nonspecific immune defenses to promote reproductive proclivity. Alternatively, we expected that large species that mature slowly and invest modestly in reproduction over multiple events (i.e., slow pace of life) would favor developmentally expensive, specific immune defenses and avoid cheap, nonspecific ones because such defenses are predisposed to self-damage. We found that species exhibited either strong ability to kill (gram-negative) bacteria, a developmentally inexpensive defense, or strong ability to produce antibodies against a novel protein, a developmentally expensive defense, but not both. Cell-mediated inflammation also varied significantly among species, but in a unique fashion relative to bacteria killing or antibody production; wound healing was comparatively similar among species. These results indicate that Peromyscus species use immune strategies that are constrained to a dominant axis, but this axis is not determined solely by reproductive pace of life. Further comparisons, ideally with broader phylogenetic coverage, could identify what ecological and evolutionary forces produce the pattern we detected. Importantly, our study indicates that species may not be differentially immunocompetent; rather, they use unique defense strategies to prevent infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号