首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adaptation is a key factor for reducing the future vulnerability of climate change impacts on crop production. The objectives of this study were to simulate the climate change effects on growth and grain yield of maize (Zea mays L.) and to evaluate the possibilities of employing various cultivar of maize in three classes (long, medium and short maturity) as an adaptation option for mitigating the climate change impacts on maize production in Khorasan Razavi province of Iran. For this purpose, we employed two types of General Circulation Models (GCMs) and three scenarios (A1B, A2 and B1). Daily climatic parameters as one stochastic growing season for each projection period were generated by Long Ashton Research Station-Weather Generator (LARS?WG). Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. LARS-WG had appropriate prediction for climatic parameters. The predicted results showed that the day to anthesis (DTA) and anthesis period (AP) of various cultivars of maize were shortened in response to climate change impacts in all scenarios and GCMs models; ranging between 0.5 % to 17.5 % for DTA and 5 % to 33 % for AP. The simulated grain yields of different cultivars was gradually decreased across all the scenarios by 6.4 % to 42.15 % during the future 100 years compared to the present climate conditions. The short and medium season cultivars were faced with the lowest and highest reduction of the traits, respectively. It means that for the short maturing cultivars, the impacts of high temperature stress could be much less compared with medium and long maturity cultivars. Based on our findings, it can be concluded that cultivation of early maturing cultivars of maize can be considered as the effective approach to mitigate the adverse effects of climate.  相似文献   

2.
Climate change is affecting the productivity of crops and their regional distribution. Strategies to enhance local adaptation capacity are needed to mitigate climate change impacts and to maintain regional stability of food production. The objectives of this study were to simulate the climate change effects on phenological stages, Leaf Area Index (LAI), biomass and grain yield of maize (Zea mays L.) in the future and to explore the possibilities of employing irrigation water and planting dates as adaptation strategies to decrease the climate change impacts on maize production in Khorasan Razavi province, Iran. For this purpose, we employed two types of General Circulation Models ((United Kingdom Met. Office Hadley Center: HadCM3) and (Institute Pierre Simon Laplace: IPCM4)) and three scenarios (A1B, A2 and B1). Long Ashton Research Station-Weather Generator (LARS-WG) was used to produce daily climatic parameters as one stochastic growing season for each projection period. Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters. Time period from cultivation until anthesis and maturity were reduced in majority of scenarios as affected by climate change. The results indicated that the grain yield of maize may be reduced (11 % to 38 %) as affected by climate change based on common planting date in baseline and changed (?61 % to 48 %) in response to different irrigation regimes in the future climate change, under all scenarios and times. In general, earlier planting date (1 May) and decreasing irrigation intervals in the anthesis stage (11 applications) caused higher yield compared with other planting dates due to adaption to high temperature. Based on our findings, it seems that management of irrigation water and planting dates can be beneficial for adaptation of maize to climate change in this region.  相似文献   

3.
Climate change associated global warming, rise in carbon dioxide concentration and uncertainties in precipitation has profound implications on Indian agriculture. Maize (Zea mays L.), the third most important cereal crop in India, has a major role to play in country’s food security. Thus, it is important to analyze the consequence of climate change on maize productivity in major maize producing regions in India and elucidate potential adaptive strategy to minimize the adverse effects. Calibrated and validated InfoCrop-MAIZE model was used for analyzing the impacts of increase in temperature, carbon dioxide (CO2) and change in rainfall apart from HadCM3 A2a scenario for 2020, 2050 and 2080. The main insights from the analysis are threefold. First, maize yields in monsoon are projected to be adversely affected due to rise in atmospheric temperature; but increased rainfall can partly offset those loses. During winter, maize grain yield is projected to reduced with increase in temperature in two of the regions (Mid Indo-Gangetic Plains or MIGP, and Southern Plateau or SP), but in the Upper Indo-Gangetic Plain (UIGP), where relatively low temperatures prevail during winter, yield increased up to a 2.7°C rise in temperature. Variation in rainfall may not have a major impact on winter yields, as the crop is already well irrigated. Secondly, the spatio-temporal variations in projected changes in temperature and rainfall are likely to lead to differential impacts in the different regions. In particular, monsoon yield is reduced most in SP (up to 35%), winter yield is reduced most in MIGP (up to 55%), while UIGP yields are relatively unaffected. Third, developing new cultivars with growth pattern in changed climate scenarios similar to that of current varieties in present conditions could be an advantageous adaptation strategy for minimizing the vulnerability of maize production in India.  相似文献   

4.
Mitigation needs adaptation: Tropical forestry and climate change   总被引:1,自引:0,他引:1  
The relationship between tropical forests and global climate change has so far focused on mitigation, while much less emphasis has been placed on how management activities may help forest ecosystems adapt to this change. This paper discusses how tropical forestry practices can contribute to maintaining or enhancing the adaptive capacity of natural and planted forests to global climate change and considers challenges and opportunities for the integration of tropical forest management in broader climate change adaptation. In addition to the use of reduced impact logging to maintain ecosystem integrity, other approaches may be needed, such as fire prevention and management, as well as specific silvicultural options aimed at facilitating genetic adaptation. In the case of planted forests, the normally higher intensity of management (with respect to natural forest) offers additional opportunities for implementing adaptation measures, at both industrial and smallholder levels. Although the integration in forest management of measures aimed at enhancing adaptation to climate change may not involve substantial additional effort with respect to current practice, little action appears to have been taken to date. Tropical foresters and forest-dependent communities appear not to appreciate the risks posed by climate change and, for those who are aware of them, practical guidance on how to respond is largely non-existent. The extent to which forestry research and national policies will promote and adopt management practices in order to assist production forests adapt to climate change is currently uncertain. Mainstreaming adaptation into national development and planning programs may represent an initial step towards the incorporation of climate change considerations into tropical forestry.  相似文献   

5.
6.
Directly or indirectly, positively or negatively, climate change will affect all sectors and regions of the United States. The impacts, however, will not be homogenous across regions, sectors, population groups or time. The literature specifically related to how climate change will affect rural communities, their resilience, and adaptive capacity in the United States (U.S.) is scarce. This article bridges this knowledge gap through an extensive review of the current state of knowledge to make inferences about the rural communities vulnerability to climate change based on Intergovernmental Panel on Climate Change (IPCC) scenarios. Our analysis shows that rural communities tend to be more vulnerable than their urban counterparts due to factors such as demography, occupations, earnings, literacy, poverty incidence, and dependency on government funds. Climate change impacts on rural communities differs across regions and economic sectors; some will likely benefit while others lose. Rural communities engaged in agricultural and forest related activities in the Northeast might benefit, while those in the Southwest and Southeast could face additional water stress and increased energy cost respectively. Developing adaptation and mitigation policy options geared towards reducing climatic vulnerability of rural communities is warranted. A set of regional and local studies is needed to delineate climate change impacts across rural and urban communities, and to develop appropriate policies to mitigate these impacts. Integrating research across disciplines, strengthening research-policy linkages, integrating ecosystem services while undertaking resource valuation, and expanding alternative energy sources, might also enhance coping capacity of rural communities in face of future climate change.  相似文献   

7.
Anthropogenic climate change is progressively transforming the environment despite political and technological attempts to reduce greenhouse gas emissions to tackle global warming. Here we propose that greater insight and understanding of the health-related impacts of climate change can be gained by integrating the positivist approaches used in public health and epidemiology, with holistic social science perspectives on health in which the concept of ‘wellbeing’ is more explicitly recognised. Such an approach enables us to acknowledge and explore a wide range of more subtle, yet important health-related outcomes of climate change. At the same time, incorporating notions of wellbeing enables recognition of both the health co-benefits and dis-benefits of climate change adaptation and mitigation strategies across different population groups and geographical contexts. The paper recommends that future adaptation and mitigation policies seek to ensure that benefits are available for all since current evidence suggests that they are spatially and socially differentiated, and their accessibility is dependent on a range of contextually specific socio-cultural factors.  相似文献   

8.
Unmitigated anthropogenic climate change is set to exacerbate current stresses on water resources management and creates the need to develop strategies to face climate change impacts on water resources, especially in the long term. Insufficient information on possible impacts on water availability limits the organization and promotion of efforts to adapt and improve the resilience and efficiency of water systems. To document the potential impacts of climate change in the region of Mendoza, Argentina, we perform a hydrological modeling of the Mendoza River watershed using a SWAT model and project climate change scenarios to observe hydrological changes. The results show the impact of higher temperature on glaciers as river flow increases due to glacier melting; at the same time, runoff decreases as precipitation is reduced. Furthermore, the runoff timing is shifted and an earlier melting becomes more important in more pronounced climate change scenarios. Scenarios show a reduction in water availability that ranges between 1 and 10%. An additional scenario under stronger climate change conditions without glaciers data shows a reduction of the river flow by up to 11.8%. This scenario would correspond to a future situation in which glaciers have completely melted. These situations would imply a reduction in the water availability and the possibility of future unsatisfied water uses, in particular for irrigation, which received most of the available water in Mendoza, on which agricultural activities and regional economy depends.  相似文献   

9.
以上海市主要植被类型农田为研究对象,利用大气-植被相互作用模型(AVIM2)模拟的近50年上海市农田净初级生产力(NPP)以及1987、1997和2004年上海市的TM遥感影像数据,分别计算了气候变化和土地利用变化对上海市农田生态系统NPP总量变化的影响.研究结果表明,如果只考虑气候变化,1961~2006年上海农田年平均NPP值增加了64.37g·m-2(以C计),平均每年增长1.43g·m-2.年平均温度和降水量均与NPP显著正相关.另一方面,上海农田面积占总面积的比例由1987年的76%递减到2004年的43%.在土地利用变化和气候变化双重因素的驱动下,自20世纪80年代以来,上海农田NPP总量减少了42%;相对于气候变化影响,土地利用变化对农田NPP总量影响较大,其中,20世纪80年代到90年代,土地利用变化对NPP总量变化的贡献率占78%;20世纪90年代到21世纪初土地利用变化的贡献率达92%.  相似文献   

10.
Nowadays, it is widely acknowledged that climate change will affect mining industry and may pose significant risks to the economic viability of mining enterprises. So far, the vast majority of recent research efforts on this subject have focused, not surprisingly, on mining activities operating in northern areas. Nevertheless, climate change is an issue that should be of concern for all mining industry, worldwide. For this reason, this paper addresses the impacts of climate change on mining industry in the Mediterranean Region, and specifically Greece, and attempts, for the first time, to estimate the cost of climate change-related risks to the sector by means of a ??top-down?? approach. Towards this direction, climate projections based on the United Nations International Panel on Climate Change (IPCC) A1B emission scenario (which refers to a fast global economic growth, global population that peaks mid-century and then decreases, and a rapid introduction of new and more efficient technologies and a balanced energy source mix) for the time period 2021?C2050 are compared to climate data for the time period 1991?C2000, in order to quantify the impacts in physical terms. Then, both secondary and primary data sources are used to monetize the cost of climate change impacts to mining enterprises. Although there exist certain limitations in the research due to data unavailability, the study reveals the importance of the problem and provides useful findings. More specifically, the estimates indicate that Greece??s mining industry could face economic losses from climate change as high as US$0.8 billion. The cost of adaptation measures is about US$312 million, while that of mitigation measures that will burden the sector through the increased electricity prices is about US$478 million.  相似文献   

11.
12.
Climate change science can trace its origins back to the early 19th Century although interest really took off in the 1980s, when public interest and research activity proliferated as the potential negative effects of global warming became clear. The impacts of climate change on the marine environment was receiving little attention at this time, but in recent years has started to “catch up” both in terms of research activity and public and policy interest. In the UK, the Marine Climate Change Impacts Partnership (MCCIP) has played a key role in transferring the emerging evidence base on marine climate change impacts to decision makers through the development of climate change report cards. Since publishing its first card back in 2006, the MCCIP cards have become established as the principal source of marine climate change impacts evidence for policy makers in the UK, and similar approaches have been adopted elsewhere. Here we broadly describe how the climate change evidence base has evolved over time, with a focus on the marine evidence base, and the approach adopted in the UK by MCCIP to rapidly transfer this evidence to end users. The SIIRMS model developed by MCCIP to ensure integrity and independence in the scientific translation process is explored, along with wider lessons learnt along the way (e.g. about communicating uncertainty) and the impact MCCIP has had on informing decision making.  相似文献   

13.
Mitigation and Adaptation Strategies for Global Change - All Clean Development Mechanism (CDM) projects are designed to contribute to the sustainable development of the host country. Livelihood is...  相似文献   

14.
气候变化背景下小兴安岭天然林的模拟研究   总被引:20,自引:0,他引:20  
建立的林窗模型NEWCOP,被证明适合于模拟小兴安岭天然森林的分布、生长和演替,并可用于跟踪现有森林的生长和演替动态。在GISS2xCO和GFDL2xCO气候变化情景下对现有林分的模拟实验显示:小兴安岭森林对气候变化具有敏感性;尽管森林对不同气候变化情景的响应明显不同,但基本趋势是一致的,即蒙古栎等阔叶树在森林中将占越来越大的比例  相似文献   

15.
While climate change impacts on human life have well defined and different origins, the interactions among the diverse impacts are not yet fully understood. Their final effects, however, especially those involving social-economic responses, are likely to play an important role. This paper is one of the first attempts to disentangle and highlight the role of these interactions. It focuses on the economic assessment of two specific climate change impacts: sea-level rise and changes in tourism flows. By using a Computable General Equilibrium (CGE) model the two impacts categories are first analysed separately and then jointly. Considered separately, in 2050, the forecasted 25 cm. of sea level rise imply a GDP loss ranging from (−) 0.1% in South East Asia to almost no loss in Canada, while redistribution of tourism flows – which in terms of arrivals favours Western Europe, Japan, Korea and Canada and penalises all the other world regions – triggers GDP losses ranging from (−) 0.5% in Small Island States to (−) 0.0004% in Canada. GDP gainers are Australia, New Zealand, Western Europe, Middle East and South Asia. The impact of sea level rise and tourism were simulated jointly and the results compared with those of the two disjoint simulations. From a qualitative point of view, the joint effects are similar to the outcomes of the disjoint exercises; from a quantitative perspective, however, impact interaction does play a significant role. In six cases out of 16 there is a detectable (higher than 2% and peaking to 70%) difference between the sum of the outcomes in the disjoint simulation and the outcomes of the joint simulations. Moreover, the relative contribution of each single impact category has been disentangled from the final result. In the case under scrutiny, demand shocks induced by changes in tourism flows outweigh the supply-side shock induced by the loss of coastal land.
Francesco BoselloEmail:
  相似文献   

16.
Among livestock systems, grazing is likely to be most impacted by climate change because of its dependency to feed quality and availability. In order to reduce the impact of climate change on grazing livestock systems, adaptation measures should be implemented. The goal of this study is to identify the best pasture composition for a representative grazing dairy farm in Michigan in order to reduce the impacts of climate change on production. In order to achieve the goal of this study, three objectives were sought: (1) identify the best pasture composition, (2) assess economic and resource use impacts of pasture compositions under future climate scenarios, and (3) evaluate the resiliency of pasture compositions. A representative farm was developed based on a livestock practices survey and incorporated into the Integrated Farm System Model (IFSM). For the pasture compositions, four cool-season grass species and two legumes were evaluated under both current and future climate scenarios. The effectiveness of adaptation measures based on economic and resource use criteria was evaluated. Overall, the pasture composition with 50% perennial ryegrass (Lolium multiflorum) and 50% red clover (Trifolium pratense) was identified as the best. In addition, the increase in precipitation and temperature of the most intensive climate scenario could significantly improve farm net return per cow (Bos taurus) and whole farm profit while no significant impact was observed on resource use criteria. Finally, the overall sensitivity assessment showed that the most resilient pasture composition under future climate scenarios was ryegrass with red clover and the least resilient was orchardgrass (Dactylis glomerata) with white clover (Trifolium repens).  相似文献   

17.
We examine the potential for adaptation to climate change in Indian forests, and derive the macroeconomic implications of forest impacts and adaptation in India. The study is conducted by integrating results from the dynamic global vegetation model IBIS and the computable general equilibrium model GRACE-IN, which estimates macroeconomic implications for six zones of India. By comparing a reference scenario without climate change with a climate impact scenario based on the IPCC A2-scenario, we find major variations in the pattern of change across zones. Biomass stock increases in all zones but the Central zone. The increase in biomass growth is smaller, and declines in one more zone, South zone, despite higher stock. In the four zones with increases in biomass growth, harvest increases by only approximately 1/3 of the change in biomass growth. This is due to two market effects of increased biomass growth. One is that an increase in biomass growth encourages more harvest given other things being equal. The other is that more harvest leads to higher supply of timber, which lowers market prices. As a result, also the rent on forested land decreases. The lower prices and rent discourage more harvest even though they may induce higher demand, which increases the pressure on harvest. In a less perfect world than the model describes these two effects may contribute to an increase in the risk of deforestation because of higher biomass growth. Furthermore, higher harvest demands more labor and capital input in the forestry sector. Given total supply of labor and capital, this increases the cost of production in all the other sectors, although very little indeed. Forestry dependent communities with declining biomass growth may, however, experience local unemployment as a result.  相似文献   

18.
19.
Agriculture in Kazakhstan is sensitive to climate, and wheat yields could be reduced up to 70% under climate change. With the transition from a socialist economy to a free market economy, decisions are being made now that will affect Kazakhstan's ability to cope with climate change. A team of Kazakh and American researchers examined the cost-effectiveness and barriers to implementations of adaptation options for climate change. Twelve adaptation options that increase flexibility to respond to climate change were identified using a screening matrix. Four options, forecasting pest outbreaks, developing regional centers for preserving genetic diversity of seeds, supporting a transition to a free market, and reducing soil erosion through the use of changed farming practices, were examined. The Adaptation Decision Matrix (ADM) was then applied to estimate benefits using expert judgment (using an arbitrary numerical scale, not monetary values) and benefits estimates were compared to costs to determine cost-effectiveness. The ADM uses subjective measures of how well adaptation options meet policy objectives. Controlling soil erosion was estimated to have the highest benefits, but the high costs of implementation appears to make it relatively cost-ineffective. Supporting a transition to a free market was ranked as the most cost-effective measure, with regional centers second. However, use of different scales to quantify benefits or different weights can result in regional centers being more cost-effective than the transition to a free market. Regional centers was also judged to have fewer barriers to implementation than a transition to a free market. These results will be incorporated in Kazakhstan's National Action Plan. The ADM and other tools are relatively easy to apply, but are quite subjective and difficult to evaluate. The tools can be quite useful by decision makers to analyze advantages and disadvantages between different adaptation options, but should be supplemented with additional, particularly quantitative analysis.  相似文献   

20.
An air quality modeling system was used to simulate the effects on ozone concentration in the northeast USA from climate changes projected through the end of the twenty-first century by the National Center for Atmospheric Research’s (NCAR’s) parallel climate model, a fully coupled general circulation model, under a higher and a lower scenario of future global changes in concentrations of radiatively active constituents. The air quality calculations were done with both a global chemistry-transport model and a regional air quality model focused on the northeast USA. The air quality simulations assumed no changes in regional anthropogenic emissions of the chemical species primarily involved in the chemical reactions of ozone creation and destruction, but only accounted for changes in the climate. Together, these idealized global and regional model simulations provide insights into the contribution of possible future climate changes on ozone. Over the coming century, summer climate is projected to be warmer and less cloudy for the northeast USA. These changes are considerably larger under the higher scenario as compared with the lower. Higher temperatures also increase biogenic emissions. Both mean daily and 8-h maximum ozone increase from the combination of three factors that tend to favor higher concentrations: (1) higher temperatures change the rates of reactions and photolysis rates important to the ozone chemistry; (2) lower cloudiness (higher solar radiation) increases the photolysis reaction rates; and (3) higher biogenic emissions increase the concentration of reactive species. Regional model simulations with two cumulus parameterizations produce ozone concentration changes that differ by approximately 10%, indicating that there is considerable uncertainty in the magnitude of changes due to uncertainties in how physical processes should be parameterized in the models. However, the overall effect of the climate changes simulated by these models – in the absence of reductions in regional anthropogenic emissions – would be to increase ozone concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号