首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead arsenate pesticides were widely used in apple orchards from 1925 to 1955. Soils from historic orchards in four counties in Virginia and West Virginia contained elevated concentrations of As and Pb, consistent with an arsenical pesticide source. Arsenic concentrations in approximately 50% of the orchard site soils and approximately 1% of reference site soils exceed the USEPA Preliminary Remediation Goal (PRG) screening guideline of 22 mg kg(-1) for As in residential soil, defined on the basis of combined chronic exposure risk. Approximately 5% of orchard site soils exceed the USEPA PRG for Pb of 400 mg kg(-1) in residential soil; no reference site soils sampled exceed this value. A variety of statistical methods were used to characterize the occurrence, distribution, and dispersion of arsenical pesticide residues in soils, stream sediments, and ground waters relative to landscape features and likely background conditions. Concentrations of Zn, Pb, and Cu were most strongly associated with high developed land density and population density, whereas elevated concentrations of As were weakly correlated with high orchard density, consistent with a pesticide residue source. Arsenic concentrations in ground water wells in the region are generally <0.005 mg L(-1). There was no spatial association between As concentrations in ground water and proximity to orchards. Arsenic had limited mobility into ground water from surface soils contaminated with arsenical pesticide residues at concentrations typically found in orchards.  相似文献   

2.
Ladder brake (Pteris vittata L.) is a newly discovered arsenic hyperaccumulator. No information is available about arsenic effects on ladder brake. This study determined the effects of different arsenic concentrations (50 to 1000 mg kg(-1)) or forms (organic vs. inorganic and arsenite vs. arsenate) applied to soils on growth and arsenic uptake by ladder brake. Young plants were grown in a greenhouse for 12 or 18 wk. Ladder brake was highly tolerant of arsenic and survived in soil containing up to 500 mg As kg(-1). The fact that addition of arsenate up to 100 mg As kg(-1) increased fern biomass by 64 to 107%, coupled with higher arsenic concentration in younger fronds at low soil arsenic concentrations and older fronds at high soil arsenic concentrations, implies that arsenic may be beneficial for fern growth. Addition of 50 mg As kg(-1) was best for fern growth and arsenic accumulation, resulting in the highest fern biomass (3.9 g plant(-1)), bioconcentration factor (up to 63), and translocation factor (up to 25). With an exception of FeAsO4 and AlAsO4, which had the lowest effects due to their low solubility, little difference was observed among other arsenic forms mainly because of arsenic conversion in soil. Aboveground biomass was mostly responsible for accumulation of arsenic by plant (75-99%). Up to 26% of the added arsenic was removed by ladder brake, showing the high efficiency of ladder brake in arsenic removal. The results suggest that ladder brake may be a good candidate to remediate arsenic-contaminated soils.  相似文献   

3.
The unique property of arsenic hyperaccumulation by the newly discovered Chinese brake (Pteris vittata L.) fern is of great significance in the phytoremediation of arsenic-contaminated soils. The objectives of this study were to (i) examine arsenic accumulation characterized by its distribution pattern in Chinese brake, and (ii) assess the phytoextraction potential of the plant. Young ferns with five or six fronds were transferred to an arsenic-contaminated soil containing 98 mg As kg-1 and grown for 20 wk in a greenhouse. At harvest, the Chinese brake produced a total dry biomass of 18 g plant-1. Arsenic concentration in the fronds was 6000 mg kg-1 dry mass after 8 wk of transplanting, and it increased to 7230 mg kg-1 after 20 wk with a bioconcentration factor (ratio of plant arsenic concentration to water-soluble arsenic in soil) of 1450 and a translocation factor (ratio of arsenic concentration in shoot to that in root) of 24. The arsenic concentrations increased as the fronds aged, with the old fronds accumulating as much as 13,800 mg As kg-1. Most (approximately 90%) of the arsenic taken up by the Chinese brake was transported to the fronds, with the lowest arsenic concentrations in roots. About 26% of the initial soil arsenic was removed by the plant after 20 wk of transplanting. Our data suggest that the arsenic hyperaccumulating property of the Chinese brake could be exploited on a large scale to remediate arsenic contaminated soils.  相似文献   

4.
Disposal and beneficial-use options for street sweeping residuals collected as part of routine roadway maintenance activities in Florida, USA, were assessed by characterizing approximately 200 samples collected from 20 municipalities. Total concentrations (mg/kg or μg/kg) and leachable concentrations (mg/L or μg/L) of 11 metals and a number of organic pollutant groups (volatile organics, semi-volatile organics, pesticides, herbicides, carbamates) in the samples were measured. The synthetic precipitation leaching procedure (SPLP) was performed to evaluate the leachability of the pollutants. From the total metal analysis, several metals (e.g., arsenic, barium, chromium, copper, nickel, lead, and zinc) were commonly found above their detection limits. Zinc was found to have the highest mean concentration of all metals measured (46.7 mg/kg), followed by copper (10.7 mg/kg) and barium (10.5 mg/kg). The metal with the smallest mean concentration was arsenic (0.48 mg/kg). A small fraction of the total arsenic, barium, lead, and zinc leached in some samples using the SPLP; leached concentrations were relatively low. A few organic compounds (e.g., 4,4′-DDT, endrin, and endosulfan II) were detected in a limited number of samples. When the total and leaching results were compared to risk-based Florida soil cleanup target levels and groundwater cleanup target levels, the street sweepings were not found to pose a significant human-health risk via direct exposure or groundwater contamination.  相似文献   

5.
Lead contamination at shooting range soils is of great environmental concern. This study focused on weathering of lead bullets and its effect on the environment at five outdoor shooting ranges in Florida, USA. Soil, plant, and water samples were collected from the ranges and analyzed for total Pb and/or toxicity characteristic leaching procedure (TCLP) Pb. Selected bullet and berm soil samples were mineralogically analyzed with X-ray diffraction and scanning electron microscopy. Hydrocerussite [Pb3(CO3)2(OH)2] was found in both the weathered crusts and berm soils in the shooting ranges with alkaline soil pH. For those shooting ranges with acidic soil pH, hydrocerussite, cerussite (PbCO3), and small amount of massicot (PbO) were predominantly present in the weathered crusts, but no lead carbonate mineral was found in the soils. However, hydroxypyromorphite [(Pb10(PO4)6(OH)2] was formed in a P-rich acidic soil, indicating that hydroxypyromorphite can be a stable mineral in P-rich shooting range soil. Total Pb and TCLP Pb in the soils from all five shooting ranges were significantly elevated with the highest total Pb concentration of 1.27 to 4.84% (w/w) in berm soils. Lead concentrations in most sampled soils exceeded the USEPA's critical level of 400 mg Pb kg(-1) soil. Lead was not detected in subsurface soils in most ranges except for one, where elevated Pb up to 522 mg kg(-1) was observed in the subsurface, possibly due to enhanced solubilization of organic Pb complexes at alkaline soil pH. Elevated total Pb concentrations in bermudagrass [Cynodon dactylon (L.) Pers.] (up to 806 mg kg(-1) in the aboveground parts) and in surface water (up to 289 microg L(-1)) were observed in some ranges. Ranges with high P content or high cation exchange capacity showed lower Pb mobility. Our research clearly demonstrates the importance of properly managing shooting ranges to minimize adverse effects of Pb on the environment.  相似文献   

6.
To thoroughly investigate the metal contamination around chromated copper arsenate (CCA)/polyethylene glycol (PEG)-treated utility poles, a total of 189 soil samples obtained from different depths and distances near six treated poles in the Montreal area (Canada) were analyzed for Cu, Cr, and As content. Various soil physicochemical properties were also determined. Ground water samples collected below the poles were analyzed for metals and bioassays with Daphnia magna were conducted. Generally, sandy soils had lower contaminant levels than clayey and organic soils. Copper concentrations in soil were highest followed by As and Cr. The highest Cu (1460 +/- 677 mg kg(-1)), As (410 +/- 150 mg kg(-1)), and Cr (287 +/- 32 mg kg(-1)) concentrations were found at the ground line and immediately adjacent to the pole. Contaminant levels then decreased with distance, approaching background levels within 0.1 m from the pole for Cr and 0.5 m for Cu and As. Chromium and Cu levels generally approached background levels at a depth of 0.5 m. Average As content near the pole on all study sites was three to eight times higher than Quebec's Level C criterion (50 mg kg(-1)), although it dropped to 31 mg kg(-1) at 0.1 m. Results also showed that As persisted up to 1 m in soil depth (17-54 mg kg(-1)). Copper and Cr concentrations in ground water samples were always <1.000 mg L(-1) and <0.05 mg L(-1), respectively and Cr(VI) was <0.02 mg L(-1). One sample contained an As concentration >0.025 mg L(-1) but bioassays showed that, overall, ground water had a low ecotoxic potential.  相似文献   

7.
Information on ecotoxicity of organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), in terrestrial environment is needed for establishing soil quality criteria and for risk assessment purposes. An ecotoxic effect of a model PAH compound (phenanthrene) toward soils microorganisms (nitrifying bacteria) was evaluated in 50 different soils. The soil samples were collected from agricultural land in four regions of Poland with varying levels of industrialization (Slaskie, Dolnoslaskie, Podlaskie, and Lubelskie voievodeships). Soils were characterized for basic physicochemical properties (texture, organic matter content, pH(KCl), total nitrogen content, total sorption capacity) and the content of contaminants including PAHs (73-800 microg kg(-1)), Pb (6-720 mg kg(-1)), and Zn (9-667 mg kg(-1)). Ecotoxicity of phenanthrene (applied at 10, 100, 500, and 1000 mg kg(-1)) to soils microorganisms was evaluated in laboratory studies in control conditions (incubation of soils for 7 d at 20 +/- 2 degrees C). Nitrification potential was used as the ecotoxicity measurements end point. The EC50 values (146-1670 mg kg(-1)) calculated from the square root-X linear regression model differed significantly in various soils, although it was difficult to establish a causative relationship between soil physicochemical characteristic and phenanthrene toxicity. A significant factor in the assessment of soils vulnerability to the effect of phenanthrene was level of soil contamination, particularly with PAHs. Soils with previous contamination were more susceptible (mean EC50, 325 mg kg(-1)) than soils from uncontaminated, rural areas (mean EC50, 603 mg kg(-1)).  相似文献   

8.
Trace element speciation in poultry litter   总被引:8,自引:0,他引:8  
Trace elements are added to poultry feed for disease prevention and enhanced feed efficiency. High concentrations are found in poultry litter (PL), which raises concerns regarding trace element loading of soils. Trace metal cation solubility from PL may be enhanced by complexation with dissolved organic carbon (DOC). Mineralization of organo-As compounds may result in more toxic species such as As(III) and As(V). Speciation of these elements in PL leachates should assist in predicting their fate in soil. Elemental concentrations of 40 PL samples from the southeastern USA were determined. Water-soluble extractions (WSE) were fractionated into hydrophobic, anionic, and cationic species with solid-phase extraction columns. Arsenic speciation of seven As species, including the main As poultry feed additives, roxarsone (ROX; 3-nitro-4-hydroxyphenylarsonic acid) and p-arsanilic acid (p-ASA; 4-aminophenylarsonic acid), was performed by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Total As concentrations in the litter varied from 1 to 39 mg kg(-1), averaging 16 mg kg(-1). Mean total Cu, Ni, and Zn concentrations were 479, 11, and 373 mg kg(-1), respectively. Copper and Ni were relatively soluble (49 and 41% respectively) while only 6% of Zn was soluble. Arsenic was highly soluble with an average of 71% WSE. Roxarsone was the major As species in 50% of PL samples. However, the presence of As(V) as the major species in 50% of the PL samples indicates that mineralization of ROX had occurred. The high solubility of As from litter and its apparent ready mineralization to inorganic forms coupled with the large quantity of litter that is annually land-applied in the USA suggests a potential detrimental effect on soil and water quality in the long term.  相似文献   

9.
Trace element mobility in soils depends on contaminant concentration, chemical speciation, water movement, and soil matrix properties such as mineralogy, pH, and redox potential. Our objective was to characterize trace element dissolution in response to acidification of soil samples from two abandoned incinerators in the North Carolina Coastal Plain. Trace element concentrations in 11 soil samples from both sites ranged from 2 to 46 mg Cu kg(-1), 3 to 105 mg Pb kg(-1), 1 to 102 mg Zn kg(-1), 3 to 11 mg Cr kg(-1), < 0.1 to 10 mg As kg(-1), and < 0.01 to 0.9 mg Cd kg(-1). Acidified CaCl2 solutions were passed through soil columns to bring the effluent solution to approximately pH 4 during a 280-h flow period. Maximum concentrations of dissolved Cu, Pb, and Zn at the lowest pH of an experiment (pH 3.8-4.1) were 0.32 mg Cu L(-1), 0.11 mg Pb L(-1), and 1.3 mg Zn L(-1) for samples from the site with well-drained soils, and 0.25 mg Cu L(-1), 1.2 mg Pb L(-1), and 1.4 mg Zn L(-1) for samples from the site with more poorly drained soils. Dissolved Cu concentration at pH 4 increased linearly with increasing soil Cu concentration, but no such relationship was found for Zn. Dissolved concentrations of other trace elements were below our analytical detection limits. Synchrotron X-ray absorption near edge structure (XANES) spectroscopy showed that Cr and As were in their less mobile Cr(III) and As(V) oxidation states. XANES analysis of Cu and Zn on selected samples indicated an association of Cu(II) with soil organic matter and Zn(II) with Al- and Fe-oxides or franklinite.  相似文献   

10.
Lead arsenate was a commonly used insecticide during the first half of the 20th century, particularly in deciduous tree fruit orchards. Antimony is cotransported with As during the ore refining process and could occur as an impurity in commercial lead arsenate products. The total concentrations of As and Sb in eight soil samples collected from eight orchards located throughout central Washington State were analyzed by neutron activation analysis. Total soil Sb concentrations ranged between 0.4 and 1.5 mg kg(-1), while total soil As concentration ranged from 1 to 170 mg kg(-1). Total soil Sb and As concentrations were positively related. Total Pb and As concentrations in four of the soils were substantially higher than natural background, while the Sb to As concentration ratios in these soils were consistent with values measured in three lead arsenate insecticide products. These results confirm that Sb impurity is present in lead arsenate insecticide and has contributed to Sb enrichment of soils on which lead arsenate-treated plants were grown. Although higher than in uncontaminated soils from the same region, the Sb concentrations in the affected soils fall within the normal range observed worldwide and are substantially lower than values associated with impaired human or environmental health.  相似文献   

11.
Soil ingestion by children is an important pathway in assessing public health risks associated with exposure to arsenic-contaminated soils. Soil chemical methods are available to extract various pools of soil arsenic, but their ability to measure bioavailable arsenic from soil ingestion is unknown. Arsenic extracted by five commonly used soil extractants was compared with bioavailable arsenic measured in vivo by immature swine (Sus scrofa) dosing trials. Fifteen contaminated soils that contained 233 to 17 500 mg kg(-1) arsenic were studied. Soil extractants were selected to dissolve surficially adsorbed and/or readily soluble arsenic (water, 1 M sodium acetate, 0.1 M Na2HPO4/0.1 M NaH2PO4) and arsenic in Fe and Mn oxide minerals (hydroxylamine hydrochloride, ammonium oxalate). The mean percent of total arsenic extracted was: ammonium oxalate (53.6%) > or = hydroxylamine hydrochloride (51.7%) > phosphate (10.5%), acetate (7.16%) > water (0.15%). The strongest relationship between arsenic determined by soil chemical extraction and in vivo bioavailable arsenic was found for hydroxylamine hydrochloride extractant (r = 0.88, significant at the 0.01 probability level). Comparison of the amount of arsenic extracted by soil methods with bioavailable arsenic showed the following trend: ammonium oxalate, hydroxylamine hydrochloride > in vivo > phosphate, acetate > water. The amount of arsenic dissolved in the stomach (potentially bioavailable) is between surficially adsorbed (extracted by phosphate or acetate) and surficially adsorbed + nonsurficial forms in Fe and Mn oxides (extracted by hydroxylamine hydrochloride or ammonium oxalate). Soil extraction methods that dissolve some of the amorphous Fe, such as hydroxylamine hydrochloride, can be designed to provide closer estimates of bioavailable arsenic.  相似文献   

12.
Carbon sequestration in soils might mitigate the increase of carbon dioxide (CO2) in the atmosphere. Two contrasting subtropical perennial forage species, bahiagrass (BG; Paspalum notatum Flügge; C4), and rhizoma perennial peanut (PP; Arachis glabrata Benth.; C3 legume), were grown at Gainesville, Florida, in field soil plots in four temperature zones of four temperature-gradient greenhouses, two each at CO2 concentrations of 360 and 700 micromol mol(-1). The site had been cultivated with annual crops for more than 20 yr. Herbage was harvested three to four times each year. Soil samples from the top 20 cm were collected in February 1995, before plant establishment, and in December 2000 at the end of the project. Overall mean soil organic carbon (SOC) gains across 6 yr were 1.396 and 0.746 g kg(-1) in BG and PP, respectively, indicating that BG plots accumulated more SOC than PP. Mean SOC gains in BG plots at 700 and 360 micromol mol(-1) CO2 were 1.450 and 1.343 g kg(-1), respectively (not statistically different). Mean SOC gains in PP plots at 700 and 360 micromol mol(-1) CO2 were 0.949 and 0.544 g kg(-1), respectively, an increase caused by elevated CO2. Relative SON accumulations were similar to SOC increases. Overall mean annual SOC accumulation, pooled for forages and CO2 treatments, was 540 kg ha(-1) yr(-1). Eliminating elevated CO2 effects, overall mean SOC accumulation was 475 kg ha(-1) yr(-1). Conversion from cropland to forages was a greater factor in SOC accumulation than the CO2 fertilization effect.  相似文献   

13.
Revegetation of arsenic (As)-rich mine spoils is often impeded by the lack of plant species tolerant of high As concentrations and low nutrient availability. Basin wildrye [Leymus cinereus (Scribner & Merr.) A. L?ve] has been observed to establish naturally in soils with elevated As content and thus may be useful for the stabilization of As-contaminated soils. An experiment was conducted to evaluate how variable phosphorus (P) concentrations and inoculation with site-specific arbuscular mycorrhizal fungi influence As tolerance of basin wildrye. Basin wildrye was grown in sterile sand in the greenhouse for 16 weeks. Pots of sterile sand were amended to create one of four rates of As (0, 3, 15, or 50 mg As kg(-1)), two rates of P (3 or 15 mg P kg(-1)), and +/-mycorrhizal inoculation in a 2 x 4 x 2 factorial arrangement. After 16 weeks of growth, plants were harvested, shoots and roots thoroughly washed, and the tissue analyzed for total shoot biomass, total root and shoot As and P concentrations, and degree of mycorrhizal infection. Basin wildrye was found to be tolerant of high As concentrations allowing for vigorous plant growth at application levels of 3 or 15 mg As kg(-1). Arsenic was sequestered in the roots, with 30 to 50 times more As in the roots than shoots under low P conditions. Mycorrhizal infection did not confer As tolerance in basin wildrye nor did mycorrhizal fungi influence biomass production. Phosphorus concentrations of 15 mg kg(-1) effectively inhibited As accumulation in basin wildrye. Basin wildrye has the potential to be used for stabilization of As-rich soils while minimizing exposure to grazing animals following reclamation.  相似文献   

14.
In this work we analyzed the sterol content of agricultural soils. Three eukaryotic sterols, cholesterol, beta-sitosterol, and ergosterol were chosen as representative of the animal, plant, and fungal kingdoms, while coprostanol was validated as a marker of human fecal matter contamination. Three soils subjected to different treatments (sewage sludge application, irrigation by saline waters, and contamination by industrial and municipal wastes) were sampled and their sterol content was measured and compared with adjacent untreated soils. The effects of time, location, and treatment were evaluated by means of a number of statistical techniques. Beta-sitosterol concentration varied from 0.9 to 30 mg kg(-1). Lesser values were measured in Cremona (2.1 mg kg(-1)) than in Bari (4.0 mg kg(-1)) and Naples (10.9 mg kg(-1)) soils. No significant effects were detected for cholesterol and ergosterol. Coprostanol was present after sewage sludge disposal and contamination by industrial and municipal wastes, while it was absent in the soil treated with saline water and in the adjacent untreated soil. Coprostanol concentration did not vary much within site and time of sampling, with a mean value of 0.2 mg kg(-1). We confirmed coprostanol as a useful persistent marker of human fecal matter contamination. Multivariate analysis highlighted a clear distinction between the eukaryotic sterols and coprostanol. In addition, a different behavior between ergosterol and cholesterol on one side and beta-sitosterol on the other was detected. This preliminary work suggests that sterols deserve a deeper study of their use as indicators in agricultural soils.  相似文献   

15.
The accumulation of excess soil phosphorus (P) in watersheds under intensive animal production has been linked to increases in dissolved P concentrations in rivers and streams draining these watersheds. Reductions in water dissolved P concentrations through very strong P sorption reactions may be obtainable after land application of alum-based drinking water treatment residuals (WTRs). Our objectives were to (i) evaluate the ability of an alum-based WTR to reduce Mehlich-3 phosphorus (M3P) and water-soluble phosphorus (WSP) concentrations in three P-enriched Coastal Plain soils, (ii) estimate WTR application rates necessary to lower soil M3P levels to a target 150 mg kg(-1) soil M3P concentration threshold level, and (iii) determine the effects on soil pH and electrical conductivity (EC). Three soils containing elevated M3P (145-371 mg kg(-1)) and WSP (12.3-23.5 mg kg(-1)) concentrations were laboratory incubated with between 0 and 6% WTR (w w(-1)) for 84 d. Incorporation of WTR into the three soils caused a near linear and significant reduction in soil M3P and WSP concentrations. In two soils, 6% WTR application caused a soil M3P concentration decrease to below the soil P threshold level. An additional incubation on the third soil using higher WTR to soil treatments (10-15%) was required to reduce the mean soil M3P concentration to 178 mg kg(-1). After incubation, most treatments had less than a half pH unit decline and a slight increase in soil EC values suggesting a minimal impact on soil quality properties. The results showed that WTR incorporation into soils with high P concentrations caused larger relative reductions in extractable WSP than M3P concentrations. The larger relative reductions in the extractable WSP fraction suggest that WTR can be more effective at reducing potential runoff P losses than usage as an amendment to lower M3P concentrations.  相似文献   

16.
A field study was conducted to determine the fate of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) within the root zone (0 to 90 cm) of a sandy soil cropped with sorghum [Sorghum bicolor (L.) Moench] in Gainesville, Florida. Atrazine was uniformly applied at a rate of 1.12 kg ai. ha(-1) to a sorghum crop under moderate irrigation, optimum irrigation, and no irrigation (rainfed), 2 d after crop emergence. Bromide as a tracer for water movement was applied to the soil as NaBr at a rate of 45 kg Br ha(-1), 3 d before atrazine application. Soil water content, atrazine, and Br concentrations were determined as a function of time using soil samples taken from the root zone. Atrazine sorption coefficients and degradation rates were determined by depth for the entire root zone in the laboratory. Atrazine was strongly adsorbed within the upper 30 cm of soil and most of the atrazine recovered from the soil during the growing season was in that depth. The estimated half-life for atrazine was 32 d in topsoil to 83 d in subsoil. Atrazine concentration within the root zone decreased from 0.44 kg ai. ha(-1) 2 days after application (DAA) to 0.1 kg a.i. ha(-1) 26 DAA. Negligible amounts of atrazine (approximately 5 microg kg(-1)) were detected below the 60-cm soil depth by 64 DAA. Most of the decrease in atrazine concentration in the root zone over time was attributed to degradation. In contrast, all applied bromide had leached past the 60-cm soil depth during the same time interval.  相似文献   

17.
Largely influenced by the passage of the Swamp Land Act of 1849, many wetlands were lost in the coastal plain region of the southeastern United States, primarily as a result of drainage for agricultural activities. To better understand the chemical response of soils during wetland conversion, soil core samples were collected from the converted beef cattle pastures and from the natural wetland at Plant City, FL in the summers of 2002 and 2003. Data collected from the natural wetland sites were used as reference data to detect potential changes in soil properties associated with the conversion of wetlands to improved beef cattle (Bos taurus) pastures from 1940 to 2003. The average concentration of total phosphorus (TP) in pasture soils (284 mg kg(-1)) was significantly (p 相似文献   

18.
An extensive and remote gold mining region located in the East of Venezuela has been studied with the aim of assessing the distribution and mobility of mercury in soil and the level of Hg pollution at artisanal gold mining sites. To do so, soils and pond sediments were sampled at sites not subject to anthropological influence, as well as in areas affected by gold mining activities. Total Hg in regionally distributed soils ranged between 0.02 mg kg(-1) and 0.40 mg kg(-1), with a median value of 0.11 mg kg(-1), which is slightly higher than soil Hg worldwide, possibly indicating long-term atmospheric input or more recent local atmospheric input, in addition to minor lithogenic sources. A reference Hg concentration of 0.33 mg kg(-1) is proposed for the detection of mining affected soils in this region. Critical total Hg concentrations were found in the surrounding soils of pollutant sources, such as milling-amalgamation sites, where soil Hg contents ranged from 0.16 mg kg(-1) to 542 mg kg(-1) with an average of 26.89 mg kg(-1), which also showed high levels of elemental Hg, but quite low soluble+exchangeable Hg fraction (0.02-4.90 mg kg(-1)), suggesting low Hg soil mobility and bioavailability, as confirmed by soil column leaching tests. The vertical distribution of Hg through the soil profiles, as well as variations in soil Hg contents with distance from the pollution source, and Hg in pond mining sediments were also analysed.  相似文献   

19.
Surface runoff losses of copper and zinc in sandy soils   总被引:1,自引:0,他引:1  
Increased anthropogenic inputs of Cu and Zn in soils have caused considerable concern relative to their effect on water contamination. Copper and Zn contents in surface soil directly influence the movement of Cu and Zn. However, minimal information is available on runoff losses of Cu and Zn in agricultural soils, and soil-extractable Cu and Zn in relation to runoff water quality. Field experiments were conducted in 2001 to study dissolved Cu and Zn losses in runoff in Florida sandy soils under commercial citrus and vegetable production and the relationship between soil-extractable Cu and Zn forms and dissolved Cu and Zn concentrations in runoff water. Five extraction methods were compared for extracting soil available Cu and Zn. Concentrations of dissolved Cu and Zn in runoff were measured and runoff discharge was monitored. Mean dissolved Cu in field runoff water was significantly correlated with the extractable Cu obtained only by 0.01 mol L(-1) CaCl2, Mehlich 1, or DTPA-TEA methods. Dissolved Zn in runoff water was only significantly correlated with extractable Zn by 0.01 mol L(-1) CaCl2. The highest correlations to dissolved Cu in runoff were obtained when soil-available Cu was extracted by 0.01 mol L(-1) CaCl2. The results indicate that 0.01 mol L(-1) CaCl2-extractable Cu and Zn are the best soil indexes for predicting readily released Cu and Zn in the sandy soils. Both runoff discharge and 0.01 mol L(-1) CaCl2-extractable Cu and Zn levels had significant influences on Cu and Zn loads in surface runoff.  相似文献   

20.
On military training ranges, low-order, incomplete detonations deposit RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) into surface soils. In this study, we evaluated RDX biodegradation in surface soils obtained from a military training range in Alaska. Two factors were compared: (i) soil water potential during the incubations; and (ii) the use of acetonitrile (ACN) as an RDX carrier to spike samples. Organic solvents have been used in laboratory studies to dissolve slightly water-soluble contaminants before addition to soil. We added ACN to obtain final soil ACN concentrations of 0 mg kg(-1) (0%), 1000 mg kg(-1) (0.1%) and 10 000 mg kg(-1) (1%). We then compared RDX attenuation in the soil under saturated and unsaturated conditions. RDX fell below the limit of detection within 3 wk of study initiation under the saturated condition. A maximum degradation rate of 0.15 mg RDX L(-1) d(-1) was measured. Under the unsaturated condition, 42% of the original RDX was still present at study termination (5 wk). The addition of acetonitrile at 0.1 or 1.0% had no affect on RDX loss in the saturated soil. In the unsaturated soil, however, ACN at 1.0% inhibited RDX loss by as much as 25%. These findings indicate that soil water potential and carrier solvent concentrations can impact the rate and extent to which RDX is attenuated in a surface soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号