首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
G. J. Edgar 《Marine Biology》1987,95(4):599-610
The potential of drifting Macrocystis pyrifera kelp for transporting associated animals and plants long distances around the southern oceans was assessed by anchoring kelp holdfasts off the Tasmanian coast in 1985, monitoring the turnover of organisms, and relating species survival to water-transport times and species geographic distributions. Although most of the common animal species and approximately half of the plant species associated with Tasmanian M. pyrifera holdfasts were still present on kelp holdfasts after 191 d at sea, very few of these species have been recorded from New Zealand. It therefore seems unlikely that M. pyrifera plants with intact holdfasts are presently drifting to New Zealand. Drifting kelps probably become negatively buoyant in the Tasman Sea because dissolved nitrate concentrations are insufficient for normal plant growth. Moreover, even if some kelp plants do drift to New Zealand it is possible that their holdfasts rapidly disintegrate in the open ocean because of the abundance of the boring isopods Phycolimnoria spp. in Tasmanian holdfasts. In contrast to the restricted distributions of Tasmanian holdfast-inhabiting species, most of the identified species collected from M. pyrifera holdfasts at subantarctic Macquarie Island also occurred 5 000 km west at Kerguelen Island. Because of the extensive ranges of many subantarctic species, the good probability of survival of epifaunal species on drifting kelps, and the high surface-water nitrate concentrations and low holdfast-densities of Phycolimnoria spp. in the higher latitudes, it is likely that M. pyrifera-mediated transport of faunal and floral propagules has recently occurred, and is probably presently occurring, in subantarctic waters.  相似文献   

2.
An adult giant kelp plant (Macrocystis pyrifera), moved from an inshore kelp forest to an offshore, low-nitrogen environment near Santa Catalina Island, California (USA), maintained growth for 2 wk on internal nitrogen reserves. Frond elongation rates decreased significantly during the third week, and plant growth rate (wet wt) dropped from an initial inshore rate of 3.6 to 0.9% d-1. During this 3 wk period, nitrogen contents and free amino acid concentrations decreased, while mannitol and dry contents increased in frond tissues. After depletion of internal nitrogen reserves, the nitrogen content of lamina and stipe tissues averaged 1.1 and 0.7% dry wt, respectively. The experimental plant was exposed to higher ambient nitrogen concentrations during the last 2 wk. Rates of frond elongation and plant growth increased, but nitrogen content and amino acids in frond tissues remained low. Of the total nitrogen contained in frond tissue of the plant before transplantation, 58% was used to support growth in the absence of significant external nitrogen supply. Amino acids constituted a small proportion of these internal nitrogen reserves. Net movement of nitrogen occurred within large fronds, but not between different frond size classes. The nitrogen content of holdfast tissue remained relatively constant at 2.4% dry wt and accounted for 18 to 29% of the total nitrogen. Holdfast nitrogen was not used to support growth of nitrogen-depleted fronds. In comparison to Laminaria longicruris, which is adapted to long seasonal periods of low nitrogen availability, M. pyrifera has small nitrogen-storage capacity. However, internal reserves of M. pyrifera appear adequate to make nitrogen starvation uncommon in southern California kelp forests.  相似文献   

3.
There have been significant efforts to establish a widely usable method for the prediction of trace element bioavailability in soil. In this work, we used extraction with 0.01 M CaCl2 and 0.05 M ethylenediaminetetraacetic acid (EDTA) to estimate bioavailable concentrations of As, Cd, Cu, Pb, and Zn in a soil moderately contaminated with trace elements 1 and 2 years after the application of three amendments. The experiment took place in a field plot of a soil affected by the toxic spill of the Aznalcóllar mine. Four treatments were established: three with amendments (biosolid compost, sugar beet lime, and a combination of leonardite plus sugar beet lime) and a control without amendment. Trace element concentrations of two representative species in each year (Lamarckia aurea and Poa annua in 2004 and Lamarckia aurea and Bromus rubens in 2005) were analyzed. The results showed a positive effect of the amendments both on soil and vegetation. Trace element concentrations in plants growing in the amended subplots were lower than those in plants from nonamended subplots. As a rule, concentrations of CaCl2-soluble Cd, Cu, and Zn in soil were positively correlated with trace elements in plants, whereas EDTA extraction was scarcely correlated with plant concentration. For species of grasses, especially L. aurea, CaCl2 seems to be a more suitable extractant to predict trace element bioavailability in this contaminated soil.  相似文献   

4.
In the present investigation a pot culture experiment was conducted using sterile, phosphorus deficient soil to study the effect of flyash at 3 different concentrations (10g, 20g and 30g flyash/kg soil) on the infectivity and effectiveness of VAM fungus Glomus aggregatum in pigeonpea (Cajanus cajan (L.) Millsp.) cv Maruti. The flyash amendment in soil at all the 3 different concentrations was found to affect significantly the intensity of VAM fungal colonization inside the plant roots and also suppressed the formation of VAM fungal structure (vesicles and arbuscules) completely at higher concentration (30g flyash/kg soil). The response of the pigeonpea plants, as judged by their higher and dry weight, under the influence of flyash amendment in VAM fungus infested soils was found to be considerably less (though not significant enough) when compared to the control plants (without flyash) that have otherwise shown significant increase in growth over the plants without Glomus aggregatum inoculation. However, flyash amendment without VAM inoculation was also found to enhance the growth of plants as compared to control plants (without flyash and VAM inoculum).  相似文献   

5.
Plants of Vigna radiata L. var. PDM 54 (mung bean) were grown in soil amended with different amounts (10 and 25%) of fly ash (FA). Although total metal content increased with increasing FA amendment, DTPA-extractable metals were higher for 10% FA. Accumulation of metals by the plants increased with increasing FA amendment and was greater in shoots than in roots (except for Mn and Cu) and seeds (except Mn). The total daily intake (TDI) of all the tested metals in seeds was within the recommended dietary allowance (RDA)/provisional tolerable daily intake (PTDI) for adults, except for Cd, which was higher than recommended values. Principal-components analysis (PCA) based on studies of physicochemical properties, DTPA-extractable metals, and metal accumulation in the different parts of V. radiata showed that physicochemical properties such as cation-exchange capacity, organic carbon, and organic matter had significant positive effects on accumulation of Cd, Co, Ni, and Pb by the plant, whereas EC had a significant negative effect. Although addition of fly ash (10%) initially increased the rate of growth, toxic symptoms were observed for 25% FA. Results from analysis of antioxidants (carotenoids, ascorbic acid, non-protein thiol, and free proline) revealed that these increased more in plants grown in 10% FA than in those grown in garden soil. Cysteine and malondialdehyde (MDA) content increased with increasing FA amendment. PCA also showed that all the antioxidants studied behaved similarly except cysteine, for which there was a close relationship with MDA content. Thus, the results obtained during this study revealed that V. radiata L. var. PDM 54 may be grown in 10% FA and/or contaminated agricultural soil.  相似文献   

6.
In a multifactorial pot experiment, maize (Zea mays L.) with or without inoculation with the arbuscular mycorrhizal (AM) fungus Glomus mosseae BEG167 was grown in a sterilized soil spiked with three levels of zinc (0, 300 and 900 mg Zn kg−1 soil) and three levels of cadmium (0, 25 and 100 mg Cd kg−1 soil). At harvest after 8 weeks of growth, the proportion of root length of inoculated plants colonized decreased with increasing Zn or Cd additon, and was 56% in the absence of both metals and was reduced significantly to 27% in the presence of the higher levels of both metals. Mycorrhizal plants had higher biomass than non-mycorrhizal controls except at the highest soil level of Cd. Cadmium had more pronounced effects on plant biomass than did Zn at the levels studied and the two metals showed a significant interaction. The data suggest that mycorrhizal inoculation increased plant growth with enchancement of P nutrition, perhaps increasing plant tolerance to Zn and Cd by a dilution effect. AM inoculation also led to higher soil solution pH after harvest, possibly reducing the availability of the metals for plant uptake, and lowered the concentrations of soluble Zn and Cd in the soil solution, perhaps by adsorption onto the extrametrical mycelium.  相似文献   

7.
Accumulation and phytoavailability of benzo[a]pyrene in an acid sandy soil   总被引:1,自引:0,他引:1  
Effects of benzo[a]pyrene (B[a]P) on ryegrass (Lolium perenne L.) growth, plant accumulation and dissipiation of B[a]P in a red sandy soil (Hapli-Udic Argosol) were studied in a pot experiment. The plants were grown for 61 days in soil spiked with B[a]P at 0, 12.5, 25 and 50 mg kg−1. Control pots without plants were also set up. Soil extractable B[a]P, plant shoot and root biomass, and concentrations of B[a]P in plant shoots and roots were determined. Ryegrass biomass was increased by addition of B[a]P and root B[a]P concentrations were significantly correlated with B[a]P application rate, but no such correlation was found for shoot B[a]P concentrations. This indicates that B[a]P enhanced the growth of the ryegrass. The extractable B[a]P concentration in the planted soil was significantly lower than that in the unplanted control soil at the rate of 50 mg B[a]P kg−1. This indicates that ryegrass may help to dissipate B[a]P in soil at concentrations over 50 mg kg−1 soil although the mechanism for this is not understood.  相似文献   

8.
Chemical defenses are thought to contribute to the invasion success and impacts of many introduced plants; however, for most of these species, little is known about these compounds and how they vary in natural environments. Plant allelochemical concentrations may be affected by a variety of abiotic and biotic factors, including soil nutrients and herbivores. Moreover, such quantitative variation is likely to play an important role in species interactions involving these invasive plants. The purpose of this study was to examine patterns of variation in iridoid glycoside concentrations of the invasive plant Linaria dalmatica (Plantaginaceae). We conducted a greenhouse experiment to investigate the effect of soil nitrogen availability on iridoid glycoside concentrations. Results from this experiment showed that plant iridoid glycoside concentrations decreased with increased nitrogen availability. Additionally, plants were collected from multiple field sites in order to characterize the influence of population, soil nitrogen availability, and herbivore attack on iridoid glycoside variation. Results from field studies indicated that plants demonstrated considerable seasonal variation, as well as variation within and among populations, with iridoid glycoside concentrations ranging from approximately 1 to 15% dry weight. The relationship between soil nitrogen and plant iridoid glycosides varied among populations, with a strong negative correlation in one population, a marginally significant negative relationship in a second population, and no relationship in the remaining two populations. Additionally, we found a negative relationship between iridoid glycoside concentrations and plant injury by an introduced biocontrol agent, the stem-mining weevil Mecinus janthinus (Cucurlionidae). These results show that plant allelochemical concentrations can vary widely in natural environments and suggest that levels of plant defense may be reduced by increased soil nitrogen availability and herbivore attack in this invasive plant species.  相似文献   

9.
The ability of plant species to accumulate arsenic (As) species in the biomass from As-contaminated soils is variable. Among the plants widely grown at the As-contaminated locations, Plantaginaceae and Cyperaceae families belong to the frequent ones. In this study, the ability of Plantago lanceolata (Plantaginaceae) and three wetland plant species representing the family Cyperaceae (Carex praecox, Carex vesicaria, and Scirpus sylvaticus) naturally occurring in the soils with an elevated As in the Czech Republic were investigated. The plants were cultivated under controlled conditions in an As-contaminated soil reaching 735?mg?kg?1 of the total As. The total As in plants reached up to 8.3?mg?kg?1 in leaves, and up to 155?mg?kg?1 in roots of C. praecox. Dominant As compounds were arsenite and arsenate with a small abundance of dimethylarsinic acid (DMA) in all the plant species. In Cyperaceae, small percentages of arsenobetaine (AB) and arsenocholine (AC) were detected, suggesting the ability of these plants to transform As into less toxic compounds. Moreover, the important role of As(V) sequestration on iron plaque on the root surface of Cyperaceae was confirmed. In this context, root washing with oxalic acid partially disrupted the iron plaque for the better release of arsenate.  相似文献   

10.
The blacksmith Chromis punctipinnis, an abundant planktivorous damselfish off southern California, USA, shelters along rocky reefs at night. While sheltered, blacksmiths excrete ammonium that could, in turn, be utilized by nearby benthic macrophytes. Laboratory experiments during the summer and fall of 1983 and 1984 indicate that ammonium excretion at night ranged from 18.1 mol h-1 by a 8.5 g (dry) fish, to 89.1 mol h-1 by a 27.3 g fish; excretion rates generally declined throughout the night. Field measurements at night indicate that ammonium concentrations were significantly higher in rocky crevices occupied by blacksmiths than in unoccupied shelters, and the ammonium level in one shelter dropped after a blacksmith was experimentally removed. Young kelp plants (Macrocystis pyrifera) are capable of taking up ammonium at night. Ammonium levels in chambers containing both a blacksmith and a young kelp plant were significantly lower than in chambers containing only a fish, and ammonium levels dropped in ammoniumspiked chambers that contained kelp plants. Nighttime ammonium uptake rates by young kelp plants, which averaged 1.6 mol g-1 (dry) h-1, were only slightly lower than those during the day. Daytime excretion by blacksmiths occasionally results in elevated ammonium levels in the water column. On two of six days, ammonium concentrations in midwater foraging aggregations were slightly but significantly higher than in upcurrent controls; since blacksmiths typically aggregate at the incurrent margin of kelp beds, the ammonium is swept downcurrent and may be utilized by large M. pyrifera that extend through the water column. Thus, the activities of blacksmiths may results in the importation of extrinsic, inorganic nitrogen to primary producers on temperate reefs.  相似文献   

11.
The performance of Vicia faba L. in soil amended by different concentrations of fly ash has been studied. The parameters considered are seed germination, growth behaviour and nodulation frequency of the plant. Results revealed that while fly-ash amendment to the soil improved the growth performance at initial stages with application of lower concentrations, it was inhibitory at higher exposure concentrations. Although there was no difference in survival rates, but the seedling growth was reduced in comparison to control plants. Fly ash delayed the nodulation as lesser number of nodules was recorded at higher amendments. Results suggested feasibility of growing V. faba in fly ash contaminated area.  相似文献   

12.
The objective of this work is to apply principal component analysis (PCA) and ionic impulsions to the study of the accumulation and uptake of metals in wild plants. Soil samples were taken in three locations and the following plant species were selected: Poa, Pteridium aquilinum, Diplotaxis, Plantago lanceolata and Trifolium repens. After determining contents of Na, K, Ca, Mg, Mn, Pb, Co, Ni, Cu, Cr, Zn, Cd and Fe in the plant samples and in the soils, principal component analysis was carried out for plant data treatment. Sample position maps revealed that there was no substantial differences among samples when plant species or sampling locations were used as a criteria. As the factors obtained by PCA only correlated with one or two variables, the study of accumulation patterns of metals was carried out by using ionic impulsions. The presence of large amounts of pollutants (like Cd, Cr) in plants is related to a greater assimilation of essential micronutrients in order to counteract the influence of the pollutants.  相似文献   

13.
The response of green roselle (Hibiscus sabdariffa) to Cu/Pb contamination and manure application in soil was investigated using pot experiments. Subsamples of a mineral soil were treated with increasing doses (0–500 mg kg?1) of Cu/Pb only and/or amended (at 10% w/w) with poultry or swine manure. Roselle plants were grown, monitored for changes in growth rate and post-harvest aboveground dry biomass and tissue Cu/Pb concentrations were determined. The plants were typically greenish with linear growth profiles at all metal doses, indicating some level of tolerance. Dry biomass yields decreased as metal dose increased. Poultry manure enhanced roselle biomass yields better than swine manure. Tissue Cu/Pb concentrations increased linearly as metal doses increased in unamended soils; whereas nonlinear responses were observed in manure-amended soils. Soil-to-plant transfer factors, T f (%) indicated that Cu (13≤T f (% )≤60) was more phytoavailable to roselle than Pb (11≤T f (% )≤20). Tissue metal concentrations were modelled from soil pH, organic matter, plant available and pseudototal metal; but the models appeared more reliable with plant available metal as a covariate than with pseudototal metal content. These observations may become useful whenever phytoextraction is the remedial option for soils moderately contaminated by toxic metals.  相似文献   

14.
At the present, the long period (from 3 up to 12 months) to form roots from rhizome cuttings of Posidonia oceanica is the major cause of transplant failure. To promote earlier rooting, the effects of different concentrations (5 and 10 mg/l) of two auxins, namely indole-3-butyric acid (IBA) and α-naphtalen aetic acid (NAA), and the time of collection on rooting of plagiotropic and orthotropic cuttings of P. oceanica were tested. Rooting, survival and growth of cuttings were assessed 1 month after planting in a mesocosm. Results demonstrated that the use of auxin was essential to achieve root initiation within the observation period. Irrespective of plant source and collection time, IBA and NAA (5 mg/l) treatments increased the rooting capacity in cuttings. The highest rooting success (i.e. percentage of the survived cuttings that rooted) obtained was 33%. Results also revealed that the survival rate and percentages of cuttings with leaf growth and emergence of new leaves on their terminal shoot were influenced by the collection time × plant source interaction, but were unaffected by the auxin treatment. Orthotropic cuttings taken in November and February showed the highest survival rate (100%). No differences in survival among months were detected for plagiotropic cuttings. In May and July, more plagiotropic cuttings survived (80±7 and 75±6%) compared to orthotropic cuttings (58±7 and 51±4%). Overall, more plagiotropic cuttings showed leaf elongation compared to orthotropic ones, but the inverse was observed in November. A higher percentage of cuttings with emergence of new leaves was observed in the plagiotropic type as compared to the orthotropic one, and in general February and November were the best months for leaf production (28±4 and 38±7%). Finally, the percentage of cuttings that had changed leaf growth orientation (from orthotropic to plagiotropic) was significantly higher in November (63±13%) compared to the other months and tended to be higher in cuttings treated with the auxins compared to controls. These preliminary findings indicate that exposure to IBA or NAA (5 mg/l) was effective in stimulating rooting in P. oceanica without inhibiting plant growth. Therefore, this simple pre-planting practice should be beneficial in restoration attempts. Based on the trend observed, rhizomes should be prepared preferably in late autumn–winter and then planted into restoration stands to achieve a prompt rooting response and the best survival rate. Clearly, future work is needed to maximize the rooting success of cuttings.  相似文献   

15.
Fly ash is the major coal combustion byproduct from thermal power plants. Considering its plant–nourishing constituents, its soil amendment in farmland is one of its promoted disposal methods. A substantial amount of heavy metals present in fly ash, which may leach out due to rainwater or irrigation water, may cause serious problem with long term use, especially to soil organisms. These metals may cause DNA damage through Reactive Oxygen Species (ROS) generation. In the present study, single cell gel electrophoresis [(SCGE) i.e., comet assay] was used to detect DNA damage in earthworm (Dichogaster curgensis) coelomocytes, following an in vitro exposure. Significant DNA damage was observed at the lowest concentration of fly ash leachate (6.25%) examined. DNA damage by all the tested concentrations (6.25%, 12.5%, 25%, 50%) differed significantly (p?<?0.001) from that of the negative control. Hence, long-term application of fly ash might prove harmful for earthworm populations.  相似文献   

16.
Observations have been made on seasonal fluctuations in dissolved inorganic nutrients, internal reserves of nitrogen and growth rates in Laminaria longicruris. The onset of winter growth in shallow-water stations (6 and 9 m) correlated well with improved dissolved nitrate conditions in the sea. During the winter, reserves of NO 3 - were accumulated by the plants and reached maximum values of 150 moles per g fresh weight in March. This represents a concentration factor of approximately 28,000 over the ambient levels, or an internal nitrogen reserve of 2.1% of the dry weight of the tissue. Depletion of this nitrogen pool followed the disappearance of the external NO 3 - with a lag period of up to 2 months. Rapid kelp growth was measured during this period. Reserves of organic nitrogen also reached maximum values in March and declined slowly throughout the summer into autumn. It is suggested that the combined inorganic and organic nitrogen reserves sustain the rapid growth rates into July and at reduced rate through the late summer. Fertilization of an experimental perimental kelp bed with NaNO3 increased the internal plant reserves of NO 3 - and produced a much improved summer growth rate. The enriched plants developed very small reserves of carbohydrate during the rapid summer growth phase.NRCC No. 15549.  相似文献   

17.
The aim of the present study was to determine the effect of fuel-contaminated soils on the germination, survival, and early growth of six crop plants, viz. Brassica oleracea, Trifolium repens, Lactuca sativa, Avena sativa, Pisum sativum, and Zea mays, grown on Cambisol A and B horizons contaminated with gasoline and diesel (0%, 1.25%, 2.5%, 5%, and 10%, w/w). Fuel toxicity was more evident in the B horizon than in the A horizon, and diesel was more toxic than gasoline, probably due to the higher evaporation rate of the latter. Fuels affected the germination and survival of small-seeded plants to a higher extent, reflecting the importance of the seed coat and nutrient reserves for successful plant development in fuel-contaminated soils. In general, root growth was more strongly affected than shoot growth, and plant biomass was more strongly affected than elongation, leading to a less plant branching in the presence of fuel. The findings of this study can be useful for selecting the least fuel-tolerant species as soil contamination bioindicator and for determining the risks of fuel contamination. Due to the low residence time of gasoline components in soil, this phytotoxicity test resulted in an unsuitable bioassay to assess gasoline toxicity.  相似文献   

18.
Regular observations made over a period of 5 yr in four permanent transects provided data on plant, sea urchin, and fish densities which indicate that two unusually severe winter storms in 1980 (Storm I) and 1983 (Storm II) had different effects on a southern California kelp-forest community. Storm I removed all canopies of the giant kelp Macrocystis pyrifera, but spared most understory kelps, mainly Pterygophora californica. Hence, the previously large accumulation of detached drift kelp, mostly M. pyrifera, disappeared. Denied their preferred diet of drift kelp, the sea urchins Strongylocentrotus franciscanus and S. purpuratus then emerged from shelters to find alternative food. Without effective predators, they consumed most living plants, including the surviving understory kelps. This weakened the important detritus-based food chain, as indicated indirectly by declining abundances of algal turf and fish (Embiotocidae) that eat small animals living in turf. In 1983, Storm II reversed the process by eliminating exposed urchins, while clearing rock surfaces for widespread kelp settlement and growth. By summer 1984, the kelp grew to maturity to form extensive canopies despite elevated water temperatures during summer and fall of 1983. Thus, severe storms may have vastly different effects on community structure, depending on the state of the community before the disturbance.  相似文献   

19.
20.
This study determined the concentration of three heavy metals zinc (Zn), lead (Pb), and cadmium (Cd) in soil and in a woody plant species, Milicia excelsa, at Ishiagu quarry, Nigeria. The highest soil concentrations of Zn, Pb, and Cd in soil were obtained at 1?m from the quarry site. In M. excelsa, the highest concentrations of Zn, Pb, and Cd were 3.12–9.1, 3.9–6.01, and 0.51–1.12?mg?kg?1, respectively. There were significant positive correlations between Cd and Zn (r?=?0.963) and Cd and Pb (r?=?0.974) in plants as well as between Cd and Pb (r?=?9.84) in soil. The level of Cd in soil reflected significant pollution compared to average global concentrations in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号