首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the case of plastics containing brominated flame retardants, various brominated organic compounds, including polybrominated dibenzodioxins and dibenzofurans, are yielded when they are degraded. In order to reduce the hazard that might be generated during after-live treatment, the behaviour of flame retarded high-impact polystyrene containing decabromo diphenylether and antimony oxide (Sb2O3), was investigated using several heating programs. It was found that the separation of the thermal process into two steps divided at 330?°C makes it possible to obtain an oil fraction rich in brominated compounds at low temperatures and an oil fraction depleted in brominated compounds at high temperatures. The low temperature oil contained a high concentration of SbBr3 and dibromodibenzofurans. Various brominated compounds with a low volatility and 1-bromo-1-phenylethane from the reaction of HBr with styrene were among the substances in the high temperature oil. The concentration of brominated compounds was reduced from 6?wt% for degradation in a single step to below 1?wt% in the high temperature oil in the two step process.  相似文献   

2.
We investigated the thermal properties and behavior of bromine on the thermal decomposition of paper-based phenolic laminate wastes containing polybrominated flame retardants. The thermal properties of the phenolic laminate wastes were measured with a thermogravimeter and a conduction-type scanning calorimeter (TG-CSC). The weight loss of the wastes on thermal decomposition was mainly in three phases between 40°C and 600°C. The enthalpy (ΔH) of the thermal decomposition was 104 cal/g. The material balance of the decomposition components was measured with batch-type thermal decomposition equipment. The ratios of carbon residue, liquid, and gas on decomposition at 800°C in a vacuum were 37 wt. %, 48 wt. %, and 15 wt. %, respectively. The bromine contents in the carbon residue and liquid were less than 0.02 wt. % and 10 wt. %, respectively. These results are useful both in the carbonization process of these wastes and in the application of carbon residue as carbon materials. Received: August 11, 2000 / Accepted: March 7, 2001  相似文献   

3.
We conducted time-series substance flow analysis of two types of brominated flame retardants (BFRs)--polybrominated diphenyl ethers (PBDEs) and tetrabromobisphenol A (TBBPA)--and two types of related compounds--Sb (used with BFRs for flame inhibition) and polybrominated dibenzo dioxins and furans (PBDDs/DFs: unintended byproducts)--in five size categories of waste TV sets in Japan. Two scenarios were created with BFR substitutions and compared to a "business as usual" scenario in order to obtain basic information for strategic product management. The results showed that the use of DecaBDE in rear and front covers of TV sets began in fiscal 1987-1990 and 1993-1996, respectively, and that TBBPA was used to some extent as a substitute for DecaBDE in the 90s. The amount of waste Br in the plastic covers is predicted to increase until at least fiscal 2020 due to the increasing size of TV sets. Although substitution of BFRs with non-BFRs in Japan by 2006 will reduce waste Br, the amount in waste TV sets will not peak until fiscal 2009. The results will help inform decisions in Japan regarding the recovery and disposal of waste TV sets. The methods used would benefit waste managers faced with similar issues in other countries.  相似文献   

4.
Dehalogenation is a key technology in the feedstock recycling of mixed halogenated waste plastics. In this study, two different methods were used to clarify the effectiveness of our proposed catalytic dehalogenation process using various carbon composites of iron oxides and calcium carbonate as the catalyst/sorbent. The first approach (a two-step process) was to develop a process for the thermal degradation of mixed halogenated waste plastics, and also develop dehalogenation catalysts for the catalytic dehydrochlorination of organic chlorine compounds from mixed plastic-derived oil containing polyvinyl chloride (PVC) using a fixed-bed flow-type reactor. The second approach (a single-step process) was the simultaneous degradation and dehalogenation of chlorinated (PVC) and brominated (plastic containing brominated flame retardant, HIPS–Br) mixed plastics into halogen-free liquid products. We report on a catalytic dehalogenation process for the chlorinated and brominated organic compounds formed by the pyrolysis of PVC and brominated flame retardant (HIPS–Br) mixed waste plastics [(polyethylene (PE), polypropylene (PP), and polystyrene (PS)], and also other plastics. During dehydrohalogenation, the iron- and calcium-based catalysts were transformed into their corresponding halides, which are also very active in the dehydrohalogenation of organic halogenated compounds. The halogen-free plastic-derived oil (PDO) can be used as a fuel oil or feedstock in refineries.  相似文献   

5.
The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition.In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.  相似文献   

6.
Brominated high-impact polystyrene (HIPS-Br), which contained decabromodiphenyl ether flame retardant, and brominated acrylonitrile butadiene styrene (ABS-Br), which contained bromine-containing epoxy-type flame retardant, were degraded at 450°C individually and in a 1/1 mixture by a thermal and catalytic procedure using folded sheet mesoporous (FSM) and ZSM-5 zeolite in liquid phase contact mode. The two polymers produced similar degradation oils but at a higher yield for HIPS-Br. However, the composition and distribution of Br-, N-, and O-containing compounds depended on the type of flame retardant in HIPS-Br and ABS-Br. Multiphase catalytic systems consisting of FSM in liquid phase contact mode and various CaH-, FeO-, CoMo-, and NiMo-based catalysts, or combinations of these catalysts, in vapor phase contact mode were used to decrease the amount of heteroatoms (Br, N, and O) in the degradation oils. Each system gave particular results in terms of mass balance and concentrations of heteroatoms. A FSM (liquid phase contact)/CaHC (vapor phase contact) combination was the best catalytic system to remove Br-, N-, and O-containing compounds from degradation oils.  相似文献   

7.
Most landfilled plastic waste is a mixture or is in the form of composites with incombustible wastes such as glass, metals, and ceramics. After hydrothermal treatment, including a steam-explosion process, the separation of mixed waste (MW) into organic and inorganic substances becomes easy. However, the effect of hydrothermal pretreatment on the subsequent liquefaction of organic substances from MW is not obvious. In this study, the effects on the liquefaction of polystyrene and high-density polyethylene are discussed. Moreover, optimum conditions for the liquefaction of organic substances from hydrothermally treated MW are identified. By means of this hydrothermal pretreatment, including the steam-explosion process, polystyrene and high-density polyethylene can be significantly converted to oil by liquefaction at 300°–400°C. In comparison with liquefaction of hydrothermally pretreated mixed waste (HMW) at 300°–400°C with a batch type reactor, the yield of oil increases significantly on liquefaction using a semi-batch type reactor. It is considered that the radical chain and termination reactions among the radicals from HMW were inhibited in the semi-batch type reactor. On liquefaction of HMW in a semi-batch reactor, the conversion of HMW to oil was enhanced on increasing the liquefaction temperature to 350°C and the holding time to 60 min. Chemical Feedstock Recycling & Other Innovative Recycling Techniques 6  相似文献   

8.
Alginates, extracted from algae are linear unbranched polymers containing β-(1→4)-linked d-mannuronic acid (M) and α-(1→4)-linked l-guluronic acid (G) residues. The conversion of alginic acid into the metal alginate is confirmed using FTIR spectroscopy. Asymmetric and symmetric stretching of free carboxyl group present in metal alginate occurs almost at the same position in various solvent compositions. Total intrusion volume of metal alginate prepared in propanol (0.0742 mL/g) is greater compared to those in ethanol (0.0648 mL/g) and methanol (0.0393 mL/g) as solvent. Surface morphology as well as porosity and pore size distribution of metal alginate are greatly influenced by solvent. It can be seen from thermal analysis results that calcium alginate prepared using different solvent compositions started decomposing at 100 °C, but rapid degradation started around 200 °C. The results showed a stepwise weight loss during thermal sweep, indicating different types of reactions during degradation. First and second step of rapid degradation was situated around 200–300 and 300–550 °C, respectively; whereas the final step is situated around 550–650 °C. The trend of degradation was similar for all the solvents, although the amount of final residue varied from one solvent to another. At the same time, lower thermal stability was also observed with higher heating rates. Additionally, a kinetic analysis was performed to fit with TGA data, where the entire degradation process has been considered as three consecutive first order reactions.  相似文献   

9.
This study focused on the thermal degradation of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS), containing different brominated flame retardants. The evolved inorganic bromine was utilized for the separation of metals present in electric arc furnace dust (EAFD). The thermal degradation of BrPC generated inorganic gaseous HBr (69%) and condensable Br2 (31%). The bromine evolved from BrHIPS was detected almost entirely in a condensed phase as SbBr3. When mixed with EAFD, the evolved inorganic bromine reacted immediately with the metallic components of zinc and lead, but not with iron. The best bromination efficiencies were obtained during the isothermal heating (80 min at 550 °C) of the mixtures at mass ratios of 6:1 and 9:1 w/w under oxidizing conditions. The achieved brominating rates reached 78 and 81% for zinc and 90 and 94% for lead in 6:1 and 9:1 BrPC:EAFD, respectively, and 47 and 65% for zinc and 67 and 63% for lead in 6:1 and 9:1 BrHIPS:EAFD, respectively. The oxidizing condition favored complete vaporization of the formed bromides.  相似文献   

10.
 It is important to investigate the pyrolysis processes of municipal solid waste (MSW) in the same way as for any mixture comprised of multiple substances. In this article, a two-reaction model for a variety of MSW mixtures is proposed to predict mass changes due to pyrolysis. In order to formulate the model based on pyrolysis kinetics, we conducted experiments to determine the kinetic model parameters. By thermal analysis of the typical components of MSW, mass changes attributable to the pyrolysis reaction were found at about 350°C for paper, 400°–500°C for plastics, and 200°–400°C for garbage (dry condition). Activation energies were obtained by the Ozawa method based on the mass changes in pyrolysis. Thus, the pyrolysis behavior is formulated as a function of temperature. Then the pyrolysis mass change of the mixture can be predicted by using a weighted sum of the individual components. The model proved useful in experiments with real waste (refuse-derived fuels). Furthermore, the weight yields (pyrolysis gas, tars, solid residues) of the mixture can be calculated by their additive property after measuring the mass balance of each component. Received: May 11, 2001 / Accepted: November 16, 2001  相似文献   

11.
The plastic components from waste mobile phones were sorted and characterized using visual, spectroscopic and thermal methods. The sustainable strength of the recovered plastics was investigated by comparing their mechanical and thermal properties with commercially used reference materials. The results revealed that the recovered polymers have significant potential to be reused. However, some properties, such as impact strength and tensile modulus, are significantly low compared to virgin materials and need further improvement. The samples were also tested for brominated flame retardants (BFRs) using gas chromatography–mass spectrometry technique, and the results indicated the absence of BFR in recovered plastics; hence, these can be processed without any risk of BFR toxicity.  相似文献   

12.
Pyrolysis of brominated flame retardant-containing high-impact polystyrene (HIPS-Br) was performed at 430°C in the presence of 0.1 wt% of polyethylene terephthalate (PET) in a Pyrex glass reactor. Two different types of brominated flame retardants (decabromodiphenyl ether and decabromodiphenyl ethane) with or without antimony trioxide (as synergist) 5 wt% were used. The presence of PET had a significant effect on the material balance, decreasing the gaseous product and increasing the residue. The type of flame retardant had no effect on the yield of liquid product; however, the presence of Sb resulted in a marked difference in the distribution of decomposition products. Analysis by a gas chromatograph equipped with a flame ionization detector showed that the hydrocarbons were distributed in the range n-C7 to n-C25 with major peaks at n-C9 and n-C17. The presence of PET increased the formation of brominated compounds by several times and affected both the type and quantity of polybrominated compounds. The liquid products obtained from the pyrolysis of HIPS-Br/PET have to be treated before they can be used  相似文献   

13.
The recycling process for 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) sintered at 1450°–1550°C was examined by applying low-temperature degradation of zirconia ceramics under hydrothermal conditions. Hydrothermal treatment at a temperature from 200° to 240°C can lead to the spontaneous disintegration of 3Y-TZP sintered bodies into powdery particles. The hydrothermally obtained zirconia powder was found to consist of primary particles and aggregated particles. Detailed X-ray diffraction measurement revealed the formation of a cubic zirconia phase in the 3Y-TZP sintered bodies, which seemed to inhibit the disintegration of aggregated particles toward the primary particle level. The reclaimed 3Y-TZP powder was sintered again through a conventional powder processing route. The mechanical properties and microstructure of recycled 3Y-TZP sintered specimens were examined by comparison with those of the original 3Y-TZP sintered bodies. Dense recycled 3Y-TZP sintered at a higher temperature exhibited higher fracture toughness to some degree than the original 3Y-TZP.  相似文献   

14.
There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5 M) dissolved in either dimethyl sulfoxide or water (at ca. 23 °C and heated to ca. 105 °C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed.  相似文献   

15.
The use of pressure-volume-temperature (PVT) studies in processing of a biodegradable plastic composition made from soy protein isolate and corn starch is described. The ability of PVT measurements to predict the combined effects of pressure, volume, and temperature effects is demonstrated. The results show that the PVT relations of the plastic can be predicted by using a regression analysis similar to the Tait equations of state. A change in slope of the PVT curves was observed at around 80‡C, which is ascribed to the glass-transition process of the plastic. Evidence of onset of thermal degradation of the plastic was observed at ca. 160‡C under 0 to 200 MPa isobaric pressure. This thermal degradation precluded determination of the crystal melting point of the plastic.  相似文献   

16.
WEEE recycling: Pyrolysis of fire retardant model polymers   总被引:6,自引:0,他引:6  
Pyrolysis treatments of model polymers were made with the aim of studying the recycling of wastes from electronic, electric equipment containing brominated flame retardants. Pyrolysis of flame retarded high impact polystyrene and epoxy resins were made both in flow and closed systems. Products of pyrolysis were analysed with FT-IR spectroscopy and GC-MS and the evolution of bromine was followed with a bromine ion specific electrode. The effect of alkali on pyrolysis was also studied demonstrating, as far epoxy resin is concerned, to be effective on decreasing bromine content in oil and volatile products leading to the recovery of bromine from the residue by washing. The alkali treatment was shown to be less effective in styrenic polymers containing brominated flame retardants.  相似文献   

17.
This article describes the gasification of polyethylene–wood mixtures to form syngas (H2 and CO) with the aim of feedstock recycling via direct fermentation of syngas to ethanol. The aim was to determine the effects of four process parameters on process properties that give insight into the efficiency of gasification in general, and particularly into the optimum gasification conditions for the production of ethanol by fermentation of producer gas. Gasification experiments (fluidized bed, 800°–950°C) were done under different conditions to optimize the composition of syngas suitable for fermentation purposes. The data obtained were used for statistical analysis and modeling. In this way, the effect of each parameter on the process properties was determined and the model was used to predict the optimum gasification conditions. The parameters varied during the experiment were gasification temperature, equivalence ratio, the ratio of plastic to wood in the feed, and the amount of steam added to the process. The response models obtained proved to be statistically significant in the experimental domain. The optimum gasification conditions for maximization of carbon monoxide and hydrogen production were identified. The conditions are: temperature 900°C, equivalence ratio 0.15, amount of plastic in the feed 0.11 g/g feed, and amount of steam added 0.42 g/g feed. These optimum conditions are at the edge of the present experimental domain. The maximum combined CO and H2 efficiency was 42%, and for the maximum yield of CO and H2 it is necessary to minimize the polyethylene content, minimize the added steam and the equivalence ratio, and maximize temperature.  相似文献   

18.
Selective surface modification of polyvinyl chloride (PVC) by ozonation was evaluated to facilitate the separation of PVC from other heavy plastics with almost the same density as PVC, especially polyethylene terephthalate (PET), by the froth flotation process. The optimum froth flotation conditions were investigated, and it was found that at 40°C, 90% of PVC and PET plastics floated. The bubble size became larger and the area covered with bubbles on the plastic surface was reduced with increasing temperature. Optimum PVC separation was achieved with the flotation solution at 40°C and mixing at 180–200 rpm, even for sheet samples 10 mm in size. Combined treatment by ozonation and froth flotation is a simple, effective, and inexpensive method for PVC separation from waste plastics.  相似文献   

19.
This study is focused on the preparation, characterization, and determination of thermal properties and thermal reliability of paraffin/polypropylene (PP) composite as a novel form-stable phase change material (PCM) for thermal energy storage applications. In the composite, paraffin acts as a PCM when PP is operated as supporting material. The composites prepared at different mass fractions of paraffin (50, 60, 70, 80, and 90 w/w%) by solution casting method were subjected to leakage test by heating the composites over the melting temperature of the PCM. The paraffin/PP composite (70/30 w/w%) is found as the maximum paraffin containing composite and was characterized using Fourier transform infrared spectroscopy, optic microscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA) techniques. DSC analysis indicated that the form-stable paraffin/PP composite melts at 44.77–45.52 °C and crystallizes at 53.55–54.80 °C. It has latent heats of 136.16 and −136.59 J/g for melting and crystallization, respectively. These thermal properties make it potential PCM for latent heat thermal energy storage (LHTES) purposes such as solar space heating applications. Accelerated thermal cycling tests indicated that the form-stable PCM had good thermal reliability. TGA also showed that the form-stable PCM degrades in two distinguishable steps and had good chemical stability.  相似文献   

20.
We have already reported the adsorptivity and pore structure of activated carbon made from waste newspaper in order to use the waste paper for purposes other than paper-making stock. However, manufacturing the activated carbon may not necessarily be an advantageous method based on environmental concerns and the effective use of the resource because the reaction during the activating process is endothermic and the amount of carbon consumed is significant. Here, we examine the pore structure and adsorption properties of waste newspaper used as an adsorbent in the form of a carbonized material. Waste newspaper was carbonized for 2 h in the temperature range 400°–1000°C. The specific surface area of the carbonized material obtained, 418 m2/g, was highest for the sample carbonized at 800°C, which was equal to or greater than that of commercially available charcoal. Moreover, the iodine adsorption number of 581 mg/g was the highest and the rate of adsorption was the fastest for the sample carbonized at 800°C. However, the humidity control capability was highest for the material carbonized at 600°–700°C. It has been determined that it is advantageous to carbonize waste paper at 800°C in order to use the carbonized material as an adsorbent, while carbonization at 600°–700°C is more advantageous for use as a humidity control material. Received: June 23, 2000 / Accepted: January 17, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号