首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Radioactive sulphate (35SO4) was applied to the soil below a Scots pine forest on 23 June 1989, and its movement into the canopy and into throughfall and stemflow was measured over 4 months. The specific activity, Bq (mg S)(-1), of the canopy increased monotonically; uptake by current-year (1989) expanding needles was initially twice as fast as by older needles or live twigs. By 10 October the canopy average specific activity was 62 Bq (mg S)(-1). The specific activity of net throughfall (throughfall + stemflow - rain), deduced from measurements from six throughfall collectors, six stemflow collectors and two rain collectors, fell rapidly from 12.6 Bq (mg S)(-1) in late July to <1 Bq (mg S)(-1) in mid-August. The results suggest (assuming rapid equilibration of 35S with sulphate in soil) that root-derived sulphate contributed c. 3% of sulphate in net throughfall and that dry deposition of SO2 and sulphate particles contributed c. 97% of the 0.56 g S m(-2) measured in net throughfall over the period. Simultaneous measurements of SO2 at canopy height and of NH3 above and within the canopy gave mean concentrations of 5.9 and 0.86 microg m(-3), respectively, sufficient to account for the sulphate measured in net throughfall only if codeposition of NH3 and SO2 occurred to canopy surfaces. The large values of specific activity observed in July, however, indicate that throughfall composition may be closely related to recent soil input of sulphate, and that equilibrium cannot be safely assumed. The possibility of a significant contribution of soil-derived sulphate to sulphate deposition in net throughfall cannot be ruled out on the basis of this experiment.  相似文献   

2.
The effects of simulated acid rain on the phyllosphere microflora of pine (Pinus sylvestris L.) were studied experimentally in northern Finland during the summer of 1988. Trees were irrigated with artificial acid rain of pH4 and pH3 (H(2)SO(4) and HNO(3), weight ratio of S:N=2.86:1). Untreated trees and trees irrigated with spring water (pH6) were used as controls. Two sampling heights (0.5m and 2m) were used. The needles were colonized exclusively by epiphytic fungi, mainly Aureobasidium pullulans (de Bary) Arnaud. The lower branches had significantly more epiphytic fungi than the upper branches. Compared to the control trees, the numbers of epiphytic fungi were significantly decreased on the needles of trees irrigated with acid rain. Acid rain affected the number of epiphytic fungi equally at both sampling heights. The species composition of the epiphytic fungi was not affected by the acid treatments.  相似文献   

3.
Previous experiments with conifers fumigated with O(3), produced by air-operated electric discharge ozonators, have provided evidence that O(3) increases the leaching of NO(3)(-), NH(4)(+), K(+), Ca(2+), Mg(2+) and some other cations from needles, when the trees are treated with acid mist. This evidence has provided the foundation of the ozone-acid mist hypothesis of spruce decline. We report experiments with Norway spruce saplings fumigated with purified and unpurified O(3). The results show that the accumulation of NO(3)(-) in the needles arises from the rapid deposition of N(2)O(5) and HNO(3) formed from N(2) in the ozonator. An increase in removal of NH(4)(+), Na(+), Ca(2+), Mg(2+), Zn(2+) and Mn(2+) from the needles during soaking in H(2)SO(4), pH3, was also observed, which was related to the increase in NO(3)(-) but was independent of O(3) concentration. It is concluded that results of previous experiments cited in support of the ozone-acid mist hypothesis arose from effects which were at least partly caused by N(2)O(5) produced as a contaminant, and were incorrectly attributed to ozone. Other effects, such as growth stimulations, visible symptons, enhanced frost sensitivity, and infestation by pests or pathogens, which have been attributed to O(3) generated by electric discharge in air, should be interpreted with caution. Future experiments with ozone must eliminate this problem by either using O(2)-driven ozonators, or by purifying the output from air-driven ozonators using cold and/or water traps.  相似文献   

4.
An eleven-year foliar sulphur (S) monitoring program was carried out from 1976 to 1986 near a sulphur recovery-gas plant in west-central Alberta, Canada, as part of a case study designed to determine the effects of chronic, low concentration sulphur gas emissions on the forest ecosystem surrounding the gas plant. Measurements of both foliar total sulphur (ST) and foliar inorganic sulphur (SO4-S) concentration in lodgepole x jack pine trees at the end of each of the 11 growing seasons were taken to provide an indication of S loading of the forest from industrial sulphur emissions. To measure the state of the forest ecosystem, foliar ST was separated into foliar accumulated sulphur (inorganic sulphur or SO4-S) and foliar assimilated sulphur (organic sulphur or S0) and the ratio of SO4-S/S0 taken. Foliar S0 was calculated as the difference between foliar ST and foliar SO4-S. The median SO4-S/S0 ratio, with all three years of needles considered, varied from 0.29 at a reference location (AV) to 0.88 at the location with the highest stress (AI). The corresponding mean values ranged from 0.3 at the reference location to 2.2 at the location of highest stress. The mean seasonal photosynthetic rate of current year's foliage of the pine trees and soil pH were reduced at a stressed location (AI) compared to the reference location (AV), between 1976 and 1981. Over this same time period the mean foliar SO4-S/S0 ratio increased from 0.4 +/- 0.1 to 1.0 +/- 0.3 at the stressed location (AI) and remained nearly the same at the reference location (AV) at 0.3 +/- 0.1. This research suggests that the foliar SO4-S/S0 ratio is a useful indicator of the state of forest ecosystems under S air pollution stress. It is concluded that foliar S separated into various fractions has potential as an early warning environmental management tool.  相似文献   

5.
Although arsenic (As) contamination of groundwater in the Bengal Basin has received wide attention over the past decade, comparative studies of hydrogeochemistry in geologically different sub-basins within the basin have been lacking. Groundwater samples were collected from sub-basins in the western margin (River Bhagirathi sub-basin, Nadia, India; 90 samples) and eastern margin (River Meghna sub-basin; Brahmanbaria, Bangladesh; 35 samples) of the Bengal Basin. Groundwater in the western site (Nadia) has mostly Ca-HCO(3) water while that in the eastern site (Brahmanbaria) is much more variable consisting of at least six different facies. The two sites show differences in major and minor solute trends indicating varying pathways of hydrogeochemical evolution However, both sites have similar reducing, postoxic environments (p(e): +5 to -2) with high concentrations of dissolved organic carbon, indicating dominantly metal-reducing processes and similarity in As mobilization mechanism. The trends of various redox-sensitive solutes (e.g. As, CH(4), Fe, Mn, NO(3)(-), NH(4)(+), SO(4)(2-)) indicate overlapping redox zones, leading to partial redox equilibrium conditions where As, once liberated from source minerals, would tend to remain in solution because of the complex interplay among the electron acceptors.  相似文献   

6.
Ammonium (NH(4)(+)) concentrations in air and precipitation at the Institute of Ecosystem Studies (IES) in southeastern New York, USA declined over an 11-year period from 1988 to 1999, but increased from 1999 to 2001. These trends in particulate NH(4)(+) correlated well with trends in particulate SO(4)(2-) over the 1988-2001 period. The NH(4)(+) trends were not as well correlated with local cattle and milk production, which declined continuously throughout the period. This suggests that regional transport of SO(4)(2-) may have a greater impact on concentrations of NH(4)(+) and subsequent deposition than local agricultural emissions of NH(3). Ammonium concentrations in precipitation correlated significantly with precipitation SO(4)(2-) concentrations for the 1984-2001 period although NH(4)(+) in precipitation increased after 1999 and SO(4)(2-) in precipitation continued to decline after 1999. The correlation between NH(4)(+) and SO(4)(2-) was stronger for particulates than for precipitation. Particulate NH(4)(+) concentrations were also correlated with particulate SO(4)(2-) concentrations at 31 of 35 eastern U.S. CASTNet sites that had at least 10 years of data. Air concentrations of NH(4)(+) and SO(4)(2-) were more strongly correlated at the sites that were located within an agricultural landscape than in forested sites. At most of the sites there was either no trend or a decrease in NH(4)(+) dry deposition during the 1988-2001 period. The sites that showed an increasing trend in NH(4)(+) dry deposition were generally located in the southeastern U.S. The results of this study suggest that, in the northeastern U.S., air concentrations of NH(4)(+) and subsequent deposition may be more closely linked to SO(4)(2-) and thus SO(2) emissions than with NH(3) emissions. These results also suggest that reductions in S emissions have reduced NH(4)(+) transport to and NH(4)(+)-N deposition in the Northeast.  相似文献   

7.
The results of two field studies and an open-top chamber fumigation experiment showed that the response of mature Scots pine to SO(2) and NO(2) differed from that of mature Norway spruce. Moreover, the response of pine seedlings to SO(2) and NO(2) differed from that of mature trees. The greater increase in the needle total S concentrations of pine suggested more abundant stomatal uptake of SO(2) compared to spruce. Both pine seedlings and mature trees also seemed to absorb more N from atmospheric deposition. Mature pine was able to assimilate SO(4)(2-) derived from SO(2) into organic S more effectively than mature spruce at the high S and N deposition sites, whereas both pine and spruce seedlings accumulated SO(4)-S under NO(2)+SO(2) exposure. Spruce, in turn, accumulated SO(4)-S even when well supplied with N. Net assimilation of SO(4)(2-) in conifer seedlings was enhanced markedly by elevated temperature. To protect the northern coniferous forests against the harmful effects of S and N deposition, it is recommended that the critical level for SO(2) as a growing season mean be set at 5-10 microg m(-3) and NO(2) at 10-15 microg m(-3), depending on the 'effective temperature sum' and/or whether SO(2) and NO(2) occur alone or in combination.  相似文献   

8.
Clone spruce trees (Picea abies L. Karst.) were exposed in the Hohenheim open-top chambers to low levels of O(3) and SO(2), singly and in combination, and to simulated precipitation of two pH treatments (Seufert et al., this volume). At the end of five years of continuous exposure, needles from the 13-year-old trees were sampled and analysed for pigments content by means of HPLC (high pressure liquid chromatography). The pigment content was determined for three needle age classes. Chlorophyll a content, measured on a dry weight basis, was similar for all needle age classes in the control chambers receiving only the simulated rain treatments at pH 5.0 or 4.0, and the chamber receiving O(3) and the rain treatment at pH 4.0. Also, no differences were noted in one-year-old needles in the chambers with SO(2) and simulated precipitation at pH 4.0 and SO(2) + O(3) and simulated precipitation at pH 4.0. Reductions of approximately 10 and 35% were measured in two-year-old needles from the chambers with SO(2) and precipitation at pH 4.0, and SO(2) + O(3) and precipitation at pH 4.0. The three-year-old needles from these chambers had 40% lower chlorophyll a content compared to the control chambers. No treatment effects were seen on the molar ratios of chlorophyll b, the carotenes, lutein, neoxanthin, and the sum of carotenoids involved in the xanthophyll cycle, violaxanthin + antheraxanthin + zeaxanthin, to chlorophyll [Formula: see text]. The xanthophyll cycle, assayed in one-year-old needles under defined light conditions (520 microE m(-2) s(-1), while light) was active in all samples. Needles from the control chambers and the chambers with SO(2) and with O(3) behaved similarly and differed from the SO(2) + O(3) treated needles by a 50% higher zeaxanthin content reached under light.  相似文献   

9.
Both an open-air fumigation system and a laboratory-based system were used to expose decomposing Scots pine (Pinus sylvestris L.) needles to controlled concentrations of SO(2) (arithmetic mean 相似文献   

10.
A chemical analysis of suspended particulate matter (SPM) collected near the world famous Taj Mahal monument at Agra has been carried out. SPM samples collected on glass fibre filters were analysed for water-soluble sulphate, nitrate, chloride and ammonium ions. The data were derived from over 200 samples (each of 24 h), collected continuously during the winter periods (October through to March) of 1984-1985 and 1985-1986. The SO(4)(2-) and NO(3)(-) components are acidic in nature causing corrosion and effects on visibility, and so were studied in more detail. Mean values for SO(4)(2-) and NO(3)(-) derived from two-year data are 7.2 microg m(-3) and 8.2 microg m(-3), respectively. The SO(4)(2-)/SO(2) and NO(3)(-)/NO(2) ratiosobserved indicate faster conversion of SO(2) to SO(4)(2-) than NO(2) to NO(3)(-), the maximum levels being in January. Thus, both SO(4)(2-) and NO(3)(-) results appear to offer more promising indices of air quality than do SPM data alone.  相似文献   

11.
Three-year-old Douglas firs (Pseudotsuga menziesii) were fumigated with 180 microg m(-3) NH3 or clean (charcoal-filtered) air. During these fumigations the plants received 15 mm artificial rain weekly, supplemented with 20, 500 or 2500 micromol litre(-1) (NH4)2SO4. Exposure to NH3 and NH4+ for 14 weeks resulted in a change of the nutrient status of the needles. The most remarkable effect was the increase in the N/K ratio, due to both uptake of N and leaching of K. The action of NH3 was stronger than that of NH4+. Both NH3 and (NH4)2SO4 affected the epicuticular wax layer and decreased mycorhiza frequency. Following fumigation and artificial rain treatments, needles were incubated for 8 h in a medium containing 0, 50, 250, 500 and 2500 micromol litre(-1) (NH4)2SO4. Almost no exchange of Ca, Mg and K for NH4+ was found. Therefore this ion exchange probably explains only a minor part of the changes in nutrient status of the whole trees.  相似文献   

12.
Norway spruce saplings (Picea abies L. Karst.) were exposed for five years to controlled concentrations of ozone and/or sulphur dioxide in open-top chambers. The monoterpenes of needles, twigs (bark and wood), bark and buds harvested from these trees were qualitatively and quantitatively analysed by combined gas chromatography-mass spectrometry. Different tissues and plant parts, showed notable differences in their percentage distribution. However, comparison of the monoterpene patterns of corresponding plant material obtained from trees which had been exposed to different fumigation regimes showed no significant effects of these pollutants.  相似文献   

13.
The effects of potassium fertilization and ozone stress were investigated in a clone of Picea abies (L.) Karst, by studies of the uptake of CO(2) by the crowns, the element content, on leaching of the youngest needles, and the longevity of the needles. All plants were exposed to 0.075 microl litre(-1) SO(2) from January to April 1986. The average ozone concentrations applied during the subsequent growing season (May-December) were 0, 0.027, 0.050 and 0.100 microl litre(-1). Half of the trees received liquid fertilizer applications from April to July 1986. CO(2) uptake by the crowns was significantly reduced in non-fertilized plants at ozone doses of 100-200 microl litre(-1) h, whereas similar reductions were recorded in fertilized plants only above an ozone dose of 300 microl litre(-1) h. Independent of the fertilization, however, the concentrations of calcium, magnesium and nitrogen in the needles increased in parallel with the ozone dose, whilst potassium, phosphorus and sulphur showed little response to ozone. In both nutrient regimes, the diffusive loss of elements from chloroform-washed needles was similar and tended to be reduced at the highest ozone concentration, when relating the leachate to the corresponding element content in the needles. Needles formed in the highest ozone treatment were significantly shed during the succeeding year, regardless of the nutrient supply. It appears that increased potassium supply has little compensating effect on ozone stress in spruce.  相似文献   

14.
Some unavoidable drawbacks of traditional technologies have made phytoremediation a promising alternative for removal of arsenic from contaminated soil and water. In the present study, the potential of an aquatic macrophyte Spirodela polyrhiza L. for phytofiltration of arsenic, and the mechanism of the arsenic uptake were investigated. The S. polyrhiza L. were grown in three test concentrations of arsenate and dimethylarsinic acid (DMAA) (i.e. 1.0, 2.0 and 4.0microM) with 0 (control), 100 or 500microM of phosphate. One control treatment was also set for each test concentrations of arsenic. The PO(4)(3-) concentration in control treatment was 0.02microM. When S. polyrhiza L. was cultivated hydroponically for 6d in culture solution containing 0.02microM phosphate and 4.0microM arsenate or DMAA, the arsenic uptake was 0.353+/-0.003micromolg(-1) and 7.65+/-0.27nmolg(-1), respectively. Arsenic uptake into S. polyrhiza L. was negatively (p<0.05) correlated with phosphate uptake when arsenate was applied to the culture solutions owing to similar in the sorption mechanism between AsO(4)(3-) and PO(4)(3-), and positively (p<0.05) correlated with iron uptake due to adsorption of AsO(4)(3-) onto iron oxides. Thus, the S. polyrhiza L. accumulates arsenic by physico-chemical adsorption and via the phosphate uptake pathway when arsenate was added to the solutions. These results indicate that S. polyrhiza L. would be a good arsenic phytofiltrator. In contrast, DMAA accumulation into S. polyrhiza L. was neither affected by the phosphate concentration in the culture nor correlated (p>0.05) with iron accumulation in plant tissues, which indicates that S. polyrhiza L. uses different mechanisms for DMAA uptake.  相似文献   

15.
Atmospheric deposition to the edge of a spruce forest in Denmark   总被引:6,自引:0,他引:6  
Atmospheric deposition was measured during 1 year at the forest edge of a Norway spruce stand in Denmark. Inside the forest the deposition of H(+), Ca(2+), Mg(2+), Na(+), K(+), Cl(-), NO(3)(-), NH(4)(2) and SO(4)(2-) with canopy throughfall varies with the distance from the forest edge. The deposition at the edge is found to be 10-20 times as high as deposition to an open field and 2-8 times as high as deposition inside the stand. An exponential decrease in deposition as a function of the distance from the forest edge is found. Increased deposition of K(+) and non-sea salt Mg(2+), which mainly originates as a result of leaching from the needles may be explained by a larger leaf area index (LAI) at the forest edge. Deposition of particulate substances, especially Na(+), Cl(-), Mg(2+) and to some extent SO(4)(2-), NH(4)(+) and NO(3)(-) is increased much more than the LAI, which we believe to be caused by changes in wind movements at the forest edge.  相似文献   

16.
Gao B  Yue Q 《Chemosphere》2005,61(4):579-584
A poly-aluminum-chloride-sulfate (PACS) was prepared at various experimental conditions. It was found that the coagulation performance of PACS in water treatment was affected by the PACS particle size distribution and zeta potential value. The experimental results indicated that the PACS particle size distribution and zeta potential value were highly influenced by SO(4)(2-)/Al(3+) molar ratio and bacicities (gamma,gamma=[OH]/[Al]) value. At a fixed gamma value of 2.0, the average PACS particle size increased from 25 to 80nm with the increase of SO(4)(2-)/Al(3+) ratio from 0 to 0.1. Further increase of the SO(4)(2-)/Al(3+) ratio resulted in acute increment particle size of PACS extremely, which can be attributed to its aggregation. At a fixed SO(4)(2-)/Al(3+) ratio of 0.0664, the largest average size of PACS occurred at gamma=2.0. It was also found that the zeta potential value of PACS was strongly influenced by the SO(4)(2-)/Al(3+) ratio, gamma value and pH of the aquatic solution. The zeta potential value of PACS increased with increasing of SO(4)(2-)/Al(3+) ratio. At a fixed SO(4)(2-)/Al(3+) ratio of 0.0664, PACS achieved greatest zeta potential value at gamma value of around 2.0. The maximum positive zeta potential value of PACS was found at pH5.3. At a fixed gamma value of 2.0 and SO(4)(2-)/Al(3+) ratio of 0.0664, the PACS achieved an optimum natural organic matter and turbidity removal efficiency.  相似文献   

17.
To evaluate the changes in sulphur pools in response to acidic deposition, two studies were made-one in southwest Sweden where podzolic B horizons originally sampled in 1951 were resampled in 1989. At the Norrliden site, northern Sweden, sulphur pools in control plots were compared to plots that had been subjected to H(2)SO(4) application between 1971 and 1976. The results show that in southwest Sweden neither organic S nor extractable SO(4)(2-) increased significantly over the 38-year period, despite a decreasing pH and a high S deposition. At Norrliden, about 37% of the applied S was still remaining in the upper and central parts of the Bs horizon, most of which was inorganic sulphate. These contrasting results are explained by intrinsic differences in the soil organic carbon status between the sites-in southwest Sweden, organic carbon concentrations were high which inhibited SO(4)(2-) adsorption. Low organic carbon concentrations and high extractable Fe/Al concentrations promoted SO(4)(2-) adsorption and caused a low subsequent SO(4)(2-) desorption rate at the Norrliden site. The results suggest that sulphate adsorption may be an important mechanism which delays the response in soil chemistry to H(2)SO(4) deposition, provided that soil organic carbon concentrations are low. Organic S retention was not shown to be an important S retention mechanism in any of the sites studied.  相似文献   

18.
Much attention has been paid to ozone as a major cause of novel forest decline in Europe. In combination with acidic mist, O(3) has been observed to increase ion leaching. Besides cations lake Mg(2+), Ca(2+), K(+), NH(4)(+), considerable amounts of nitrate were found to be leached by acidic mist from needles of Norway spruce. Controlled fumigation experiments, with 100, 300, and 600 microg O(3)m(-3) over 22 days continuously, have led to a nitrate accumulation of 94.1 +/- 14.8, 119.4 +/- 28.7 and 198.9 +/- 14.9 microg NO(3)(-1) g(-1) FW, respectively, in leaves of Quercus robur. Similar values were found in leaves of Fagus sylvatica and current and previous year needles of Picea abies. Nitrate levels of controls receiving charcoal filtered air were well below 40 microg NO(3)(-) g (-1) FW. Statistically significant elevated nitrate levels were observed after only 48 h of continuous fumigation with 600 microg O(3)m(-3), in all tree species tested, and after 144 h in the 100 microg O(3)m(-3) treatment. In another experiment, trees of Picea abies were kept in two charcoal (C) and two Purafil plus charcoal (P/C) ventilated chambers, and fumigated with O and 500 microg O(3)m(-3) in cabinets of each filter-type in order to eliminate NO(x) from chamber air. After 29 days of continuous ozone fumigation, NO(3)(-) accumulation in needles amounted to 102.0 +/- 37.7 and 137.4 +/- 40.5 microg g(-1) FW in P/C and C-filtered chambers, respectively. Nitrate contents of controls were below 30 microg NO(3)(-)g(-1) FW at the end of the experiment. No significant differences in NO(3)(-) accumulation between filter treatments were observed. Since NO(x) was reduced by more than 95% in the Purafil/charcoal versus the charcoal treatment, NO(3)(-) accumulation in needles can be attributed predominantly to the influence of ozone and not to direct NO(2) uptake of needles by the possible oxidation of NO to NO(2) in the presence of ozone.  相似文献   

19.
Saskatoon serviceberry or Saskatoon (Amelanchier alnifolia Nutt. cv. Smoky) seedlings were planted at five study sites within a 35,000 km(2) airshed, that is influenced by a number of isolated stationary sources of sulfur dioxide (SO(2)), oxides of nitrogen and hydrocarbons, among others. The locations of the five sites were based on the results of a meteorological dry deposition model for the oxides of sulfur and nitrogen. Visible foliar injury responses of Saskatoon were used as a biological indicator of SO(2) exposures, through monthly field surveys. During late July 1998, unifacial, interveinal chlorosis was observed on some 12% of the seedlings at one study site. By September, the chlorosis had become more severe (necrosis) on some 70% of the plants at that site. Site specific ambient SO(2) levels were relatively low (maximum 5-min concentration of 52.8 ppb). Similar data were unavailable for all, but one other site. Therefore, foliar total S and SO(4)(2-)-S concentrations were analyzed in September at four of the five study sites. Previously soil SO(4)(2-)-S at these sites had been analyzed. There were spatial variabilities among these parameters. Based on the overall examination of these data, it is concluded that the observed visible injury symptoms were due to chronic SO(2) exposures, exacerbated by the presence of ozone (O(3)). Independent of this literature based speculation, visible foliar injury responses of Saskatoon can be used as a biological indicator for acute or chronic ambient SO(2) exposures, in the presence of other phytotoxic air pollutants.  相似文献   

20.
Growth of the Scots pine (Pinus sylvestris) suffered considerably in forests close to fur farms in western Finland, with the occurrence of winter time dieback in the youngest shoots and leading to a bush-like, flat crown canopy. One reason for this growth disturbance may be a serious imbalance in nitrogen metabolism caused by the extra N supply, emitted as NH3 from the dung of the animals. Total N and NH4+ concentrations in the needles and soluble nitrogen concentration in the soil increased considerably in the vicinity of the fur farms. The extra N in the needles was bound in the first place in arginine, the concentration of which increased 10(2)-10(3) fold compared with control trees, and to a lesser extent in glutamine and other amino acids. Alterations in the quantitative and qualitative protein patterns of the needles were obtained. The extra N increased the concentration of total soluble proteins, although it inhibited the formation of certain polypeptides (particularly in the areas of 30, 38, 50 and 65-90 kDa) which were possibly essential for the normal wintering processes. One reason for the winter time dieback in the high N area could thus be found in the altered protein profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号