首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We studied trends in food production and nitrous oxide emissions from India's agricultural sector between 1961 and 2000. Data from Food and Agricultural Statistics (FAO) have been gathered covering production, consumption, fertilizer use and livestock details. IPCC 1996 revised guidelines were followed in studying the variations in N2O-N emissions. Results suggest that total N2O-N emissions (direct, animal waste and indirect sources) increased ~6.1 times from ~0.048 to ~0.294 Tg N2O-N, over 40 years. Source-wise breakdown of emissions from 1961–2000 indicated that during 1961 most of the N2O-N inputs were from crop residues (61%) and biological nitrogen fixation (25%), while during 2000 the main sources were synthetic fertilizer (~48%) and crop residues (19%). Direct emissions increased from ~0.031 to ~0.183 Tg. It is estimated that ~3.1% of global N2O-N emissions comes from India. Trends in food production, primarily cereals (rice, wheat and coarse grains) and pulses, and fertilizer consumption from 1961–2000 suggest that food production (cereals and pulses) increased only 3.7 times, while nitrogenous fertilizer consumption increased ~43 times over this period, leading to extensive release of nitrogen to the atmosphere. From this study, we infer that the challenge for Indian agriculture lies not only in increasing production but also in achieving production stability while minimizing the impact to the environment, through various management and mitigation options.  相似文献   

2.
In this paper, we assess climate change impacts on an intensively managed grassland system at the Swiss Plateau using the process-based grassland model PROGRASS. Taking the CO2 fertilization into account, we find increasing yield levels (in the range of 10–24%) and sharp increases in production risks for an illustrative climate change scenario that suggests a marked increase in temperature and decrease in summer rainfall. Climate change–induced increases in the coefficients of variation of grassland yields are in the range of 21 and 50%. This finding underpins that additional risk management strategies are needed to cope with climate-change impacts on grassland production. The outputs from the grassland model are evaluated economically using certainty equivalents, i.e., accounting for mean quasi rents and production risks. To identify potential risk management strategies under current and future climatic conditions, we consider adjustments of production intensity and farm-level yield insurance. The impact of climate change on production intensities is found to be ambiguous: farmers’ will increase intensity under unconstrained production conditions, but will decrease production intensity in the presence of a cross-compliance scheme. Our results also show that the considered insurance scheme is a powerful tool to manage climate risks in grassland production under current and future conditions because it can reduce the coefficients of variation of quasi rents by up to 50%. However, we find that direct payments tend to reduce farmers’ incentives to use such insurance scheme.  相似文献   

3.
In this survey the earth is viewed from the astrophysical perspective, i.e. using global mean values of environmental parameters. The role of carbon dioxide is described in the processes of energy transfer from the earth's surface to space, which determine “global climate” as measured by the mean surface temperature. Analogies and differences between the problems of the terrestrial atmosphere and those of the solar and stellar atmospheres are examines, both in the computation of model atmosphere and in remote sensing of atmospheric temperature and composition. Subsequently, the temporal astrophysical perspective, with a review of the evolution of CO2 abundance and climate on astrophysical or geological time scales, on earth as on Venus (the runaway greenhouse) and on Mars is introduced. Variation of CO2 may have been critical to the maintenance of an environment in which life could originate and evolve, and may itself have been affected by life. On human time scales, the recent and continuing increase in atmospheric CO2 raises new problems, which are briefly surveyed. It is argued, that the differential greenhouse effect of increased CO2 in the earth's atmosphere is essentially identical to the “blanketing effect” of spectral lines on the temperature structure of stellar atmospheres. The methods used by astrophysicists in such studies are reviewed and compared with those used to evaluate the differential greenhouse effect of CO2 in radiative-convective models of the earth's atmosphere. The latter methods remain relatively crude, but recent results by different authors are in reasonably good agreement; however, the astrophysical perspective, i.e. the use of one-dimensional global mean models, remains a gross simplification of the real complexity of the earth's climate system, which is also true in stellar atmospheres.  相似文献   

4.
Efficient protection against global climate change requires international emission reduction measures. Before these ones are decided, the individual states should make arrangements within their own scope of authority for preventing and mitigating the adverse impacts of climate change already in progress as a consequence of carbon dioxide emissions done so far. In spring 2008 Hungary—among the very first ones in the international stage—passed a middle-term National Climate Change Strategy, which determines both the national tasks in order to reduce greenhouse gas emissions, and sectoral tasks of the adaptation to the ongoing climate change for the period of 2008–2025. As a concrete case study we investigated the possible impacts of the regional change in atmospheric carbon dioxide concentration, temperature and precipitation conditions of the Carpathian Basin on the cultivation conditions of maize, based on the downscaled IPCC 2007 scenarios. Temperatures of each scenarios increased significantly to basic run (1961–1990). This change suppressed the positive influence of elevated CO2 on carbon assimilation. Serious depression may be waited during extreme hot days at Keszthely, Hungary.  相似文献   

5.
Upon arrival on Earth, the reduced carbon pool split into a series of compartments: core, mantle, crust, hydrosphere, atmosphere, biosphere.This distribution pattern is caused by the ability of carbon to adjust structurally to a wide range of pressure and temperature, and to form simple and complex molecules with oxygen, hydrogen and nitrogen. Transformation also involved oxidation of carbon to CO2 which is mediated at depth by minerals, such as magnetite, and by water vapor above critical temperature. Guided by mineral-organic interactions, simple carbon compounds evolved in near surface environments towards physiologically interesting biochemicals. Life, as an autocatalytic system, is considered an outgrowth of such a development.This article discusses environmental parameters that control the CO2 system, past and present. Mantle and crustal evolution is the dynamo recharging the CO2 in sea and air; the present rate of CO2 release from the magma is 0.05 × 1015 g C per year. Due to the enormous buffer capacity of the chemical system ocean, such rates are too small to seriously effect the level of CO2 in our atmosphere. In the light of geological field data and stable isotope work, it is concluded that the CO2 content in the atmosphere has remained fairly uniform since early Precambrian time; CO2 should thus have had little impact on paleoclimate. In contrast, the massive discharge of man-made CO2 into our atmosphere may have serious consequences for climate, environment and society in the years to come.  相似文献   

6.
Carbon dioxide emissions due to fossil fuel consumption are well recognized as a major contributor to climate change. In the debate on dealing with this threat, expectations are high that agriculture based economies of the developing world can help alleviate this problem. But, the contribution of agricultural operations to these emissions is fairly small. It is the clearing of native ecosystems for agricultural use in the tropics that is the largest non-fossil fuel source of CO2 input to the atmosphere. Our calculation show that the use of fossil energy and the concomitant emission of CO2 in the agricultural operational sector - i.e. the use of farm machinery, irrigation, fertilization and chemical pesticides - amounts to merely 3.9% of the commercial energy use in that part of the world. Of this, 70% is associated with the production and use of chemical fertilizers. In the absence of fertilizer use, the developing world would have converted even more land for cultivation, most of which is completely unsuitable for cultivation. Current expectations are that reforestation in these countries can sequester large quantities of carbon in order to mitigate excessive emissions elsewhere. But, any program that aims to set aside land for the purpose of sequestering carbon must do so without threatening food security in the region. The sole option to liberate the necessary land for carbon sequestration would be the intensification of agricultural production on some of the better lands by increased fertilizer inputs. As our calculations show, the sequestration of carbon far outweighs the emissions that are associated with the production of the extra fertilizer needed. Increasing the fertilizer use in the developing world (without China) by 20%, we calculated an overall net benefit in the carbon budget of between 80 and 206 Mt yr?1 dependent on the carbon sequestration rate assumed for the regrowing forest. In those regions, where current fertilizer use is low, the relative benefits are the highest as responding yield increases are highest and thus more land can be set aside without harming food security. In Sub-Saharan Africa a 20% fertilizer increase, which amounts to 0.14 Mt of extra fertilizer, can tie up somewhere between 8 and 19 Mt of CO2 per year (average: 96 t CO2 per 1 t fertilizer). In the Near East and North Africa with a 20%-increased fertilizer use of 0.4 Mt yr-1 between 10 and 24 Mt of CO2 could be sequestered on the land set aside (40 t CO2 per 1 t fertilizer). In South Asia this is 22–61 Mt CO2 yr?1 with an annual additional input of 2.15 Mt fertilizer (19 t CO2 per 1 t fertilizer). In fact, carbon credits may be the only way for some of the farmers in these regions to afford the costly inputs. Additionally, in regions with already relatively high fertilizer inputs such as in South Asia, an efficient use of the extra fertilizer must be warranted. Nevertheless, the net CO2 benefit through implementation of this measure in the developing world is insignificant compared to the worldwide CO2 output by human activity. Thus, reforestation is only one mitigating measure and not the solution to unconstrained fossil fuel CO2 emissions. Carbon emissions should, therefore, first of all be reduced by the avoidance of deforestation in the developing world and moreover by higher energy efficiency and the use of alternative energy sources.  相似文献   

7.
The building sector has been regarded as a potential sector where there is large capacity to reduce the climate change effect. This study has proposed solutions to mitigate environmental impacts and achieve low CO2 emission from residential sector. Therefore, full life cycle assessment (LCA) has been run to assess the CO2 emission and its effect on the atmosphere and climate change. Based on the result, timber scheme is the best choice due to releasing less CO2 emissions to the atmosphere. However, house builders in Malaysia have almost completely neglected timber as a building material, with timber use as building components reduced to 5%. In this study, LCA Software was used to assess CO2 emissions from different wall construction. The alternative building scheme has been made by reinforce steel stud, wooden beam and timber wall (S8) to improve the scheme deficiency while releasing less CO2 emissions compared to other schemes. Therefore, S8 has a decreased CO2 effect by 85% less than precast concrete frame and 90% less than brick over their lifetime. (S8) increased the load bearing compared to conventional timber beam. Thus, new scheme S8 could be replaced by current scheme and promote more adjustable scheme for Malaysian housing.  相似文献   

8.
Globally, more than 30 % of all food that is produced is ultimately lost and/or wasted through inefficiencies in the food supply chain. In the developed world this wastage is centred on the last stage in the supply chain; the end-consumer throwing away food that is purchased but not eaten. In contrast, in the developing world the bulk of lost food occurs in the early stages of the supply chain (production, harvesting and distribution). Excess food consumption is a similarly inefficient use of global agricultural production; with almost 1 billion people now classed as obese, 842 million people are suffering from chronic hunger. Given the magnitude of greenhouse gas emissions from the agricultural sector, strategies that reduce food loss and wastage, or address excess caloric consumption, have great potential as effective tools in global climate change mitigation. Here, we examine the challenges of robust quantification of food wastage and consumption inefficiencies, and their associated greenhouse gas emissions, along the supply chain. We find that the quality and quantity of data are highly variable within and between geographical regions, with the greatest range tending to be associated with developing nations. Estimation of production-phase GHG emissions for food wastage and excess consumption is found to be similarly challenging on a global scale, with use of IPCC default (Tier 1) emission factors for food production being required in many regions. Where robust food waste data and production-phase emission factors do exist—such as for the UK—we find that avoiding consumer-phase food waste can deliver significant up-stream reductions in GHG emissions from the agricultural sector. Eliminating consumer milk waste in the UK alone could mitigate up to 200 Gg CO2e year?1; scaled up globally, we estimate mitigation potential of over 25,000 Gg CO2e year?1.  相似文献   

9.
The mitigation of climate change requires reductions in the amount of CO2 emitted into the atmosphere. One way to achieve this in the short run is through the implementation of CO2 capture and storage (CCS) technology. The viability of CCS not only depends on technical and regulatory issues, but also on public attitudes. Communication plays an important role in shaping these attitudes. This paper reports on two experiments performed to examine effects of emphasis framing in CCS communications, meaning that greater weight is given to advantages of CCS over disadvantages or vice versa. Although emphasis framing can be effective in shaping attitudes, our findings suggest that there may be long-term costs to using this communication technique as it can be perceived as manipulative. Moreover, emphasis framing is judged as relatively illegitimate when the source is expected to be impartial rather than biased.  相似文献   

10.
The global animal food chain has a large contribution to the global anthropogenic greenhouse gas (GHG) emissions, but its share and sources vary highly across the world. However, the assessment of GHG emissions from livestock production is subject to various uncertainties, which have not yet been well quantified at large spatial scale. We assessed the uncertainties in the relations between animal production (milk, meat, egg) and the CO2, CH4, and N2O emissions in Africa, Latin America and the European Union, using the MITERRA-Global model. The uncertainties in model inputs were derived from time series of statistical data, literature review or expert knowledge. These model inputs and parameters were further divided into nine groups based on type of data and affected greenhouse gas. The final model output uncertainty and the uncertainty contribution of each group of model inputs to the uncertainty were quantified using a Monte Carlo approach, taking into account their spatial and cross-correlation. GHG emissions and their uncertainties were determined per livestock sector, per product and per emission source category. Results show large variation in the GHG emissions and their uncertainties for different continents, livestock sectors products or source categories. The uncertainty of total GHG emissions from livestock sectors is higher in Africa and Latin America than in the European Union. The uncertainty of CH4 emission is lower than that for N2O and CO2. Livestock parameters, CH4 emission factors and N emission factors contribute most to the uncertainty in the total model output. The reliability of GHG emissions from livestock sectors is relatively high (low uncertainty) at continental level, but could be lower at country level.  相似文献   

11.
The Welsh Government is committed to reduce greenhouse gas (GHG) emissions from agricultural systems and combat the effects of future climate change. In this study, the ECOSSE model was applied spatially to estimate GHG and soil organic carbon (SOC) fluxes from three major land uses (grass, arable and forest) in Wales. The aims of the simulations were: (1) to estimate the annual net GHG balance for Wales; (2) to investigate the efficiency of the reduced nitrogen (N) fertilizer goal of the sustainable land management scheme (Glastir), through which the Welsh Government offers financial support to farmers and land managers on GHG flux reduction; and (3) to investigate the effects of future climate change on the emissions of GHG and plant net primary production (NPP). Three climate scenarios were studied: baseline (1961–1990) and low and high emission climate scenarios (2015–2050). Results reveal that grassland and cropland are the major nitrous oxide (N2O) emitters and consequently emit more GHG to the atmosphere than forests. The overall average simulated annual net GHG balance for Wales under baseline climate (1961–1990) is equivalent to 0.2 t CO2e ha?1 y?1 which gives an estimate of total annual net flux for Wales of 0.34 Mt CO2e y?1. Reducing N fertilizer by 20 and 40 % could reduce annual net GHG fluxes by 7 and 25 %, respectively. If the current N fertilizer application rate continues, predicted climate change by the year 2050 would not significantly affect GHG emissions or NPP from soils in Wales.  相似文献   

12.
In this paper, the climate effect on the atmospheric radiocarbon concentration is estimated using the data, derived by using dendrochronologically dated tree ring samples, on sunspot number and global surface temperature during 1650–1800 A.D.; however, in order to use the data as a record of changes in radiocarbon production rate or cosmic ray intensity, the variations due to the geochemical process must be eliminated. The estimated influence of climate on the atmospheric radiocarbon concentration is 3–5 times greater than the direct contribution of the change of radiocarbon concentration through a Maunder minimum. The influence of climate on the atmospheric radiocarbon concentration through a transfer rate of CO2 between atmosphere and ocean was estimated at a rate of −13% per degree.The elimination of variations caused by climate and sunspot activities from the variations in atmospheric radiocarbon concentration gives a long time scale trend having a minimum and maximum which occur in about the seventh century A.D. and the sixth millennium suggesting a good correlation between this trend of variation and paleogeomagnetic data.  相似文献   

13.
It has been clearly recognized that future global climate change will limit the possibilities for sustainable development in China. To minimize these negative effects, as a practical strategy, we suggest that the Chinese government engage in international cooperation as a key contributor in the prevention of global warming. This suggestion results from numerical estimations of China’s greenhouse gas (GHG) emission trends accompanied with economic growth up to 2100. The results show that China’s gross domestic product (GDP), measured in terms of purchasing power parity (PPP), may overtake the sum of the GDPs of the United States and Canada in 2020. It is predicted that GDP per capita may reach US$20,000 and $80,000 in 2050 and 2100, respectively; meanwhile, CO2 emissions in China will increase from 6.6 billion tons (in carbon equivalent units) in 1990 to 54.6 billion tons in 2100. This means that the global peak concentration of GHG cannot be practically reduced without significant contributions from China. For international cooperation in mitigating global climate change, we introduce a new option, “per-capita emission restricted by assigned amount,” as an accounting rule for GHG reduction. This baseline classifies global CO2 reduction actions into three categories: compulsory reduction, self-imposed reduction, and voluntary reduction. We suggest that China contribute to world CO2 reduction according to the following timetable: voluntary reduction until 2012, self-imposed reduction until 2020, and compulsory reduction from 2020. The simulation results also indicate that China can benefit from this strategy in terms of improvements in its domestic economy and environment, for instance, by reducing fossil fuel consumption and the emission of pollutants.
Weisheng ZhouEmail: Phone: +81-75-4663418Fax: +81-75-4663418
  相似文献   

14.
Global atmospheric CO2 concentration has increased since the beginning of reliable monitoring in 1958 at a mean rate of about 0.9 ppm CO2/yr. Now, atmospheric CO2 concentration is at 330 ppm. From about 1860 up to 1974, man's intervention in the global carbon cycle caused a likely increase of 76.6 × 1015 gC, corresponding to 36 ppm CO2 in the atmosphere, if a preindustrial content of 294 ppm CO2 or 625.3 × 1015 g C is adopted to be valid. A further rise of atmospheric CO2 seems to be inevitable and probably will be responsible for a climatic warming in the next several decades; therefore, a global examination of carbon reservoirs and carbon fluxes has been undertaken to determine their storage capacity for excess carbon which orginated mainly from burning fossil fuels and from land clearing. During 1860–1974 about 136 × 1015 g C have ben emitted into the atmosphere by fossil fuel combustion and cement production. At present, the emission rate is about 5 × 1015 g C/yr. The worldwide examination of carbon release, primarily by deforestation and soil cultivation since 1860, is estimated to be about 120 × 1015 g C. The net transfer of carbon to the atmosphere owing to man's interference with the biosphere is now believed to be about 2.4 × 1015 g C/yr. An oceanic uptake of roughly 179 × 1015 g C since 1860 is open to discussion. According to the chemical buffering of sea surface water only about 35.5 × 1015 g C could have been absorbed. It is argued, however, that oceanic circulations might have been more effective in removing atmospheric excess carbon of anthropogenic origin.  相似文献   

15.
Vegetation and climate   总被引:1,自引:0,他引:1  
Over the last two centuries, man's activities have caused a 30% increase in the atmospheric concentration of CO2, with continued increases seeming inevitable. This change in CO2 concentration will act on vegetation, both directly and indirectly through global climatic change. It is well established that, on a global scale, patterns of vegetation and climate are closely correlated. Such correlations indicate that climatic change will cause the distribution of vegetation to change. However, the use of correlations for predicting vegetation responses to climatic change is fundamentally unreliable because correlations have no mechanistic underpinning of causation. This paper outlines a mechanistic model for predicting the equilibrium state between current climate and vegetation. It is also used to indicate the sensitivity of global vegetation to the changed climate associated with a doubled CO2—greenhouse scenario. The interpretation of this static model is discussed in terms of rates and patterns of vegetation change.  相似文献   

16.
The broad climatological features associated with the Asian monsoon circulation, including its mean state and intraseasonal and interannual variability over the Indian subcontinent as simulated in the National Center for Atmospheric Research (NCAR) global coupled climate system model (CSM) in its control reference experiment, are presented in this paper. The CSM reproduces the seasonal cycle as well as basic observed patterns of key climatic parameters reasonably well in spite of some limitations in simulation of the monsoon rainfall. However, while the seasonality in rainfall over the region is simulated well, the simulated area-averaged monsoon rainfall is underestimated to only about 60% of the observed rainfall. The centers of maxima in simulated monsoon rainfall are slightly displaced southward as compared to the climatological patterns. The cross-equatorial flow in simulated surface wind patterns during summer is also stronger than observed with an easterly bias. The transient experiment with a 1% per year compound increase in CO2 with CSM suggests an annual mean area-averaged surface warming of about 1.73 °C over the region at the time of CO2 doubling. This warming is more pronounced in winter than during the monsoon season. A net increase in area-averaged monsoon rainfall of about 1.4 mm day–1, largely due to increased moisture convergence and associated convective activity over the land, is obtained. The enhanced intraseasonal variability in the monsoon rainfall in a warmer atmosphere is confined to the early part of the monsoon season which suggests the possibility of the date of onset of summer monsoon over India becoming more variable in future. The enhanced interannual and intraseasonal variability in the summer monsoon activity over India could also contribute to more intense rainfall spells over the land regions of the Indian subcontinent, thus increasing the probability of extreme rainfall events in a warmer atmosphere. Electronic Publication  相似文献   

17.
Is emission intensity of carbon dioxide (CO2) spatially correlated? What determines the CO2 intensity at a provincial level? More importantly, what climate and economic policy decisions should the China’s central and local governments make to reduce the CO2 intensity and prevent the environmental pollution given that China has been the largest emitter of CO2? We aim to address these questions in this study by applying a dynamic spatial system generalized method of moment technique. Our analysis suggests that provinces are influenced by their neighbours. In addition, CO2 intensities are relatively higher in the western and middle areas, and that the spatial agglomeration effect of the provincial CO2 intensity is obvious. Our analysis also shows that CO2 intensity is nonlinearly related to gross domestic product, positively associated with secondary-sector share and foreign direct investment, and negatively associated with population size. Important policy implications are drawn on reducing carbon intensity.  相似文献   

18.
The historic development of the scientific interest in monitoring CO2 in the atmosphere is the subject of this article. Particular emphasis is placed upon activities initiated by the USA in the 1950s which led to the establishment of the Mauna Loa Observatory and further developed into the existing world-wide monitoring system for air constituents and air pollution operated under the auspices of the World Meteorological Organization, a major contributer to the Global Environmental Monitoring System of the UN Environment Programme. Recent studies on the feasibility of monitoring the background level of CO2 at stations throughout the world have indicated considerable difficulties resulting from the influences of the biosphere. These problems have led WMO to adopt new criteria for CO2 monitoring station locations which are presented in a discussion of future needs and plans for global monitoring of CO2 in the atmosphere.  相似文献   

19.
With the economic development, China has become the largest CO2 emissions country. China’s power industry CO2 emissions accounted for about 50% of total CO2 emissions. Therefore, exploring major drivers of CO2 emissions is critical to mitigating its CO2 emissions in power industry. Many studies considered the time series model to analyze the national influences factors of CO2 emissions. But this paper focuses on regional differences in CO2 emissions and adopts panel data models to explore the major impact factors of CO2 emissions in the power industry at the regional and provincial perspectives. The results indicate economic growth level plays a dominant role in reducing CO2 emissions. The power-consuming efficiency on the demand side has large potential to mitigate CO2 emissions, but its influences are different in three regions. The impacts of the electric power structure on CO2 emissions decline from the eastern region to the central and western regions. The influence of urbanization and industrialization also has significant regional differences. Therefore, the governments should consider the influencing factors and regional differences and formulate appropriate policies to decrease CO2 emissions in the power industry.  相似文献   

20.
ABSTRACT

Continuously reducing the CO2 intensity of GDP is the core strategy for developing countries to realize the dual targets of economic growth and CO2 emissions reduction. The measures are twofold: one is to strengthen energy saving and decrease energy intensity of GDP and the other is to promote energy structural decarbonization and reduce CO2 intensity of energy consumption. In order to control global temperature rise no more than 2°C, the decrease in CO2 intensity of GDP needs surpass 4% before 2030, but it could be merely about 2% based on the current trend. Therefore, all countries ought to speed up the low-carbon transition in energy and economy. As for China, keeping a continuous decline in CO2 intensity of GDP of 4%–5% will ensure the realization of the NDC objectives, and also promotes the early peaking of CO2 emissions before 2030. China will play a positive leading role in realizing a win-win low-carbon development coordinating sustainable development and climate change mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号