首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
煤与瓦斯突出过程中煤体瓦斯的作用研究   总被引:4,自引:1,他引:3  
为了研究煤与瓦斯突出过程中煤体瓦斯的作用,采用煤体中瓦斯总量守恒的原理研究瓦斯含量与瓦斯积聚内能的基本方程和影响因素;分析煤与瓦斯突出产生的力学条件和机理,建立了煤与瓦斯突出危险程度的矩阵图。结果表明:瓦斯含量是煤体瓦斯内能最直接的反应,其值大小决定瓦斯内能的大小;瓦斯压力梯度、煤体的断裂韧性及煤体内的裂隙发育程度决定着瓦斯突出的危险性,低渗透性构造煤对瓦斯运移阻力较大,容易形成较大的瓦斯压力梯度,从而更容易发生煤与瓦斯突出。煤层中的瓦斯含量、瓦斯压力、地应力越大,煤体的强度、渗透率越小,越容易发生突出。煤层瓦斯情况、力学性能、地质构造和煤层的应力状态是决定煤与瓦斯突出的主要因素。  相似文献   

2.
为了更加合理地评价冲击型煤与瓦斯突出,采用指标临界值及分级数方式,从地应力、煤层瓦斯、煤岩物理力学性能3方面,研究冲击型煤与瓦斯突出指标等级判据;建立基于层次分析法(AHP)和逼近理想解排序法(TOPSIS)冲击型煤与瓦斯突出倾向性等级评判模型,并用实际工程案例验证模型的合理性。研究表明:基于AHP-TOPSIS的冲击型煤与瓦斯突出预测结果为中等危险性,与实际案例评价相符;地应力条件为冲击型突出发生的主要原因,瓦斯因素次之,煤岩物理力学性能影响最小;煤岩结构、瓦斯压力、瓦斯动力现象、煤岩破坏类型及煤体坚固性系数对冲击型煤与瓦斯突出影响较大。  相似文献   

3.
张大伟  郭立稳  杜通 《安全》2008,29(10):8-10
本文将煤体温度变化、电磁辐射、声发射以及煤的破坏类型和煤层的地质构造综合起来考虑,应用灰色系统理论中的多维灰色评估方法,对煤与瓦斯突出灾害进行预测,以提高瓦斯突出预测预报的准确性。并编制了煤与瓦斯突出预测预报系统软件,为煤与瓦斯突出预测提供一种新思路和新方法。  相似文献   

4.
与其他类型的突出相比,石门揭煤的突出危险性最为严重,对它的突出机理进行研究有助于提高防突工作水平。根据马家沟矿石门揭煤突出后遗留的孔洞形状,采用数值模拟软件对突出过程进行反演分析;再现了马家沟矿石门揭煤突出发生的地质条件及发展过程。结果显示,急倾斜煤层石门揭煤突出过程中,煤体自重应力的作用比较明显;突出发生后,地应力梯度和瓦斯压力梯度均下降,卸压区宽度增大。因此,对于急倾斜煤层石门揭煤,一方面,要采取瓦斯抽放等措施,降低工作面前方煤体的应力和瓦斯压力;另一方面,要采用金属骨架对其上方煤体进行支护,防止该煤体垮落诱导突出。  相似文献   

5.
为研究煤层赋存条件对煤与瓦斯突出危险性的影响,模拟分析不同条件(埋藏深度、煤层厚度和煤体强度)下的应力、瓦斯压力和煤体塑性变形区的分布及变化。结果表明,随埋藏深度的增加,工作面前方应力峰值及应力梯度、瓦斯压力梯度、塑性变形区及塑性应变量等随之增大,煤与瓦斯突出的危险性越来越高;随煤层厚度的增加,工作面应力峰值、应力梯度逐渐减小,出现应力峰值的位置越远离工作面,瓦斯卸压带、瓦斯排放带、塑性变形区越逐渐增大,煤与瓦斯突出的危险性越来越小;随煤体强度的升高,工作面前方应力梯度、瓦斯压力梯度随之增大,塑性变形区和塑性应变值随之减小,煤与瓦斯突出危险性越来越小。  相似文献   

6.
煤与瓦斯突出灾害严重威胁着煤矿安全生产,但目前对煤与瓦斯突出的物质载体形成机理研究鲜有报道。瓦斯突出煤体系指含有高能瓦斯且以强烈韧性破坏为主的构造煤体,具备发生煤与瓦斯突出的固体和气体介质条件。以煤体变形变质为主线,综述相关文献并结合研究积累,分析揭示了瓦斯突出煤体形成的物理条件和过程:煤体结构严重破坏的构造煤、积聚于此的大量瓦斯,是瓦斯突出煤体形成的物质基础;构造应力与重力、吸附/解吸作用、气体增滑与气楔作用,是瓦斯突出煤体形成的动力基础;煤体破坏、瓦斯积聚、封闭压实,是瓦斯突出煤体形成过程的主要特征。本研究对复杂地质条件下区域瓦斯预测防治具有重要指导作用。  相似文献   

7.
煤层注水防治煤与瓦斯突出机理的研究现状与进展   总被引:8,自引:0,他引:8  
为了深入研究煤层注水的防突机理,在对国内外煤层注水防治煤与瓦斯突出机理研究的基础上,综述煤层注水影响煤体力学性质、采场应力分布及煤体瓦斯解吸特性3方面的研究现状;进而分析我国在煤层注水防突机理研究方面存在的问题,提出当前应急需解决注水对煤体瓦斯的抑制解吸效应问题。笔者认为:确定抑制解吸效应考察、煤体孔隙特性变化及注水煤样吸附解吸甲烷特性等课题的研究是深入探讨的方向,研究成果为进一步认识煤层注水的防突机理提供理论依据。  相似文献   

8.
根据鹤壁矿区实测煤层瓦斯含量和瓦斯压力结果,从力能角度分析了地应力、瓦斯、煤体结构对煤与瓦斯突出的影响,确定了地应力为鹤壁矿区煤与瓦斯突出的主控因素。受区域地质构造的控制,南部矿井构造应力大,瓦斯含量高,煤岩体弹性潜能、瓦斯膨胀能大;且构造煤普遍发育,煤体破碎功小。基于力能角度分析,南部矿井在埋藏较浅处,突出动力能量即大于突出阻力能量,是其始突深度较浅的主要原因,鹤壁矿区始突深度呈现南浅北深的特点。在地应力控制作用的基础上,结合三矿实测瓦斯压力、瓦斯突出能量分析,确定三矿在煤层底板标高-510 m以深为突出危险区。  相似文献   

9.
突出煤层掘进防突技术研究   总被引:18,自引:0,他引:18  
针对焦作矿区单一煤层开采特点,分析煤巷掘进突出和瓦斯涌出规律,探讨防突措施的适应性,研究出严重突出危险掘进工作面中高压注水综合措施,即在巷道两侧布置长钻孔抽放工作面前方及两侧煤体瓦斯,向掘进工作面前方应力集中带内打短钻孔进行中高压注水。边掘边抽钻孔提前抽放瓦斯,增大煤体透水性,有利于煤层注水和较高的压力水压裂破坏煤体,增加煤体透气性,提高瓦斯抽放效果。通过在严重突出矿井试验,3115m巷道未发生一次突出,巷道掘进速度平均提高一倍以上,有效解除了突出危险,大幅度提高了掘进速度。研究与实践证明,中高压注水综合防突措施具有广泛的适用性、有效性和安全性特征。  相似文献   

10.
为解决高瓦斯矿井开采过程中煤体透气性差、瓦斯预抽周期长、抽采效果不佳的难题,提出利用深孔预裂爆破技术提高煤体裂隙发育度,增加煤体透气性,从而提高瓦斯抽采率的方法。通过现场调研、理论分析、数值模拟及工业性试验等方法,分析深孔预裂爆破卸压增透内在机理,确定爆破影响半径为4.5~5.3 m,并在A110605工作面进行现场应用,同时考察煤层增透效果。研究结果表明:煤层爆破致裂后,平均瓦斯抽采浓度提高了2.17倍,平均瓦斯抽采纯量提高了2.02倍,煤层透气性系数提高了近5.3倍,煤层卸压增透效果显著,很大程度上消除了煤与瓦斯突出危险性,为实现工作面的安全开采及正常接替提供了保障。  相似文献   

11.
瓦斯压力对煤与瓦斯射流突出能量的影响   总被引:1,自引:0,他引:1  
瓦斯压力是煤与瓦斯突出的主要动力源,其与突出能量的关系尚不明确。将煤与瓦斯突出视为煤-瓦斯气固两相射流突出,在分析煤与瓦斯射流突出过程的基础上,建立了煤与瓦斯射流突出数值模型,给出了突出能量表达式。通过理论分析、数值模拟相结合,得到了瓦斯压力对煤与瓦斯突出能量、突出强度、瓦斯涌出量等参数的影响规律。结果表明,突出发生时,突出能量具有波动性,即以突出口为界存在能量集聚骤升区和能量释放衰减区。能量集聚骤升发生在突出孔洞至突出口段,瓦斯-煤两相流突出速度成倍增大;能量释放主要发生在突出口附近和巷道中,瓦斯-煤两相流突出速度逐渐减小。煤与瓦斯射流突出产生强烈涡旋,在顶板、底板处尤为显著,与现场观察到的突出后顶板有摩擦和划痕、底板突出煤粉有分选现象一致。瓦斯压力与突出能量间呈线性增加关系,与突出强度和瓦斯涌出量均呈幂指数增加关系。计算得到的煤与瓦斯射流突出能量量级与前人结论基本吻合,结果可为煤与瓦斯突出能量预测提供参考。  相似文献   

12.
支持向量机法在煤与瓦斯突出分析中的应用研究   总被引:7,自引:5,他引:2  
通过分析采煤工作面煤与瓦斯涌出量与地质构造指标的对应关系,应用支持向量机(SVM)方法对煤与瓦斯涌出类型及涌出量进行分析。建立两类突出识别的SVM模型、多类型突出识别的H-SVMs模型以及预测瓦斯涌出量的支持向量回归模型。研究结果表明:SVM方法能够很好地对煤与瓦斯突出模式进行识别,所建立的采煤工作面瓦斯涌出量预测模型的精度高于应用BP神经网络预测精度;SVM理论基础严谨,决策函数结构简单,泛化能力强,并且决策函数中的法向量W可以反映突出模式识别的地质结构指标的权重。  相似文献   

13.
为了确定煤与瓦斯突出矿井的突出危险区域,威胁区域和安全区域,提出基于地质动力区划的多因素模式识别概率预测方法预测煤与瓦斯突出的新思路。以鸡西滴道矿立井为研究对象,利用地质动力区划方法确定不同尺度和级别构造运动的特征,建立板块构造学说与矿井工程实际的联系,将对矿井煤与瓦斯突出产生影响的因素为参数,采用多因素模式识别概率预测方法划分研究区域内的危险区域。研究表明该方法对煤与瓦斯突出区域预测的合理性与有效性,可以在实际工程中应用推广。  相似文献   

14.
煤与瓦斯突出影响因素评价分析的模糊层次分析方法   总被引:6,自引:3,他引:3  
在综合分析煤与瓦斯突出的影响因素的基础上,采用模糊层次分析法(FAHP)建立了煤与瓦斯突出模糊层次分析模型并进行了实例分析,确定了煤与瓦斯突出各影响因素的权重系数。评价结果表明:地应力、地质构造、瓦斯压力等是影响煤与瓦斯突出的主要因素。为制定相应的煤与瓦斯突出防治措施,提供了科学的理论依据和切合实际情况的评价方法。  相似文献   

15.
煤与瓦斯突出影响因素评价分析的模糊层次分析方法   总被引:7,自引:5,他引:2  
采用模糊层次分析法(FAHP),建立煤与瓦斯突出模糊层次分析模型,并进行分析计算。依据模糊层次分析法,选择影响平煤集团12矿己组煤层煤与瓦斯突出的主要因素,确定各因素的权重系数,并对其进行分析、排序,最后进行综合评定煤与瓦斯突出的影响因素。结果表明:地应力D,地质构造T,煤层瓦斯压力P等是影响该矿己组煤层煤与瓦斯突出的主要因素。该FAHP的应用为制定相应的煤与瓦斯突出防治措施,提供了科学的理论依据和切合实际的评价方法。  相似文献   

16.
The coal and gas outburst results from plenty of factors, while vibration is the most important factor among them. Therefore, the influences of vibration acting on gas desorption and coal structure had been conducted. And the mechanism of coal and gas outburst induced by vibration was illustrated through examples. The results showed that the gas desorption accelerates under the action of vibration, and then the gas gradient increases. Meanwhile, vibration would increase and expand fractures in the internal coal body, which aggravates the risk of coal and gas outburst greatly. In conclusion, vibration is a more important factor attributable to coal and gas outburst compared with other coal mining method, mining technology and construction method.  相似文献   

17.
通过对掘进工作面前方煤体的受力特点进行分析,理论研究了掘进工作面应力分布特征,得出了掘进巷道前方卸压带宽度计算公式,分析了各因素对煤与瓦斯突出发生的影响,现场利用电磁辐射监测技术进行测试,与理论计算结果相吻合。结果表明,掘进工作面前方卸压带的宽度与巷道的高度、巷道煤岩与顶板的摩擦角等因素有重要关系,研究为掘进工作面煤与瓦斯突出预测及防治具有重要的指导意义。  相似文献   

18.
针对预抽煤层瓦斯这一区域性防治煤与瓦斯突出措施的消突效果评价,应用事故树分析法(FTA),可根据导致预抽煤层瓦斯后发生煤与瓦斯突出事故的各种可能途径,以及各个诱导因素对事故发生的影响程度,找到可用于消突效果评价的关键因子,进一步分析出评价指标和评价方案.本文构造出了预抽煤层瓦斯后发生煤与瓦斯突出的事故树模型,通过FTA定性分析,得出了预抽煤层瓦斯消突效果评价因子的客观排序,为区域防突措施消突效果评价提供了一种新的理论方法.  相似文献   

19.
模糊集重心理论在隧道瓦斯突出评价中的应用   总被引:1,自引:1,他引:0  
以隧道瓦斯突出评价为研究对象。选取地质构造、煤层厚度、隧道埋深、瓦斯含量、瓦斯压力、瓦斯放散初速度和煤的坚固性系数作为指标,建立隧道瓦斯突出评价标准;用关联函数确定指标权重;结合模糊集重心理论与最短距离识别准则,构建属性识别模型,对隧道瓦斯突出进行评价。评价结果与可拓评价结果一致,从而验证了该方法的实用性。研究表明,基于模糊集重心理论的属性识别模型用于隧道瓦斯突出评价是可行的,为隧道瓦斯突出评价提供了一种新方法。  相似文献   

20.
依据平煤集团历年煤与瓦斯突出事例的统计数据,应用7±2心理极限概念,合理选定模糊评判因素集,采用层次分析法确定各因素对突出强度的贡献度权重;采用定性数据定量化理论建立了各因素隶属于大型突出、中型突出和小型突出的隶属度;采用二级模糊综合评判方法和“加权平均型”评判数学模型,在国内外首次建立了煤与瓦斯突出强度预测模糊综合评判方法,按最大隶属度判别准则实现对突出强度的定量预测。对平煤集团91次突出事例突出强度预测验证表明,验证正确率为94 .5 % ,说明提出的煤与瓦斯突出强度预测方法在技术上是可行的,对突出矿井煤与瓦斯突出预测具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号