首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thane district is one of the most industrialized districts in Maharashtra. The heavy industrialization and the increasing urbanization are responsible for the rapidly increasing stress on the water and soil environment of the area. Therefore, an attempt has been made through comprehensive study on the groundwater contamination and soil contamination due to heavy metals in Thane region of Maharashtra. The area undertaken for the study was Thane and its suburbans Kalwa, Divajunction, Dombivali, Kalyan, and Ulhasnagar. Industrialization and urbanization lead to generation of large volumes of wastewater from domestic, commercial, industrial, and other sources, which discharged in to natural water bodies like river and creek in this region. Groundwater samples and soil samples were collected from residential, commercial, agriculture, and industrial areas. Groundwater samples were analyzed for various water quality parameters. The analytical data shows very high concentration of total dissolved solids, total hardness, total alkalinity, chemical oxygen demand, chloride etc. Groundwater and soil samples were analyzed for ten heavy metals by inductively coupled plasma (ICPE-9000) atomic emission spectroscopy. The analytical data reveal that, very high concentration level of arsenic, cadmium, mercury, and nickel throughout the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the groundwater and soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source for heavy metals. A comparison of the results of groundwater with WHO guidelines show that most of the groundwater sampling station are heavily contaminated with organic matter and heavy metals. Groundwater samples are heavily contaminated by arsenic, cadmium, mercury, and nickel. Similarly, the results of heavy metals in soil compared with Swedish soil guideline values for polluted soil show that soil samples collected from residential, commercial and industrial areas are heavily contaminated by arsenic, cadmium, mercury, and nickel.  相似文献   

2.
A study was carried out in a part of Palar and Cheyyar river basin to evaluate the current status of iron, manganese, zinc and atrazine concentrations, their origin and distribution in groundwater. Groundwater samples were collected during post-monsoon (March 1998 and February 1999) and pre-monsoon (June 1999) periods from 41 sampling wells distributed throughout the study area. The groundwater samples were analyzed for trace metals using AAS and atrazine using HPLC. The concentration of the trace elements in groundwater is predominant during pre-monsoon period. Distribution pattern indicates that the concentration of these elements increases from west to northeast and towards Palar river. Lower concentrations in the central part may be due to recharge of fresh water from the lakes located here. During most of the months, as there is no flow in Palar river, the concentrations of trace elements in groundwater are high. Drinking water standards indicate that Mn and Zn cross the permissible limit recommended by EPA during the pre-monsoon period. A comparison of groundwater data with trace element chemistry of rock samples shows the abundance of trace elements both in the rock and water in the order of Fe > Mn > Zn and Fe > Zn > Mn. This indicates that iron in groundwater is derived from lithogenic origin. Further, Fe, Mn and Zn have good correlation in rock samples, while it is reverse in the case of water samples, indicating the non-lithogenic origin of Mn and Zn. Atrazine (a herbicide) was not detected in any of the groundwater samples in the study area, perhaps due to low-application rate and adsorption in the soil materials.  相似文献   

3.
Groundwater from 33 monitoring of peripheral wells of Karachi, Pakistan were evaluated in terms of pre- and post-monsoon seasons to find out the impact of storm water infiltration, as storm water infiltration by retention basin receives urban runoff water from the nearby areas. This may increase the risk of groundwater contamination for heavy metals, where the soil is sandy and water table is shallow. Concentration of dissolved oxygen is significantly low in groundwater beneath detention basin during pre-monsoon season, which effected the concentration of zinc and iron. The models of trace metals shown in basin groundwater reflect the land use served by the basins, while it differed from background concentration as storm water releases high concentration of certain trace metals such as copper and cadmium. Recharge by storm water infiltration decreases the concentration and detection frequency of iron, lead, and zinc in background groundwater; however, the study does not point a considerable risk for groundwater contamination due to storm water infiltration.  相似文献   

4.
The Yamuna river is the largest tributary of the Ganges river system. It originates in the Himalayas and flows through a varied geological terrain encompassing a large basin area. Metals Fe, Mn, Pb, Zn, Cu in different chemical fractions of suspended sediments such as exchangeable, carbonates, Fe–Mn oxides, organics and residual fractions were studied. Phosphorus associated with different chemical forms are discussed. The metals are mostly associated with residual fractions in the sediments followed by organics, Fe–Mn oxides, exhangeable and carbonates. Intensive use of chemical fertilizers and pesticides in agriculture in the basin affects the high inorganic phosphorus content in sediments.  相似文献   

5.
Excess intake of fluoride through drinking water causes fluorosis on human beings in many States of the country (India), including Andhra Pradesh. Groundwater quality in the Varaha River Basin located in the Visakhapatnam District of Andhra Pradesh has been studied, with reference to fluoride content, for its possible sources for implementing appropriate management measures, according to the controlling mechanism of fluoride concentration in the groundwater. The area occupied by the river basin is underlain by the Precambrian Eastern Ghats, over which the Recent sediments occur. Results of the chemical data of the groundwater suggest that the considerable number of groundwater samples show fluoride content greater than that of the safe limit prescribed for drinking purpose. Statistical analysis shows that the fluoride has a good positive relation, with pH and bicarbonate. This indicates an alkaline environment, as a dominant controlling mechanism for leaching of fluoride from the source material. Other supplementary factors responsible for the occurrence of fluoride in the groundwater are evapotranspiration, long contact time of water with the aquifer material, and agricultural fertilizers. A lack of correlation between fluoride and chloride, and a high positive correlation between fluoride and bicarbonate indicate recharge of the aquifer by the river water. However, the higher concentration of fluoride observed in the groundwater in some locations indicates insufficient dilution by the river water. That means the natural dilution did not perform more effectively. Hence, the study emphasizes the need for surface water management structures, with people's participation, for getting more effective results.  相似文献   

6.
A total of 144 isolates of Pseudomonas spp. (48 each from the Yamuna River water, wastewater irrigated soil and groundwater irrigated soil) were tested for their resistance against certain heavy metals and antibiotics. Minimum inhibitory concentrations (MICs) of Hg2?+?, Cd2?+?, Cu2?+?, Zn2?+?, Ni2?+?, Pb2?+?, Cr3?+? and Cr6?+? for each isolate were also determined. A maximum MIC of 200 ??g/ml for mercury and 3,200 ??g/ml for other metals were observed. The incidences of metal resistance and MICs of metals for Pseudomonas isolates from the Yamuna water and wastewater irrigated soil were significantly different to those of groundwater irrigated soil. A high level of resistance against tetracycline and polymyxin B (81.2%) was observed in river water isolates. However, 87.5% of Pseudomonas isolates from soil irrigated with wastewater showed resistance to sulphadiazine, whereas 79.1% were resistant to both ampicillin and erythromycin. Isolates from soil irrigated with groundwater exhibited less resistance towards heavy metals and antibiotics as compared to those of river water and wastewater irrigated soil. Majority of the Pseudomonas isolates from water and soil exhibited resistance to multiple metals and antibiotics. Resistance was transferable to recipient Escherichia coli AB2200 strains by conjugation. Plasmids were cured with the curing agent ethidium bromide and acridine orange at sub-MIC concentration.  相似文献   

7.
The Fractionation of Fe, Zn, Cu, Pb, Mn and Cd in the sediments of the Achankovil River, Western Ghats, India using a sequential extraction method was carried out to understand the metal availability in the basin for biotic and abiotic activities. Spatial distribution of heavy metals has been studied. Sediment grain size has significant control over the heavy metal distribution. The fluctuations in their concentration partly depend upon the lithology of the river basin and partly the anthropogenic activities. The sediments are dominated by sand and are moderately to strongly positively skewed and are very leptokurtotic in nature. The quartzite and feldspars are abundant minerals along with significant amount of mica with low clay content. The core sediments show increasing trend of heavy metal concentration with depth due to the recent addition of anthropogenic sources and post-diagenic activities. Significant amount of Cd (18%) was found in carbonate fraction, which may pose environmental problems due to its toxic nature. Small concentrations of metals, except Cd and Cu, are in exchangeable fraction, which indicate low bio-availability. Enrichment Factor (EF) for individual metals shows the contribution from terrregious and in part from anthropogenic sources. Selective Sequential Extraction (SSE) study shows the variation in specific metal distribution pattern, their distribution in different phases and their bio-availability. Maximum amount of the metals were bound to the non-residual fractions (mainly Fe-oxides). Overall, bio-availability of these micronutrients from sediments seems to be very less. Non-residual phase is the most important phase for majority of heavy metals studied. Among the non-residual fraction, maximum amount of the heavy metals bound to Fe-oxides. The study high lights the need for in-depth study of heavy metals distribution and fractionation in the smaller river basins to get precise information on the behavior and transport of heavy metals in the fluvial environment and their contribution to the world ocean.  相似文献   

8.
In this study, we examined three horizontal and vertical soil profiles along a sewage drainage ditch in order to determine the spatial distribution of Cu, Pb, and Zn in soils and to assess the bioavailability and potential ecological risks associated with these metals in a potential groundwater source area. Results showed that the concentrations of Cu, Pb, and Zn were approximately at background level, suggesting that human activities (industrial and agricultural pollution) had a negligible influence on these metals in soil, and that the concentrations reflected the natural background levels in the study area. Cu, Pb, and Zn concentrations were slightly higher in topsoil (0–20 cm) than deeper in the soil profile. Using a modified BCR sequential extraction method to evaluate the mobility and bioavailability of metals showed that the potential bioavailability sequence of Cu, Pb, and Zn at three depths in the soil profile was in the order Cu?≈?Pb?<?Zn. The potential ecological risk from the metals was evaluated using risk assessment code, and the results suggest that Cu and Zn pose no or low risk, while there is a low or medium risk from Pb. Results from groundwater monitoring showed that the groundwater was not polluted by leaching from soil.  相似文献   

9.
Heavy metals partitioning in sediments of the Kabini River in South India   总被引:1,自引:0,他引:1  
Cu, Cr, Fe, Mn, Ni, Pb, and Zn in the sediments of the Kabini River, Karnataka, India was studied to determine the association of metal with various geochemical phases by sequential extraction. The variations of heavy metal concentration depend on the lithology of the river basin and partly on anthropogenic activities. The Kabini River sediments are dominated by Sargur supracrustals with amphibolites, gneisses, carbonates, and ultrabasic rocks weathering into gneissic and serpentine soils carrying a natural load of cationic heavy metals. The source of heavy metals in the Kabini riverbed sediments is normally envisaged as additional inputs from anthropogenic over and above natural and lithogenic sources. Geochemical study indicates the metals under study were present mostly in the least mobilizable fraction in the overlying water and it is concluded that heavy metals in these sediments are to a great extent derived from multisource anthropogenic inputs besides geochemical background contributions The results show that lead and chromium have higher potential for mobilization from the sediment due to higher concentration at the exchangeable ion and sulfide ion bounded, also Cu and Pb have the greatest percentage of carbonate fraction, it means that the study area received inputs from urban and industrial effluents. Association of the Fe with organic matter fraction can be explained by the high affinity of these elements for the humic substances. Further, Zn and Ni reveal a significant enrichment in sediment and it is due to release of industrial wastewater into the river. These trace metals are possible contaminants to enter into aquatic and food chain.  相似文献   

10.
Dynamics of heavy metals such as Fe, Mn, Zn, Cr, Cu, Co, Ni, Pb, and Cd in surface water of Mahanadi River estuarine systems were studied taking 31 different stations and three different seasons. This study demonstrates that the elemental concentrations are extremely variable and most of them are higher than the World river average. Among the heavy metals, iron is present at highest concentration while cadmium is at the least. The spatial pattern of heavy metals suggests that their anthropogenic sources are possibly from two major fertilizer plants and municipal sewage from three major towns as well as agricultural runoff. The temporal variations for metals like Fe, Cu, and Pb exhibit higher values during the monsoon season, which are related to agricultural runoff. Concentrations of Ni, Pb, and Cd exceed the maximum permissible limits of surface water quality in some polluted stations and pose health risks. Dissolved heavy metals like Fe, Mn, Cr, Ni, and Pb exhibit a non-conservative behavior during estuarine mixing, while Zn, Cu, and Co distribution is conservative. Distribution of cadmium in the estuarine region indicates some mobilization which may be due to desorption. The enrichment ratio data suggest that various industrial wastes and municipal wastes contribute most of the dissolved metals in the Mahanadi River. The Mahanadi River transports 18.216 × 103 t of total heavy metals into the Bay of Bengal and the calculated rate of erosion in the basin is 128.645 kg km − 2 year − 1.  相似文献   

11.
黑龙江流域地处世界三大黑土区之一的中国东北平原,土壤腐殖质含量高,这些腐殖质随着地面径流进入水体,成为流域溶解性有机物(DOM)的自然本底(环境背景)。自然本底的存在导致流域水质有机污染综合指标不能真实反映流域的人为污染,流域背景区内高锰酸盐指数、化学需氧量背景值范围分别为3.0~11.7、14.3~40.5 mg/L。流域部分水质考核断面水质受到有机质背景值的影响。由于叠加人为污染,定量分析高锰酸盐指数、化学需氧量背景值范围存在很大难度。重金属元素相对稳定,相对于"六五"时期重金属背景值,目前水体中重金属含量普遍升高。结合水环境管理需求,背景值研究成果应用于水环境管理还需要进一步深入研究和实践。笔者在综述黑龙江流域水环境背景值研究基础上,总结目前存在的问题,提出水环境背景值研究建议,为科学客观评价流域水质提供参考。  相似文献   

12.
In this study, heavy metal contents of groundwater from the Mersin aquifer were determined with photometric methods and used to determine the main factors controlling the pollution of groundwater in the area. Using MapInfo GIS software, spatial analysis and integration were carried out for mapping drinking water quality in the basin. From the photometric heavy metal analysis, it is inferred that the excess concentration of Fe, Ni, Mn, Mo and Cu at some locations is the cause of undesirable quality for drinking purposes. Similarly, the EC thematic map shows that considerable areas in the basin are having high salinity hazards. The reason for excess concentration of various heavy metals is the industrial activities and petroleum pipelines and salinity levels show the sea water intrusion.  相似文献   

13.
The use of sewage-contaminated municipal water for irrigation of crops is an old practice in many big cities of Pakistan. Since the wastewater is rich in nutrients, it increases crops yield substantially but at the cost of food quality. The objective of this study was to investigate sewage water irrigation as a source of accumulation of heavy metals in soil and its subsequent transfer to crops and underground water. Sewage water, soil, groundwater, and crop samples were collected from selected areas around Peshawar city and analyzed for heavy metals concentration by atomic absorption spectroscopic method. Analysis of data revealed a considerable impact of the irrigation practices in the peri-urban Peshawar. Statistical analysis of the data showed a positive correlation between heavy metals concentration and soil carbon contents on the one hand and cation exchange capacity on the other. A strongly negative correlation was observed between metal contents and soil pH. The vertical movement of heavy metals from contaminated soil has polluted crops and underground water. The results indicated higher concentration of toxic metals in soil accumulated due to long-term sewage-contaminated water irrigation and their subsequent transfer to our food chain. The practice, if continued un-noticed may pose a threat of phytotoxicity to the local population.  相似文献   

14.
A field study was conducted in the fly ash lagoons of Santandih Thermal Power Plant located in West Bengal (India) to find out total, EDTA and DTPA extractable metals in fly ash and their bioaccumulation in root and shoot portion of the naturally growing vegetation. Fly ash sample has alkaline pH and low conductivity. The concentration of total Cu, Zn, Pb and Ni were found higher than weathered fly ash and natural soil, where as Co, Cd and Cr were found traces. Five dominant vegetation namely, Typha latifolia, Fimbristylis dichotoma, Amaranthus defluxes, Saccharum spontaenum and Cynodon dactylon were collected in the winter months (November–December). Bioaccumulation of metals in root and shoot portions were found varied significantly among the species, but all concentration were found within toxic limits. Correlation between total, DTPA and EDTA extractable metals viz. root and shoot metals concentration were studied. Translocation factor (TF) for Cu, Zn and Ni were found less than unity, indicates that these metals are immobilized in the root part of the plants. Metals like Mn have TF greater than unity. The study infers that natural vegetation removed Mn by phytoextraction mechanisms (TF > 1), while other metals like Zn, Cu, Pb and Ni were removed by rhizofiltration mechanisms (TF < 1). The field study revealed that T. latifolia and S. spontaenum plants could be used for bioremediation of fly ash lagoon.  相似文献   

15.
Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity. Even though Boron concentration of river water is under 0.5 ppm limit value, Boron element will store in basin soils, decrease in crop yields, and occur problematic soils in basin.  相似文献   

16.
The Haraz River is one of the most significant rivers in the southern Caspian Sea basin. Towards the estuary, the river receives discharges of industrial, agricultural, and urban wastes. In the present investigation, bulk concentrations of Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co, and Sr in Haraz River (Iran) bed sediments were measured from several sample locations. In addition, association of studied metals with various sedimentary phases was assessed to determine the proportions of metals in different forms. The intensity of sediment contamination was evaluated using an enrichment factor (EF), geo-accumulation index (Igeo), and a newly developed pollution index (Ipoll). Both EF and Igeo formulae compare present concentrations of metals to their background levels in crust and shale, respectively. In a specific area with its own geological background like Haraz River water basin where naturally high concentrations of metals may be found, such a comparison may lead to biased conclusions regarding levels of anthropogenic contamination. Accordingly, chemical partitioning results are substituted for the mean crust and shale levels in the new index (Ipoll). The Pearson correlation coefficient between the anthropogenic portion of metallic pollution in Haraz river-bed sediments with Ipoll showed much more value in comparison with those of geochemical accumulation index and enrichment factor. The order of metals introduced by anthropogenic activities are as follows: Sr > Pb > Co > Cd > Zn > Cu > Ni > As > Cr > Fe. The results showed relatively higher concentrations of Cd, As, Sr, and Pb in comparison with those of shale. However, based on the chemical partitioning of metals, it is found that Sr, Pb, Co, and Cd are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment since it is found mainly in the residual fraction. Also, Fe, Cr, and Ni are present in the greatest percentages in the residual fraction, which implies that these metals are strongly linked to the sediments.  相似文献   

17.
The genotoxicity of certain water bodies was evaluated employing the DNA repair defective mutants of Escherichia coli, induction of prophage lamda in the lysogen and the plasmid nicking assay. All the test DNA repair defective mutants invariably exhibited more sensitivity than their isogenic wild-type strains but distinctive patterns against the three water samples viz. industrial waste water and the groundwater samples obtained from industrial estate of Aligarh as well as river water of Yamuna at Agra. A significant level of phage induction was also recorded in the test system exhibiting maximum induction in case of industrial waste water followed by that in river and groundwater samples, respectively. The single- and double-strand breaks were also observed in the plasmid DNA treated with industrial waste water and the river water samples. These findings are suggestive of the DNA damage induced by the test samples with the probable role of SOS repair in E. coli.  相似文献   

18.
In order to assess the quality and suitability of waters in the Kor-Sivand river basin, 60 water samples from the Kor river and 90 water samples from wells in the basin were studied. Assessments were based on Piper's and Gibbs' diagrams for water quality, Food and Agricultural Organization's (FAO) guidelines, and US Salinity Laboratory diagram for water suitability. The results showed that the river water is of Ca-HCO(3) type, while well water is of Ca-Cl and Na-Cl type. Based on Gibbs' diagram, the source of soluble ions in the river water samples is the weathering of stones over which water flows, while evaporation was found to be the dominant process in the ion concentration of the well samples. According to the FAO Guidelines, the salinity of surface water for irrigation did not cause great restrictions; however, many of these waters could create potential permeability problems. In the groundwater samples, a high salt concentration is more important than the infiltration problem. Mg hazard values at some sites limit its use for agricultural purposes. One third of the river water samples and two thirds of well waters had more than 50% magnesium. Saturation indices showed that 94% of the analyzed water samples are supersaturated with calcite, aragonite, and dolomite. Based on the US Salinity Laboratory diagram, river water samples were classified as C(2)S(1) and C(3)S(1), while C(4)S(3), C(4)S(4), C(2)S(1), and C(3)S(1) were the most dominant classes in well samples. Some management practices necessary for sustainable development of water resources in the study area were discussed briefly, including appropriate selection of crops, adequate drainage, leaching, blending and cyclic use of saline water, proper irrigation method, and addition of soil amendment.  相似文献   

19.
Metallic pollution caused by elements Zn, Cu, Fe, Pb, Ni, Cd, and Hg in water and sediments of Aras River within a specific area in Ardabil province of Iran is considered. Water and sediment samples were collected seasonally and once respectively from the five selected stations. Regarding WHO published permissible values, only Ni concentration in spring and summer water samples has exceeded the acceptable limit up to four times greater than the limit. The concentration of metals Ni, Pb, and Fe in river water shows a direct relationship with river water discharge and the amount of precipitation. Enhanced soil erosion, bed load dissolution, and runoffs may play a key role in remarkable augmentation of metallic ions concentration. Furthermore, excessive use of pesticides which contain a variety of metallic ions (mainly Cu) in spring and summer may also result in an increase in the metals’ concentration. The potential risk of Ni exposure to the water environment of the study area is assigned to juice, dairy products, edible oil, and sugar cane factories as well as soybean crop lands which are located within the sub-basin of Aras River in the study area. Regarding the sediment samples, the bioavailable metal concentrations indicate an ascending order from the first station towards the last one. In comparison with earth crust, sedimental and igneous rocks the reported metallic concentration values, except for Cd, lie within the low-risk status. Regarding Cd, the reported values in some stations (S2, S4, and S5) are up to ten times greater than that of shale which may be considered as a remarkable risk potential. The industrial and municipal wastewater generated by Parsabad moqan industrial complex and residential areas, in addition to the discharges of animal husbandry centers, may be addressed as the key factors in the sharp increase of metallic pollution potential in stations 4 and 5.  相似文献   

20.
Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 50 groundwater samples were collected from parts of Palar river basin to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca, Mg, Na, K) and anions (HCO(3), Cl, F,SO(4), NO(3), PO(4),CO(3), HCO(3), and F) besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed using ArcGIS-9.2 to delineate spatial variation in physicochemical characteristics of groundwater samples. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 52% of the groundwater fall in the field of C2-S1, indicating water of medium salinity and low sodium, which can be used for irrigation in almost all types of soil with little danger of exchangeable sodium. Remaining 48% is falling under C1-SI, indicating water of low salinity and low sodium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号