首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium–low level of bacterial contamination (50–500 CFU/m3) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.  相似文献   

2.
Indoor air quality in health care facilities is a major public health concern, particularly for immunocompromised patients who may be exposed to microbiological contaminants such as molds, mycotoxins, endotoxins, and (1,3)-ß-D-glucans. Over 2 years, bioaerosols were collected on a monthly basis in a cancer treatment center (Centre F. Baclesse, Normandy, France), characterized from areas where there was no any particular air treatment. Results showed the complexity of mycoflora in bioaerosols with more than 100 fungal species identified. A list of major strains in hospital environments could be put forward due to the frequency, the concentration level, and/or the capacity to produce mycotoxins in vitro: Aspergillus fumigatus, Aspergillus melleus, Aspergillus niger, Aspergillus versicolor, Cladosporium herbarum, Purpureocillium lilacinum, and Penicillium brevicompactum. The mean levels of viable airborne fungal particles were less than 30.530 CFU per m3 of air and were correlated to the total number of 0.30 to 20 μm particles. Seasonal variations were observed with fungal particle peaks during the summer and autumn. Statistical analysis showed that airborne fungal particle levels depended on the relative humidity level which could be a useful indicator of fungal contamination. Finally, the exposure to airborne mycotoxins was very low (only 3 positive samples), and no mutagenic activity was found in bioaerosols. Nevertheless, some fungal strains such as Aspergillus versicolor or Penicillium brevicompactum showed toxigenic potential in vitro.  相似文献   

3.
The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (<500 colony-forming units (CFU)/m3) of contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (<100 CFU/m3) of contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study’s determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.  相似文献   

4.
This study was designed to evaluate the measuring range and lowest limit of detection of Bacillus endospores in the ambient room air when the Sartorius MD8 sampler, and two different culture methods for bacterial enumeration were used. Different concentrations of bioaerosol were generated inside the test chamber filled with either the high-efficiency particulate air (HEPA)-filtered air or with the ambient room air. The detection of endospores in the HEPA-filtered air was achievable: (1) when they were aerosolized at a concentration above 7.56?×?103 CFU/m3 and analyzed with spread plate method, and (2) when they were aerosolized at a concentration above 4.00?×?102 CFU/m3 and analyzed with pour plate method. The detection of endospores in the ambient room air was possible: (1) when they were aerosolized at a concentration above 9.1?×?103 CFU/m3 and analyzed with spread plate method, and (2) when they were aerosolized at a concentration above 5.6?×?102 CFU/m3 and analyzed with pour plate method. The microorganisms present in the ambient room air interfere with precise quantification of Bacillus endospores when their concentration is relatively low. The results of this study may be helpful in critical assessment of the results obtained from monitoring the air for bacterial endospores.  相似文献   

5.
This paper presents information about airborne mesophilic bacteria in the indoor and outdoor air of child day-care centers (CDCCs) in the city of Edirne, Turkey. Air samples were collected using the Petri plate gravitational settling method from the indoor and outdoor air of CDCCs. Counts of airborne bacteria were measured as colony forming units (CFU) collected by gravity onto Brain Heart Infusion Agar plates (with 5% sheep blood). Samples were taken monthly over a period of 12 months between January and December 2004. A total of 3,120 bacteria colonies were counted on 192 Petri plates. Four groups of culturable bacteria were identified: Gram-positive cocci, Gram-positive bacilli, endospore-forming Gram-positive bacilli, and Gram-negative bacteria. Airborne Gram-positive bacteria were the most abundant at more than 95% of the measured population. While Gram-positive cocci were more common in indoor environments, Gram-positive bacilli were more dominant in outdoor air. Bacteria commonly isolated from CDCCs were identified at a genus level. Staphylococcus (39.16%), Bacillus (18.46%), Corynebacterium (16.25%), and Micrococcus (7.21%) were dominant among the genera identified in the present study. The dominant genera identified in the day-care centers were Staphylococcus, Micrococcus, and Corynebacterium for indoor air and Bacillus, Corynebacterium, and Staphylococcus for outdoor air. Staphylococcus, Streptococcus, Bacillus, and Corynebacterium genera were found in samples from every month. Bacterial colony counts were compared by sampling location (indoors and outdoors), seasons, and meteorological factors. We found negative correlations between the monthly total outdoor bacterial counts and the sampling day’s average relative humidity and average rainfall, and the monthly average rainfall. Fluctuations in bacterial counts in different seasons were observed.  相似文献   

6.
Mould in buildings constitutes a threat to health. Present methods to determine the moulds comprise counting of spores or determination of viable moulds which give imprecise measures of total mould cell biomass. Analysis of ergosterol and β-glucan as markers of mould cell biomass is expensive and cumbersome. To evaluate if airborne enzyme activity was related to mould in buildings air samples were taken using an impinger technique or cellulose filters in 386 rooms in 141 buildings. The samples were analysed for the activity of N-acetylhexosaminidase (NAHA) and expressed as enzyme units per m(3) (EU per m(3)). The highest value found in a building was used for the classification of the building and was related to the results from the subsequent technical inspection. In buildings without mould damage, the NAHA activity was generally below 20 EU per m(3). In buildings with mould damage, almost all the buildings had activities above 20 EU per m(3) (specificity 85%). At 30 EU per m(3) the specificity was 100%. Measurements of airborne enzyme activity have a high sensitivity and specificity to identify buildings with mould problems. The method can be used in the investigations of building related symptoms or for home exposure characteristics when investigating diseases such as asthma that can be related to mould exposure.  相似文献   

7.
The aims of the present study were to determine the levels of bioaerosols including airborne culturable bacteria (total suspended bacteria, Gram-positive bacteria, Staphylococcus, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Gram-negative bacteria), fungi, endotoxin, and viruses (influenza A, influenza B, respiratory syncytial virus types A/B, parainfluenza virus types 1/2/3, metapnemovirus, and adenovirus) and their seasonal variations in indoor air of residential apartments. Of the total suspended bacteria cultured in an indoor environment, Staphylococcus was dominant and occupied 49.0 to 61.3 % of indoor air. Among Staphylococcus, S. aureus were detected in 100 % of households' indoor air ranging from 4 to 140 CFU/m3, and 66 % of households were positive for MRSA ranging from 2 to 80 CFU/m3. Staphylococcus and S. aureus concentrations correlated with indoor temperature (adjusted β: 0.4440 and 0.403, p?<?0.0001). Among respiratory viruses, adenovirus was detected in 14 (14 %) samples and influenza A virus was detected in 3 (3 %) samples regarding the indoor air of apartments. Adenovirus concentrations were generally higher in winter (mean concentration was 2,106 copies/m3) than in spring (mean concentration was 173 copies/m3), with concentrations ranging between 12 and 560 copies/m3. Also, a strong negative correlation between adenovirus concentrations and relative humidity in indoor air was observed (r?=??0.808, p?<?0.01). Furthermore, temperature also negatively correlated with adenovirus concentrations (r?=??0.559, p?<?0.05).  相似文献   

8.
The proliferation of air-diffused microorganisms inside public buildings such as schools, hospitals, and universities, is often indicated as a possible health risk. In this research, we have illustrated the results of an investigation realized to determine the health of the air in some university classrooms, both from a microbiological and a microclimatic viewpoint, during the normal didactic activity of direct lessons. The results obtained have been expressed by means of contamination indices, already used in previous works. Very little contamination was recorded in the different phases of air treatment, which underlines the efficiency of the system and of the maintenance protocols. The Global Index of Microbial Contamination (GIMC per cubic meter) showed a value greater than the mean during the heating period (290), while the highest values (95th percentile 1,138.45) were recorded in the period using air conditioning. The index of mesophilic bacterial contamination, though it did not show any significant differences in the various modes of air treatment, showed a mean value (1.34) and the 95th percentile value (4.14), which was greater in the air-conditioning phase. Finally, the mean value of the amplification index underlined a decrease in the microbial contamination in comparison to the outside, while showing situations of increased microbial amplification during the period of simple ventilation (95th percentile 4.27). The 95th percentile values found for GICM in the three sampling periods, however, permitted us to identify the value of GIMC per cubic meter equal to 1,000 as a guide to provide a means of self-monitoring the quality of the air inside the classrooms. From a microclimatic viewpoint, two periods of the year manifested discomfort situations: during the heating phase (winter) and during the simple ventilation phase (spring). The results obtained indicate, therefore, a need to intervene on the environmental parameters, not being able, in this particular case, to intervene on other aspects that influence the microclimate.  相似文献   

9.
Pathogenic and/or opportunistic fungal species are major causes of nosocomial infections, especially in controlled environments where immunocompromised patients are hospitalized. Indoor fungal contamination in hospital air is associated with a wide range of adverse health effects. Regular determination of fungal spore counts in controlled hospital environments may help reduce the risk of fungal infections. Because infants have inchoate immune systems, they are given immunocompromised patient status. The aim of the present study was to evaluate culturable airborne fungi in the air of hospital newborn units in the Thrace, Marmara, Aegean, and Central Anatolia regions of Turkey. A total of 108 air samples were collected seasonally from newborn units in July 2012, October 2012, January 2013, and April 2013 by using an air sampler and dichloran 18% glycerol agar (DG18) as isolation media. We obtained 2593 fungal colonies comprising 370 fungal isolates representing 109 species of 28 genera, which were identified through multi-loci gene sequencing. Penicillium, Aspergillus, Cladosporium, Talaromyces, and Alternaria were the most abundant genera identified (35.14, 25.40, 17.57, 2.70, and 6.22% of the total, respectively).  相似文献   

10.
Generic Escherichia coli was isolated from surface water and groundwater samples from two dairies in Northern California and tested for susceptibility to antibiotics. Surface samples were collected from flush water, lagoon water, and manure solids, and groundwater samples were collected from monitoring wells. Although E. coli was ubiquitous in surface samples with concentrations ranging from several hundred thousand to over a million colony-forming units per 100 mL of surface water or per gram of surface solids, groundwater under the influence of these high surface microbial loadings had substantially fewer bacteria (3- to 7-log10 reduction). Among 80 isolates of E. coli tested, 34 (42.5 %) were resistant to one or more antibiotics and 22 (27.5 %) were multi-antibiotic resistant (resistant to ≥3 antibiotics), with resistance to tetracycline, cefoxitin, amoxicillin/clavulanic acid, and ampicillin being the most common. E. coli isolates from the calf hutch area exhibited the highest levels of multi-antibiotic resistance, much higher than isolates in surface soil solids from heifer and cow pens, flush alleys, manure storage lagoons, and irrigated fields. Among E. coli isolates from four groundwater samples, only one sample exhibited resistance to ceftriaxone, chloramphenicol, and tetracycline, indicating the potential of groundwater contamination with antibiotic-resistant bacteria from dairy operations.  相似文献   

11.
Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers, corroborating the increased exposure to risk factors, such as fungal load and their metabolites. This study aimed to determine the occupational exposure threat due to fungal contamination caused by the toxigenic isolates belonging to the complex of the species of Aspergillus flavus and also isolates from Aspergillus fumigatus species complex. The study was carried out in seven Portuguese poultries, using cultural and molecular methodologies. For conventional/cultural methods, air, surfaces, and litter samples were collected by impaction method using the Millipore Air Sampler. For the molecular analysis, air samples were collected by impinger method using the Coriolis μ air sampler. After DNA extraction, samples were analyzed by real-time PCR using specific primers and probes for toxigenic strains of the Aspergillus flavus complex and for detection of isolates from Aspergillus fumigatus complex. Through conventional methods, and among the Aspergillus genus, different prevalences were detected regarding the presence of Aspergillus flavus and Aspergillus fumigatus species complexes, namely: 74.5 versus 1.0 % in the air samples, 24.0 versus 16.0 % in the surfaces, 0 versus 32.6 % in new litter, and 9.9 versus 15.9 % in used litter. Through molecular biology, we were able to detect the presence of aflatoxigenic strains in pavilions in which Aspergillus flavus did not grow in culture. Aspergillus fumigatus was only found in one indoor air sample by conventional methods. Using molecular methodologies, however, Aspergillus fumigatus complex was detected in seven indoor samples from three different poultry units. The characterization of fungal contamination caused by Aspergillus flavus and Aspergillus fumigatus raises the concern of occupational threat not only due to the detected fungal load but also because of the toxigenic potential of these species.  相似文献   

12.
Exposure to microorganisms can cause various diseases or exacerbate the excitatory responses, inflammation, dry cough and shortness of breath, reduced lung function, chronic obstructive pulmonary disease, and allergic response or allergic immune. The aim of the present study was to investigate the density of microorganisms around the air of processing facilities of a biocomposting plant. Each experiment was carried out according to ASTM E884-82 (2001) method. The samples were collected from inhaled air in four locations of the plant, which had a high traffic of workers and employees, including screen, conveyor belt, aerated compost pile, and static compost pile. The sampling was repeated five times for each location selected. The wind speed and its direction were measured using an anemometer. Temperature and humidity were also recorded at the time of sampling. The multistage impactor used for sampling was equipped with a solidified medium (agar) and a pump (with a flow rate of 28.3 l/m) for passing air through the media. It was found that the mean density of total bacteria was >1.7 × 103 cfu/m3 in the study area. Moreover, the mean densities of fungi, intestinal bacteria (Klebsiella), and Staphylococcus aureus were 5.9 × 103, 3.3 × 103, and 4.1 × 103 cfu/m3, respectively. In conclusion, according to the findings, the density of bacteria and fungi per cubic meter of air in the samples collected around the processing facilities of the biocomposting plant in Sanandaj City was higher than the microbial standard for inhaled air.  相似文献   

13.
The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM1.0), 2.5 μm (PM2.5), and 10 μm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 μg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 μg/m3), indoor PM2.5 (22.6 ± 17.4 μg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 μg/m3), or indoor PM1.0 (14.5 ± 13.4 μg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 μg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.  相似文献   

14.
空气微生物污染的监测及研究进展   总被引:4,自引:0,他引:4  
空气微生物不但与环境空气质量、空气污染和人体健康密切相关,并且还与自然生态平衡及许多生命现象直接相关,在自然界的物质循环中起着非常重要的作用。文章从空气微生物的污染现状、采样方法、粒度分布、分离鉴定、微生物评价、时空分布等方面对空气微生物的研究现状进行了综述,并对空气微生物在环境监测中的研究和前景进行了展望,建议空气微生物污染监测应常态化,应控制和开展对大气细颗粒或超细颗粒物对人体健康的影响研究。  相似文献   

15.
The main objective of the study was to evaluate the applicability of two solid sorbent media (Anasorb 708 and Strata X), the impinger filled with distilled water and PTFE filters for determination of airborne cyclophosphamide (CP) in the hospital working environment. For this purpose, air contamination of Masaryk Memorial Cancer Institute (Czech Republic) was monitored using the sampling apparatus containing the samplers described above. In addition, the surface contamination was also determined using the wipe sampling technique. During the monitoring, contamination of three different workplaces (storage room, preparation room and outpatient clinic) was studied. Using Strata X solid sorbent tubes, airborne CP was determined in all (n = 5) samples collected at the outpatient clinic over a 5 day monitoring period (concentration range: 0.3-4.3 ng m(-3)). Other samplers (including PTFE filters) did not collect any detectable amount of CP (the limit of detection, LOD ≤ 0.1 ng m(-3)). Negative results detected at filter samples indicate that CP determined at Strata X samples was most probably of gaseous origin. Surface contamination ranged from <2 to 19, <8 to 418 and 133-15,500 pg cm(-2) at the storage room, preparation room and outpatient clinic, respectively. The study showed that evaporation of antineoplastic drugs should not be neglected, albeit the concentrations determined in our study are relatively low. Therefore, proper monitoring of airborne contamination should involve simultaneous sampling of both particle-bonded and gaseous phases. In this way, Strata X sorbent tubes seem to be an effective tool for the sampling of gaseous CP in the indoor air.  相似文献   

16.
Safety of patients and dental personnel requires the appropriate microbiological water quality in dental units. During treatment, patients and dental workers are exposed both to direct contact with bacteria-contaminated water in the form of splatter and with contaminated water aerosol emitted during work by unit handpieces, including rotating and ultrasonic instruments. The aim of the study was to determine the qualitative and quantitative contamination of water in dental unit reservoirs with aerobic and facultative anaerobic bacteria. The study material included water sampled from 107 dental unit reservoirs located in dental surgeries of public health centres. Conventional microbiological methods were used to identify microorganisms. The study shows that the contamination of water in dental unit reservoirs with aerobic and facultative anaerobic bacteria is commonplace. The mean concentration of mesophile bacteria in dental unit reservoir water exceeded 1.1?×?105 cfu/ml. The prevailing species were Gram-negative bacteria of the families Burkholderiaceae, Pseudomonadaceae, Ralstoniaceae and Sphingomonadaceae. The most numerous bacteria were Ralstonia pickettii, constituting 49.33 % of all the identified aerobic and facultative anaerobic bacteria. Among Gram-positive rods, the most numerous were bacteria of the genus Brevibacterium (5.83 %), while the highest percentage shares (13.25 %) of all Gram-positive microorganisms were found for Actinomyces spp. The study confirms the necessity of regular monitoring of microbial contamination of dental unit waterlines (DUWL) and use of various water treatment procedures available to disinfect DWUL.  相似文献   

17.
Rodrigo de Freitas Lagoon is an urban ecosystem undergoing accelerated degradation, therefore selected as a model for microbiological quality studies of tropical lagoons. The aim of this study was to evaluate the abundance and the spatial distribution of fecal pollution indicators and pathogenic microorganisms in the lagoon. The relationships between microbial groups and abiotic measurements were also determined to evaluate the influence of environmental conditions on bacterial distribution and to identify the capability of coliforms and Enterococcus to predict the occurrence of Vibrio, Staphylococcus aureus, and Salmonella. Surface water samples were collected monthly, from December 1999 to October 2000. Analyses were performed by traditional culture techniques. A uniform spatial distribution was observed for all bacterial groups. The fecal pollution indicators occurred in low abundances while potentially pathogenic microorganisms were consistently found. Therefore, our study supported the use of counts of coliforms and Enterococcus to indicate only recent fecal contamination.  相似文献   

18.
In order to evaluate the impact of atmospheric pollutants emitted by the industrial settlement of Milazzo (Italy) on agriculture, sulphur dioxide and ozone levels in air were monitored and the data were used to estimate yield losses of the most widespread cultures. Trace element concentrations in crops and soils were also detected and metabolic profiles of soil microbial communities were considered. Vibrio fischeri test was used to appraise airborne pollutant ecotoxicity and epidemiological studies on causes of death distribution were carried out to characterize health state of people living in the area. All the sampling points were selected in farms on the basis of a theoretical meteo-diffusive model of industrial air pollutants. Experimental SO2 and O3 values mainly exceeded the threshold established by Italian and EU regulations to protect vegetation and they correspond to estimated significant crop losses. Conversely toxic element residues in soils and in agroalimentary products were generally lower than the fixed values. SO2 and O3 concentrations, toxic element contents and ecotoxicity levels of airborne pollutants were not related only to industrial site emissions, while the fluctuations on metabolic profiles of soil microbial communities seem to agree with the predicted deposition of xenobiotic compounds from the industrial plants. The epidemiological study evidenced a better health state of populations living in the investigated area than in the Messina province and the Sicily region but, inside the area, males living in the municipalities closest to the industrial settlement exhibited a worst health state than those in the very far ones.  相似文献   

19.
The prevalence and distribution of soil and water samples contaminated with enteroparasites of humans and animals with zoonotic potential (EHAZP) in Apucaraninha Indigenous Land (AIL), southern Brazil, was evaluated. An environmental survey was conducted to evaluate the presence of parasitic forms in peridomiciliary soil and associated variables. Soil samples were collected from 40/293 domiciles (10 domiciles per season), from November 2010 to June 2011, and evaluated by modified methods of Faust et al. and Lutz. Analyses of water from seven consumption sites were also performed. The overall prevalence of soil samples contaminated by EHAZP was 23.8 %. The most prevalent parasitic forms were cyst of Entamoeba spp. and eggs of Ascaris spp. The highest prevalence of contaminated soil samples was observed in winter (31 %). The probability map obtained with geostatistical analyses showed an average of 47 % soil contamination at a distance of approximately 140 m. The parasitological analysis of water did not detect Giardia spp. or Cryptosporidium spp. and showed that all collection points were within the standards of the Brazilian law. However, the microbiological analysis showed the presence of Escherichia coli in 6/7 sampled points. Despite the low level of contamination by EHAZP in peridomiciliar soil and the absence of pathogenic protozoa in water, the AIL soil and water (due to the presence of fecal coliforms) are potential sources of infection for the population, indicating the need for improvements in sanitation and water treatment, in addition periodic treatment of the population with antiparasitic.  相似文献   

20.
Urban household kitchen environment was assessed for safety by determining their levels of indicator bacteria, hygienic habits and risk of cross-contamination. Household kitchens (60) were selected in Warri Town, Nigeria, by the multi-stage sampling technique. Contact surfaces, water and indoor kitchen air were analysed for aerobic plate counts, total and faecal coliforms using Nutrient and McConkey media by swab/rinse method, membrane filtration and sedimentation methods, respectively. Hygienic habits and risk of cross-contamination were assessed with structured questionnaire which included socio-demographic variables. On the basis of median counts, the prevalence of high counts (log cfu/cm2/m3/100 mL) of aerobic plate counts (>3.0), total coliforms (>1.0) and faecal coliforms (>0) on contact surfaces and air was high (58.0–92.0%), but low in water (30.0–40.0%). Pots, plates and cutleries were the contact surfaces with low counts. Prevalence of poor hygienic habits and high risk of cross-contamination was 38.6 and 67.5%, respectively. Education, occupation and kitchen type were associated with cross-contamination risk (P = 0.002–0.022), while only education was associated with hygienic habits (P = 0.03). Cross-contamination risk was related (P = 0.01–0.05) to aerobic plate counts (OR 2.30; CL 1.30–3.17), total coliforms (OR 5.63; CL 2.76–8.25) and faecal coliforms (OR 4.24; CL 2.87–6.24), while hygienic habit was not. It can be concluded that urban household kitchens in the Nigerian setting are vulnerable to pathogens likely to cause food-borne infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号