首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High concentrations of volatile organic compounds (VOCs) in ambient air of urban areas stress the need for the control of VOC emissions due to the toxic and carcinogenic nature of many VOCs commonly encountered in urban air. Emission inventories are an essential tool in the management of local air quality, which provide a listing of sources of air pollutant emissions within a specific area over a specified period of time. This study intended to provide a level IV emission inventory as par the United States Environmental Protection Agency (USEPA) definition for evaporative VOC emissions in the metro cities of India namely Delhi, Mumbai, Chennai, and Kolkata. The vehicular evaporative emissions are found to be the largest contributor to the total evaporative emissions of hydrocarbons followed by evaporative losses related to petrol loading and unloading activities. Besides vehicle-related activities, other major sources contributing to evaporative emissions of hydrocarbons are surface coating, dry cleaning, graphical art applications, printing (newspaper and computer), and the use of consumer products. Various specific preventive measures are also recommended for reducing the emissions.  相似文献   

2.
通过调查与分析苏州市重点监控行业企业VOCs的产生和排放特征,调研典型企业,重点关注其涉及VOCs产生的工艺环节、原辅材料、排放浓度。结果表明:苏州市涉及VOCs排放企业行业众多,尤其以电子信息最多,其次为塑料橡胶制品行业、石油化工行业、纺织印染行业等。重点监控VOCs排放企业使用了大量有机溶剂,生产工艺中涉及VOCs排放的环节多,排放的VOCs种类多、成分复杂,具有行业特征。  相似文献   

3.
The aim of this work was the study, by a multiparametric approach, of emissions from a laser printer in an experimental box-chamber, with particular attention to nanoparticles release. The experimental design included number concentration measurements by Fast Mobility Particle Sizer (FMPS) and chemical characterizations (elements) of size segregated samples collected by Nanomoudi cascade impactor. Volatile Organic Compounds (VOCs) were also sampled by charcoal sorbent tubes by personal sampling pumps. Monitoring of ozone, total volatile organic compounds concentrations and of temperature and humidity values inside the experimental box during the printing processes were also performed by automatic analyzers. The performed monitoring allowed to evidence different ways for particles emissions by laser printers, in particular showing that nanoparticles, characterised by high concentrations of Ba, Zn, B, K, Sr and Na, are set free at the beginning of the printing process. This emission seems to be directly ascribable to the use of toner powder, as all these elements are present in it. The emission of larger particles (ca. 100-320 nm) was observed in subsequent phases of the print process, probably due to the condensation of vapours released during the progressive heating of the fuser roller. This contribution was proved by both the FMPS measurements and the cascade impactor results. Also, a low emission of particles in higher size ranges was evidenced, mainly due to paper related particles. A very high concentration of VOCs was detected inside the chamber and the chemical speciation shows that the major contribution is associated to toner components, even if some species are released from other printer components. Although the formation of secondary species by reaction of VOCs with ozone cannot be excluded, these species were present inside the chamber at concentrations lower than the detection limit.  相似文献   

4.
With the growing concern regarding emission of volatile organic compounds (VOCs) from wastewater treatment plants (WWTPs), the relationship between the VOC emission rates and the associated public health risks has been rarely discussed. The objective of this study was to examine and compare the VOC emission rates and cancer and non-cancer risks by inhalation intake, using a municipal WWTP in China as an example, with respect to the effects of treatment technologies, VOC species, and seasonal variation. Given the treatment technology considered, the emission rates of VOCs in this study were estimated by means of mass balance or calculated on the molecular level. From the viewpoints of both emission rates and cancer and non-cancer risks, sedimentation was the treatment technology with the highest health risks to the workers. Slightly lower VOC emission rates and health risks than those for sedimentation were observed in anaerobic treatment. Although the aeration significantly enhanced the VOC emission rates in the aerobic treatment process, the associated health risks were limited due to the low VOC concentrations in the gas phase, which were likely attributed to the strong mixing and dilution with fresh air by aeration. Amongst the VOCs investigated, benzene was the VOC with both a relatively high emission rate and health risk, while trichloroethylene possessed a high emission rate but the lowest health risk. Without strong interfacial aeration and turbulence between the water and atmosphere, the effects of treatment technology and seasonal variation on the health risks might be connected to the VOC emission rates, while the effect of VOC species depended considerably on the respective cancer slope factors and reference concentrations; the employment of aeration provided a different conclusion in which the emission rates were enhanced without a significant increase in the related cancer risks. These findings can provide insight into future health risk management and reduction strategies for workers in WWTPs.  相似文献   

5.
This study is part of a three-year project on biogenic volatile organic compound (VOC) emissions from trees of the temperate warm Atlantic rainforest found in the metropolitan area of Sao Paulo City (MASP). No study of VOC emission rates from plant species has been carried out in the temperate warm Atlantic rainforest of Brazil prior to this work. Eleven species were selected (Alchornea sidifolia, Cupania oblongifolia, Cecropia pachystachia, Syagrus romanzoffiana, Casearia sylvestris, Machaerium villosum, Trema micrantha, Croton floribundus, Myrcia rostrata, Solanum erianthum and Ficus insipida) and some of them were studied in urban, sub-urban and forest areas inside the MASP in order to evaluate biogenic VOC composition at sites characterized by different emission sources. Biogenic VOC emissions were determined by placing branches of plants in a dynamic enclosure system, an all-Teflon cuvette, and by sampling the compounds in the air leaving the cuvette. Pre-concentration using adsorbents to retain the VOC, followed by GC-MS after thermal desorption of the sample, was employed to determine the amount of biogenic hydrocarbons. The collection of carbonyl compounds on a 2,4-dinitrophenylhydrazine coated silica followed by HPLC-UV was used to analyze low molecular weight carbonyl compounds. Emission rates of isoprene, alpha-pinene, camphene and limonene ranged from 0.01 to 2.16 microg C h(-1) g(-1) and emission rates of aldehydes (C(2)-C(6)), acrolein, methacrolein and 2-butanone ranged from 1.5 x 10(-2) to 2.3 micro g C h(-1) g (-1). Ambient and leaf temperatures, relative humidity, light intensity, O(3) and NO(x) levels in the local atmosphere were monitored during experiments. It was possible to identify different biogenic VOCs emitted from typical plants of temperate warm Atlantic rainforest. The emission rates were reported as a function of the type of site investigated and were only provided for compounds for which quantification was feasible. Other biogenic compounds were only identified.  相似文献   

6.
Worshipping activity is a customary practice related with many religions and cultures in various Asian countries, including India. Smoke from incense burning in religious and ritual places produces a large number of health-damaging and carcinogenic air pollutants include volatile organic compounds (VOCs) such as formaldehyde, benzene, 1,3 butadiene, styrene, etc. This study evaluates real-world VOCs emission conditions in contrast to other studies that examined emissions from specific types of incense or biomass material. Sampling was conducted at four different religious places in Raipur City, District Raipur, Chhattisgarh, India: (1) Hindu temples, (2) Muslim graveyards (holy shrines), (3) Buddhist temples, and (4) marriage ceremony. Concentrations of selected VOCs, respirable particulate matter (aerodynamic diameter, <5 μm), carbon dioxide, and carbon monoxide were sampled from the smoke plumes. Benzene has shown highest emission factor (EF) among selected volatile organic compounds in all places. All the selected religious and ritual venues have shown different pattern of VOC EFs compared to laboratory-based controlled chamber studies.  相似文献   

7.
The emission estimation of nine volatile organic compounds (VOCs) from eight organic liquids storage tanks companies in Dar-es-Salaam City Tanzania has been done by using US EPA standard regulatory storage tanks emission model (TANKS 4.9b). Total VOCs atmospheric emission has been established to be 853.20 metric tones/yr. It has been established further that petrol storage tanks contribute about 87% of total VOCs emitted, while tanks for other refined products and crude oil were emitting 10% and 3% of VOCs respectively. Of the eight sources (companies), the highest emission value from a single source was 233,222.94 kg/yr and the lowest single source emission value was 6881.87 kg/yr. The total VOCs emissions estimated for each of the eight sources were found to be higher than the standard level of 40,000 kg/yr per source for minor source according to US EPA except for two sources, which were emitting VOCs below the standard level. The annual emissions per single source for each of the VOCs were found to be below the US EPA emissions standard which is 2,000~kg/yr in all companies except the emission of hexane from company F1 which was slightly higher than the standard. The type of tanks used seems to significantly influence the emission rate. Vertical fixed roof tanks (VFRT) emit a lot more than externally floating roof tanks (EFRT) and internally floating roof tanks (IFRT). The use of IFRT and EFRT should be encouraged especially for storage of petrol which had highest atmospheric emission contribution. Model predicted atmospheric emissions are less than annual losses measured by companies in all the eight sources. It is possible that there are other routes for losses beside atmospheric emissions. It is therefore important that waste reduction efforts in these companies are directed not only to reducing atmospheric emissions, but also prevention of the spillage and leakage of stored liquid and curbing of the frequently reported illegal siphoning of stored products. Emission rates for benzene, toluene, and xylene were used as input to CALPUFF air dispersion model for the calculation of spatial downwind concentrations from area sources. By using global positioning system (GPS) and geographical information system (GIS) the spatial benzene concentration contributed by organic liquid storage tanks has been mapped for Dar-es-Salaam City. Highest concentrations for all the three toxic pollutants were observed at Kigamboni area, possibly because the area is located at the wind prevailing direction from the locations of the storage tanks. The model predicted concentrations downwind from the sources were below tolerable concentrations by WHO and US-OSHA. The highest 24 hrs averaging time benzene concentration was used for risk assessment in order to determine maximum carcinogenic risk amongst the population exposed at downwind. Established risk for adult and children at 2.9×10-3 and 1.9×10-3 respectively, are higher than the acceptable US-EPA risk of 1×10-6. It is very likely that the actual VOCs concentrations in some urban areas in Tanzania including Dar-es-Salaam City are much higher than the levels reported in this study when other sources such as petrol stations and motor vehicles on the roads are considered. Tanzania Government therefore need to put in place: an air quality policy and legislation, establish air quality guidelines and acquire facilities which will enable the implementation of air quality monitoring and management programmes.  相似文献   

8.
国内外VOCs排放管理控制历程   总被引:8,自引:0,他引:8  
介绍了挥发性有机污染物(VOCs)的定义、来源和危害,回顾了国内外VOCs监测技术、观测浓度、排放标准及规范,概括了欧美等发达国家宏观层面上的VOCs排放管理控制战略、经验及效果.建议我国建立VOCs在线监测网络,开展VOCs排放清单计算工作,进一步加强机动车尾气排放VOCs控制,初步制定宏观层面的VOCs总体控制战略...  相似文献   

9.
456 water samples collected from 152 water sources in 2006 were analyzed for 21 volatile organic compounds (VOCs). Concentrations of 21 VOCs ranged from below method detection limits of the laboratory to 7.65 ??g/L (toluene), but seldom exceeded the concentration limits set in the National Drinking Water Quality Standards (GB5749-2006) or the National Environmental Quality Standards for Surface Water (GB3838-2002) of China. Of the 21 individual VOCs analyzed, 11 VOCs were detected in at least one sample at or above 1.0 ??g/L; 6.6% of the water samples had a detection of at least one VOC at or above 1.0 ??g/L, and 2.6% had a detection of at least two VOCs at or above 1.0 ??g/L. Based on the statistical data of detection frequencies above the method detection limits, 75% of the samples detected at least one VOC, and 65% of the samples detected at least two VOCs. Chloroform, toluene, and 1,2-dichloroethene were the three most frequently detected VOCs, with detection frequencies of 76.97%, 68.42%, and 44.08%, respectively. Volatile halogenated hydrocarbons and gasoline components were the two most frequently detected VOC groups.  相似文献   

10.
A number of volatile organic compounds (VOCs) including acetone, methyl ethyl ketone, toluene, ethylbenzene, m,p-xylene, styrene, and o- xylene released during food decaying processes were measured from three types of decaying food samples (Kimchi (KC), fresh fish (FF), and salted fish (SF)). To begin with, all the food samples were contained in a 100-mL throwaway syringe. These samples were then analyzed sequentially for up to a 14-day period. The patterns of VOC release contrasted sharply between two types of fish (FF and SF) and KC samples. A comparison of data in terms of total VOC showed that the mean values for the two fish types were in the similar magnitude with 280 ± 579 (FF) and 504 ± 1,089 ppmC (SF), while that for KC was much lower with 16.4 ± 7.6 ppmC. There were strong variations in VOC emission patterns during the food decaying processes between fishes and KC that are characterized most sensitively by such component as styrene. The overall results of this study indicate that concentration levels of the VOCs differed significantly between the food types and with the extent of decaying levels through time.  相似文献   

11.
2020年4—9月通过离线采样研究了盐城市城区大气中的挥发性有机物(VOCs)浓度水平及组成特征、臭氧生成潜势、二次有机气溶胶生成潜势以及毒性效应等多效应评估和来源贡献。结果表明:盐城市城区VOCs平均体积浓度为35.09×10-9,盐塘湖公园站点浓度最高;盐城市VOCs主要组分为含氧有机物(OVOCs)和烷烃。通过挥发性有机物多效应评估发现,关键物种为乙醛、对二乙苯、丙酮、甲苯和间/对二甲苯等。采样期间对VOCs浓度的主要贡献来源为二次生成、工业排放和交通排放。  相似文献   

12.
Air samples were collected in Beijing from June through August 2008, and concentrations of volatile organic compounds (VOCs) in those samples are here discussed. This sampling was performed to increase understanding of the distributions of their compositions, illustrate the overall characteristics of different classes of VOCs, assess the ages of air masses, and apportion sources of VOCs using principal compound analysis/absolute principal component scores (PCA/APCS). During the sampling periods, the relative abundance of the four classes of VOCs as determined by the concentration-based method was different from that determined by the reactivity approach. Alkanes were found to be most abundant (44.3–50.1%) by the concentration-based method, but aromatic compounds were most abundant (38.2–44.5%) by the reactivity approach. Aromatics and alkenes contributed most (73–84%) to the ozone formation potential. Toluene was the most abundant compound (11.8–12.7%) during every sampling period. When the maximum incremental reactivity approach was used, propene, toluene, m,p-xylene, 1-butene, and 1,2,4-trimethylbenzene were the five most abundant compounds during two sampling periods. X/B, T/B, and E/B ratios in this study were lower than those found in other cities, possibly due to the aging of the air mass at this site. Four components were extracted from application of PCA to the data. It was found that the contribution of vehicle exhaust to total VOCs accounted for 53% of VOCs, while emissions due to the solvent use contributed 33% of the total VOCs. Industrial sources contributed 3% and biogenic sources contributed 11%. The results showed that vehicle exhausts (i.e., unburned vehicle emissions + vehicle internal engine combustion) were dominant in VOC emissions during the experimental period. The solvent use made the second most significant contribution to ambient VOCs.  相似文献   

13.
Automobile emissions have created a major hydrocarbon pollution problem in the ambient air of Taiwan. The aim of this study was to determine the volatile organic compounds (VOCs) in the ambient air of Kaohsiung, Taiwan. The spatial distribution, temporal variation, and correlations of VOCs at three study sites, selected based on traffic densities and distances from a freeway, were discussed. Sixty-four hydrocarbons were identified in the ambient air. Among all of the VOC species, acetone, aromatic and aliphatic compounds constituted the major constituents. Higher concentrations of VOCs existed further away from major arteries as compared to those found near the freeway. Therefore, the distance from the freeway may not be a sufficient index for reflecting actual air quality in the study area. Weather conditions, wind speed and direction did not affect the distribution of VOC concentrations in the three study sites. Other factors, such as the height and density of buildings, traffic conditions or commercial activities, might affect the distribution of VOCs.  相似文献   

14.
Considerable uncertainties are associated with the experimental estimates of emission rates of different volatile organic compound (VOC) species from the biosphere to the atmosphere. Some of this uncertainty derives from the sampling and analytical procedures used in emission rate measurements. A calibration system was developed in order to evaluate possible errors in the measurements of biogenic emission rates using a branch enclosure system. Two types of calibration procedures were tested, a standard additions technique and an internal standard procedure. Both techniques were used to evaluate possible losses while sampling isoprene and monoterpenes, which are the most abundant VOCs of biogenic origin. The losses to Teflon lines and the empty sampling system were tested and losses to the branch enclosure system installed on two VOC emitting plant species were evaluated. A considerable loss of isoprene (approximately 18% of inflow concentration 65 ng l(-1)) to the empty enclosure system and to the system installed on the plant was measured, but no losses of monoterpenes were observed.  相似文献   

15.
This study aimed to locate VOC emission sources and characterized their emitted VOCs. To avoid interferences from vehicle exhaust, all sampling sites were positioned inside the refinery. Samples, taken with canisters, were analyzed by GC–MS according to TO-14 method. The survey period extended from Febrary 2004 to December 2004, sampling twice per season. To interpret a large number of VOC data was a rather difficult task. This study featured using ordinary application software, Excel and Surfer, instead of expensive one like GIS, to overcome it. Consolidating data into a database on Excel facilitated retrieval, statistical analysis and presentation in the form of either table or graph. The cross analysis of the data suggested that the abundant VOCs were alkanes, alkenes, aromatics and cyclic HCs. Emission sources were located by mapping the concentration distribution of these four types of VOCs in terms of contour maps on Surfer. During eight surveys, five emission sources were located and their VOCs were characterized.  相似文献   

16.
The variability of pollutants is an important factor in determining human exposure to the chemicals. This study presents the result of investigation of variability of Volatile organic compounds (VOCs) in urban area of Delhi, capital of India. Fifteen locations, in five categories namely residential, commercial, industrial, traffic intersections and petrol pump were monitored for one year every month during peak hours in morning and evening. Measurement focused on target VOCs as defined by USEPA. Variability was divided into measurement, spatial, temporal and temporal–spatial interaction components. Temporal component along with temporal–spatial interaction were found to be the major contributors to the variability of measured VOC concentrations. Need of continuous monitoring to capture short–term peak concentration and averages is evident.  相似文献   

17.
于2016年对宜兴市大气挥发性有机物(VOCs)和臭氧(O_3)的变化特征进行了分析。结果表明,宜兴市O3年均值为62.92μg/m~3,其中冬季值最低(31.19μg/m~3),夏季值最高(94.96μg/m~3)。φ(VOCs)为(11.00~42.45)×10~(-9),其中丙酮(12.7%)、乙酸乙酯(8.8%)和丙烯(3.3%)等在VOCs中占比位于前3位。各站点φ(甲苯)/φ(苯)2,全年的φ(甲苯)/φ(苯)φ(乙苯)/φ(苯)φ(间、对二甲苯)/φ(苯)。指出VOCs主要来源为有机溶剂和道路交通,并受到一定的外来输送影响。各站点φ(VOCs)/φ(NOx)为0.94~2.44,O3处于VOCs敏感区。  相似文献   

18.
2022年春季,受新一轮新冠疫情影响,长三角各城市采取了一系列管控措施,使得大气污染物排放水平降低。对2022年春季(3—5月)南京及长三角地区的六项污染物尤其是臭氧(O3)的变化特征进行了分析,从气象因素和O3前体物方面,同时利用基于观测的模型(OBM)对南京O3污染变化原因进行了研究,并分析了南京挥发性有机物(VOCs)的关键活性组分和来源。结果表明:2022年春季,南京PM2.5、PM10、NO2和CO均值浓度均同比下降,但O3日最大8 h滑动平均质量浓度(O3-8 h)同比上升19.8%,O3-8 h超标时间同比增加9 d;长三角区域O3-8 h同比上升17.9%,O3-8 h超标天数为2021年同期的2.5倍。南京O3浓度上升的原因:一方面是由于不利的气象条件,另一方面是由于南京O3生成处于VOCs控制区,但氮氧化物(NOx)降幅大于VOCs降幅,同时结合O3前体物削减方案的分析结果发现,VOCs和NOx不当的削减比例会导致O3浓度不降反升。南京O3生成的关键VOC活性物种依次为乙醛、丙烯、间/对二甲苯、丙烯醛和乙烯;正定矩阵因子分解(PMF)解析结果显示,机动车尾气是南京城区VOCs的主要来源,其次为液化石油气/天然气使用和石油化工。  相似文献   

19.
城市大气中挥发性有机化合物监测技术进展   总被引:6,自引:5,他引:1  
挥发性有机物(VOCs)是臭氧及二次有机颗粒物(SOA)的主要前体物。近年来,我国逐步将VOCs纳入大气污染物控制体系。准确可靠的监测技术是大气VOCs研究及控制的重要前提保障。按照采样方法、分析方法 2个方面介绍并讨论了城市大气中VOCs的现有监测方法,较为详细地介绍了几类广泛采用的离线及在线监测技术,简要讨论了目前VOCs监测中存在的一些问题,展望了今后的发展趋势。  相似文献   

20.
In this study mould damaged materials, including carpet, concrete, gypsum board, insulation, plastic, sand and wood, from 20 different buildings with moisture problems were collected. To study emissions from these materials both conventional methods for sampling, such as collection on Tenax TA, were used as well as complementary methods for sampling a wider spectrum of compounds, such as more volatile VOCs, amines and aldehydes. Analysis was carried out using gas chromatography and high-performance liquid chromatography. Mass spectrometry was used for identification of compounds. Alcohols and ketones were almost exclusively emitted from the materials after they had been wet for a week. Acids were also emitted in large quantities from wet gypsum board and plastic. No primary or secondary amines could be identified, but two tertiary amines, trimethylamine and triethylamine, were emitted from sand contaminated by Bacillus. The most common moulds found were Penicillium and Aspergillus. A multivariate method (partial least squares, PLS) was used to investigate the emission patterns from the materials. Materials with bacterial growth had a different VOC profile to those with only mould growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号