首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over 15 000 coral recruits were counted on settlement plates from three mid-shelf reefs and six fringing reefs in the northern section of the Great Barrier Reef during two summers (1986 and 1987) and one winter (1987). The density of coral recruits on some settlement plates from a fringing reef was up to 4.88 cm–2, the highest value ever reported. Mean density of recruits was greater on fringing reefs (81.1 recruits/settlement plate) than on mid-shelf reefs (15.6 recruits/settlement plate), but there was greater spatial variation in abundance of recruits between the fringing reef sites. Other differences between the mid-shelf reefs and the fringing reefs were that different taxa were dominant, and that settlement orientation differed, with mid-shelf recruits settling preferentially on horizontally oriented surfaces and fringingreef recruits preferring vertical surfaces. Of the three midshelf reefs, Green Island reef recorded the highest recruitment rate for each of the two summers, despite having a depauperate adult coral population following predation by the asteroidAcanthaster planci. This suggests that coral larvae frequently travel between reefs. In contrast with an earlier study, there was no consistent difference in abundance of recruits between forereef and backreef locations. Overall, the results indicated great spatial variation in the availability of coral larvae, both on the scale of whole reefs and within-reef habitats.  相似文献   

2.
Glassom  D.  Zakai  D.  Chadwick-Furman  N. E. 《Marine Biology》2004,144(4):641-651
Recruitment rates of stony corals to artificial substrates were monitored for 2 years at 20 sites along the coast of Eilat, northern Red Sea, to compare with those recorded at other coral reef locations and to assess variation in recruitment at several spatial scales. Coral recruitment was low compared to that observed on the Great Barrier Reef in Australia, but was similar to levels reported from other high-latitude reef locations. Pocilloporids were the most abundant coral recruits in all seasons. Recruitment was twofold higher during the first year than during the second year of study. There was considerable spatial variability, with the largest proportion of variance, apart from the error term, attributable to differences between sites, at a scale of 102 m. Spearmans ranked correlation showed consistency in spatial patterns of recruitment of pocilloporid corals between years, but not of acroporid corals. During spring, when only the brooding pocilloporid coral Stylophora pistillata reproduces at this locality, most coral recruitment occurred at central and southern sites adjacent to well-developed coral reefs. During summer, recruitment patterns varied significantly between years, with wide variation in the recruitment of broadcasting acroporid corals at northern sites located distant from coral reefs. Settlement was low at all sites during autumn and winter. This work is the first detailed analysis of coral recruitment patterns in the Red Sea, and contributes to the understanding of the spatial and temporal scales of variation in this important reef process.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
The present study (Ishigaki Island, Japan) explored the distance of transmission of chemical cues emitted by live versus dead coral reefs (Exp. 1: High performance liquid chromatography (HPLC) analyses with water sampling station at 0, 1, and 2 km away from the reef) and the potential attraction of these chemical cues by larval fish, crustaceans, and cephalopods (Exp. 2: choice flume experiment conducted on 54 Chromis viridis larvae, 52 Palaemonidae sp larvae, and 16 Sepia latimanus larvae). In the experiment 1, HPLC analyses highlighted that the live coral reef (and not the dead coral reef) produced different and distinct molecules, and some of these molecules could be transported to a distance of at least 2 km from the reef with a reduction of concentration by 14–17-fold. In the experiment 2, C. viridis, Palaemonidae sp, and S. latimanus larvae were significantly attracted by chemical cues from a live coral reef (sampling station: 0 km), but not from a dead coral reef. However, only C. viridis larvae detected the chemical cues until 1 km away from the live coral reef. Overall, our study showed that chemical cues emitted by a live coral reef were transported farthest away in the ocean (at least 2 km) compared to those from a dead coral reef and that fish larvae could detect these cues until 1 km. These results support the assumption of a larval settlement ineffective in degraded coral reefs, which will assist conservationists and reef managers concerned with maintaining biodiversity on reefs that are becoming increasingly degraded.  相似文献   

4.
For marine organisms, decoupling between the planktonic larval stage and the benthic-associated juvenile stage can lead to variable patterns of population replenishment, which have the potential to influence the effectiveness of marine reserves. We measured spatial and temporal variability in larval supply and recruitment of fishes to coral reefs of different protection levels and tested whether protection level influenced the relationship between supply and recruitment. We sampled pre-settlement larvae and newly settled recruits from four reefs (two reserves and two non-reserves) in the Florida Keys National Marine Sanctuary, USA. Replicate point measures of larval supply over 14 months and 17 monthly measurements of recruitment varied significantly among months and sites. Sites with the same protection level had significantly different patterns of larval supply as well as larval and recruit diversity, but recruitment magnitude differed only by protection level, where densities were greater at reserves. Differences in larval supply among sites included two particularly large peaks in larval abundance at one site, possibly associated with the observed passage of small-scale oceanographic features. To examine whether relationships between larval supply and recruitment varied by protection level, we selected one species that was present in both the light trap samples and the monthly recruitment surveys. Recruitment of the bicolor damselfish Stegastes partitus was significantly and positively related to larval supply at three of the four sites thus, protection level did not influence this linkage. Since local variability among sites can lead to spatial differences in population replenishment, characterization of larval supply and recruitment to potential marine reserve sites may help to identify optimal locations in a region and contribute to more effective reserve design.  相似文献   

5.
Macroalgal fields are a feature of the shallow tropical benthos, yet their importance for coral reef fish population dynamics remains poorly understood. The abundance of fish recruits was recorded using underwater visual census at six macroalgal and 11 coral reef sites in the Montebello and Barrow Islands. Surveys identified 6,935 individual recruit fish from 105 species, 54 genera and 20 families. Of these, 1,401 recruits from 48 species, 31 genera and 14 families were observed in macroalgal sites. Sixteen of the 105 recruit species (15.2 %) were observed exclusively at macroalgal sites. Forty-two (87.5 %) of these species have been observed as adults on adjacent coral reefs. Species composition of fish recruits differed significantly between the two habitats. Corallivore, small omnivore and zooplanktivore recruits had significantly higher numbers in the coral sites, while the results clearly demonstrate that juveniles, within the genera Lethrinus and Choerodon, as well as large algal croppers, are predominantly found at macroalgal (74–100 %) rather than coral-dominated sites. High-canopy macroalgae cover was positively correlated with abundance of these taxa, particularly Lethrinids (r 2 = 0.40). This study is the first to highlight the important attributes of tropical macroalgal fields and suggests that they have a similar role to seagrass meadows as essential juvenile habitat, thus warranting greater attention in conservation planning and ecological studies.  相似文献   

6.
Few studies have examined predator-prey relationships in diverse communities such as those found on coral reefs. Here we examined patterns of spatial and temporal association between the local abundance of predator and prey fishes at Lizard Island on the Great Barrier Reef, Australia. We predicted that the nature of this association would have implications for patterns of prey-fish mortality. Strong positive relationships between prey and piscivore abundance were found throughout the study. Greater densities of predators and of prey were found on patch-reef habitats, compared with contiguous reef-slope habitats. Declines in prey-fish abundance on patch reefs were density-dependent and correlated with the densities of predators. The relative roles of recruitment and piscivore movement in determining patterns of predator and prey abundance were assessed from surveys of recruit densities and an intensive programme of tagging two species of rock-cod, Cephalopholis cyanostigma and C. boenak (Serranidae), over 2 years. Patterns of recruitment explained little of the variation in the abundance and distribution of piscivorous fish. If movement explains large-scale patterns of distribution, this was not evident from the tagging study. The two rock-cod species were highly sedentary, with individuals on patch reefs seldom moving among reefs. Individuals on reef slopes were also highly site-attached, although they moved greater distances than those on patch reefs. Although the mechanisms responsible remain to be determined, this study demonstrated strong associations between the abundance of piscivorous fish and their prey on coral reefs. This relationship appeared to be an important factor in producing density-dependent declines in the abundance of prey. Received: 30 April 2000 / Accepted: 22 September 2000  相似文献   

7.
Recruitment of labroid fishes to a lagoonal habitat within each of 7 reefs in the Capricorn/Bunker Group on the Great Barrier Reef was recorded for 2 yr (April 1982–April 1983). The density of recruitment of a species on one reef was not a good indicator of its density on other reefs. There were significant differences in the levels of recruitment between years. For several species, the ranking of reefs according to density of recruitment changed between years and the ranking of the two years changed among reefs. Recruitment varied differently for each species. Southern reefs were ranked more highly than northern reefs overall, but no North-South gradient was apparent. Populations of labroid fishes in the Capricorn/Bunker Group experience unpredictable variations in recruitment.  相似文献   

8.
The Aerial Bay group of Islands are one of the diverse environments of Andaman & Nicobar Islands, where the coral reefs degraded much due to the natural calamity of tsunami on 26 December 2004. After this event, the entire North Andaman Islands got elevated, which resulted in the exposure of coral reefs during low tide, causing mass mortalities and destructions to this pristine environment. In order to understand the current status, bio-physical monitoring of coral reefs was carried out and compared with classified coral map of pre-tsunami period. A decline from 411.14 to 68.25 hectares (ha) of live coral area was observed in the Aerial Bay group of Islands. The dead corals and other abiotic factors (sand, mud and rubble) were observed to be 317.33 and 25.56 ha respectively, based on comparisons between ground truthed and classified pre-tsunami coral map (2004) processed in ArcGIS®. The detrended correspondence analysis of coral life form categories showed maximum cover of dead coral with algae, in comparison with the live corals. Bray-curtis cluster analysis revealed three different groups of study sites with 60 % similarity based on life-form categories within the coral reef environment.  相似文献   

9.
Ecotourism often is promoted as an ecologically sustainable activity, but some ecotourism activities negatively impact coastal ecosystems. Impacts of intensive diving tourism on coral reefs remain poorly understood, especially in the Florida Keys. We determined patterns of recreational dive frequency, diver behaviour, and coral damage on reefs near Key Largo, and assessed how pre-dive briefings and other factors affect these damage rates. Recreational divers contacted live stony corals ~ 18 times per scuba dive; most contacts deposited sediment onto corals, but also caused abrasion to coral tissues and fracture of coral skeletons. Divers who received pre-dive ecological briefings caused significantly less coral damage than those who did not, and divers with cameras and/or gloves caused the most damage. The proportion of damaged corals increased significantly with the estimated rate of recreational diving on each reef, and the percent cover of live corals decreased. We conclude that current rates of recreational diving in Key Largo are unsustainable, resulting in damage to >80 % of coral colonies and reduction of live coral cover to <11 % at heavily-dived sites. We recommend that dive tour operators administer pre-dive ecological briefings to all recreational divers, provide extra briefings to camera and glove users, and employ underwater dive guides who intervene when divers inadvertently damage live stony corals. This study provides a scientific basis to support management of intensive ecotourism on Florida coral reefs.  相似文献   

10.
Short-term temporal patterns of recruitment have been described in a variety of coral reef fishes and have often been related with lunar and tidal cycles. While the relative importance of lunar and tidal factors in determining recruitment patterns has been difficult to assess, most studies have been done in the Caribbean and Indo-Pacific, where tidal amplitudes are small. We studied the short-term temporal dynamics of fish recruitment at Gorgona Island (tropical eastern Pacific), where there is a large tidal amplitude (~4.4 m). Every other day during three consecutive months in 1998, we directly measured the magnitude of reef fish recruitment to standardized coral units (SCUs) isolated from natural reefs. A total of 40 species from 21 families settled on the SCUs. Of 11 species with sufficient numbers for meaningful statistical analyses, two (Lutjanus guttatus and Pomacanthus zonipectus) had lunar recruitment with peaks near the new moon; three combined species of antennariids showed semilunar recruitment with peaks near moon quarters; and eight other species showed sporadic and aperiodic recruitment pulses. The contribution of lunar (moonlight intensity) and tidal factors (tidal amplitude and net tidal flow) to recruitment dynamics varied among species, although it was generally low (<18%) even among species with periodic patterns, except perhaps in L. guttatus. In this species, recruitment magnitude correlated negatively with moonlight intensity, accounting for 34.5% of the variance. Post-settlement predation by roving predators may be one cause of this relationship. In the remaining species, particularly those with sporadic and aperiodic recruitment pulses, stochastically varying weather and oceanographic events may be more important in determining temporal variation in recruitment.  相似文献   

11.
The effects of sedimentation on coral reefs are commonly studied at local scales, but larger-scale patterns have been elusive, making it difficult to determine the role of sedimentation in region-wide changes in these ecosystems. We examined the relationships between characteristics of reef-associated surface sediment and benthic composition of 22 reefs around 11 islands of the eastern Caribbean. The terrigenous fraction in surface sediment increased with proximity to a clear source of sediment input. The percent cover of live coral, macroalgae, and turf algae decreased with higher terrigenous sediment fraction, while sponge cover increased. Sites with sediment containing high and low terrigenous fraction differed in coral species assemblages. In particular, the cover of Montastraea annularis complex decreased with increasing terrigenous sediment fraction. The proportion of fine-grained sediment had no effect on benthic composition. These results suggest that sedimentation may play a role in shaping coral reef communities at a regional scale.  相似文献   

12.
I investigated the ability of predators to influence the patterns of species richness and abundance of non-piscivorous fishes on small, artificial reefs replenished by natural recruitment. Periodic removal of predators effectively reduced the species richness and abundance of predators on removal reefs. The difference between the number of predators on control and removal reefs was greatest immediately following the removal of predators and attenuated between removals. During periods of recruitment, species richness and total abundance of recently-recruited, non-piscivorous fishes were generally greater on predator-removal reefs than on control reefs. Species richness and total abundance of resident non-piscivorous fishes were not affected by the removal of predators in the first year of the experiment. Both abundance and species richness of residents, however, were greater on the removal reefs during the second year of the experiment. The difference in the responses of the two age classes to the removal of predators suggests that predators may affect community patterns of older age classes through time-lagged effects on the survivorship of younger age classes. At the end of the experiment, species richness was positively related to abundance for recruits and residents. The effects of removing piscivorous fishes on the abundance of non-piscivorous fishes were similar for species considered separately. A greater number of species of recruit and resident fishes were more abundant on reefs from which predators had been removed. These data suggest that predators can play an important role in structuring communities of fishes on coral reefs.  相似文献   

13.
Seven fringing reef complexes were chosen along the leeward coast (west) of Barbados to study the effects of eutrophication processes upon the scleractinian coral assemblages. The structure of scleractinian coral communities was studied along an eutrophication gradient with a quantitative sampling method (line transect) in terms of species composition, zonation and diversity patterns. On the basis of these data the fringing reefs were divided into three ecological zones: back reef, reef flat, and spur and groove. Statistically discernible and biologically significant differences in scleractinian coral community structure, benthic algal cover and Diadema antillarum Philippi densities were recorded among the seven fringing reefs. High correlations between environmental variables and biotic patterns indicate that the effects of eutrophication processes (nutrient enrichment, sedimentation, turbidity, toxicity and bacterial activity) were directly and/or indirectly affecting the community structure of scleractinian coral assemblages. In general, species diversity was most sensitive in delineating among-reef, and among-zone, differences, which were attributed to intensification of eutrophication processes. Porites astreoides Lamarck, P. porites (Pallas), Siderastrea radians (Pallas), and Agaricia agaricites (Linnaeus) were the most abundant coral species in the polluted southern reefs. The absence and/or low abundance of coral species previously characterized as well adapted to high turbidity and sedimentation [i.e. Montastrea cavernosa Linnaeus, Meandrina meandrites (Linnaeus)] indicate that eutrophication processes may adversely affect these species. It is suggested that sediment rejection abilities, combined with feeding and reproductive strategies, are the primary biological processes of scleractinian corals through which eutrophication processes directly and/or indirectly affect the structure of coral communities.  相似文献   

14.
Few time series collections have been made of the larval ichthyofauna in waters directly above shallow coral reefs. As a result, relatively little is known regarding the composition and temporal dynamics of larval fish assemblages in shallow-reef waters, particularly those near a major western boundary current. We conducted a series of nightly net tows from a small boat over a shallow reef (Pickles Reef) along the upper Florida Keys during four new moon and three third-quarter moon periods in July (two new moons), August, and September 2000. Replicate tows were made after sunset at 0–1 m and at 4–5 m depth to measure the nightly progression in community composition, differences in depth of occurrence, and abundance and diversity with lunar phase. A total of 66 families was collected over the 3-month period, with a mean (±SE) nightly density of 23.7±2.1 larvae per 100 m 3 and diversity of 24.2±0.9 taxa per tow. A total of 28.8% of the catch was composed of small, schooling fishes in the families Atherinidae, Clupeidae, and Engraulidae. Of the remaining catch, the top ten most abundant families included reef fishes as well as mangrove and oceanic taxa (in descending order): Scaridae, Blennioidei (suborder), Gobiidae, Paralichthyidae, Lutjanidae, Haemulidae, Labridae, Gerreidae (mangrove), Balistidae, and Scombridae (oceanic). These near-reef larval fish assemblages differed substantially from those collected during previous offshore collections. Taxa such as the Haemulidae were collected at a range of sizes and may remain nearshore throughout their larval period. Overall, the abundance and diversity of taxa did not differ with depth (although within-night vertical migration was evident) or with lunar phase. Temporal patterns of abundance of larval fish families clustered into distinct groups that in several cases paralleled family life-history patterns. In late July, a sharp shift in larval assemblages signaled the replacement of oceanic water with inner shelf/bay water. In general, the suite and relative abundance of taxa collected each night differed from those collected on other nights, and assemblages reflected distinct nightly events as opposed to constant or cyclical patterns. Proximity to the Florida Current likely contributes to the dynamic nature of these near-reef larval assemblages. Our results emphasize the uniqueness of near-reef larval fish assemblages and point to the need for further examination of the biophysical relationships generating event-related temporal patterns in these assemblages.  相似文献   

15.
The 1998 bleaching event and its aftermath on a coral reef in Belize   总被引:5,自引:0,他引:5  
Widespread thermal anomalies in 1997-1998, due primarily to regional effects of the El Niño-Southern Oscillation and possibly augmented by global warming, caused severe coral bleaching worldwide. Corals in all habitats along the Belizean barrier reef bleached as a result of elevated sea temperatures in the summer and fall of 1998, and in fore-reef habitats of the outer barrier reef and offshore platforms they showed signs of recovery in 1999. In contrast, coral populations on reefs in the central shelf lagoon died off catastrophically. Based on an analysis of reef cores, this was the first bleaching-induced mass coral mortality in the central lagoon in at least the last 3,000 years. Satellite data for the Channel Cay reef complex, the most intensively studied of the lagoonal reefs, revealed a prolonged period of elevated sea-surface temperatures (SSTs) in the late summer and early fall of 1998. From 18 September to 1 October 1998, anomalies around this reef averaged +2.2°C, peaking at 4.0°C above the local HotSpot threshold. In situ temperature records from a nearby site corroborated the observation that the late summer and early fall of 1998 were extraordinarily warm compared to other years. The lettuce coral, Agaricia tenuifolia, which was the dominant occupant of space on reef slopes in the central lagoon, was nearly eradicated at Channel Cay between October 1998 and January 1999. Although the loss of Ag. tenuifolia opened extensive areas of carbonate substrate for colonization, coral cover remained extremely low and coral recruitment was depressed through March 2001. High densities of the sea urchin Echinometra viridis kept the cover of fleshy and filamentous macroalgae to low levels, but the cover of an encrusting sponge, Chondrilla cf. nucula, increased. Further increases in sponge cover will impede the recovery of Ag. tenuifolia and other coral species by decreasing the availability of substrate for recruitment and growth. If coral populations are depressed on a long-term basis, the vertical accretion of skeletal carbonates at Channel Cay will slow or cease over the coming decades, a time during which global-warming scenarios predict accelerated sea-level rise.  相似文献   

16.
U. Oren  Y. Benayahu 《Marine Biology》1997,127(3):499-505
 Coral reefs in the northern Gulf of Eilat are exposed to continuous man-made disturbances, resulting in decreased coral coverage and reduced recruitment at the Nature Reserve of Eilat. The construction of artificial reefs on sandy bottoms is a possible option to decrease diving pressure on natural reefs. In the present study we tested this hypothesis by submerging an experimental artificial reef anchored to the bottom at 18 m depth and floated vertically 3 m below water surface. The reef was composed of PVC plates, attached both vertically and horizontally along a wire. Propagules of two coral species, the stony coral Stylophora pistillata and the soft coral Dendronephthya hemprichi, were transplanted to this artificial reef. Planulae of S. pistillata were obtained during the breeding season, seeded in petri dishes in the laboratory and after 2 wk the dishes were transferred to the experimental artificial reef. Automized fragments of D. hemprichi which had previously settled on 10 × 10 cm PVC plates were transplanted onto the experimental artificial reef. The survivorship of the transplanted D. hemprichi colonies was significantly higher on the lower sides of shallower plates. Survivorship of S. pistillata colonies increased with depth when located on the vertical plates, or on the upper sides of the horizontal plates. The highest survivorship of this coral was on the vertical plates and on the upper sides of the horizontal plates, while very low survivorship was recorded on the lower sides. The results indicate that vertical artificial surfaces offer the optimal biotic and abiotic conditions for the survival of the two examined corals. The vertical plates are characterized by low sed imentation rates, low coverage of turf-algae, minimal grazing by sea urchins and absence of the competitor tunicate Didemnum sp. In addition, the vertical orientation of the experimental plates reduces shading and offers the required light intensity for zooxanthellate corals such as S. pistillata. Only a few studies to date have tried to implement artificial reefs in a coral reef environment. The results of the present study indicate the potential of enhancing recruitment of corals by transplantation of juvenile recruits onto appropriate artificial structures. Maximal survivorship of these recruits is dependent upon the structural features of the artificial reef, which should offer optimal conditions. Received: 25 May 1996 / Accepted: 15 July 1996  相似文献   

17.
Spatiotemporal recruitment patterns of scleractinian corals were investigated around Iriomote Island, Ryukyu Archipelago, Japan, in relation to adult coral cover in 2005 and 2006. Although almost all corals were broadcasting spawners, the relationship between recruitment and adult coral cover differed among coral families (Acroporidae, Poritidae, and Pocilloporidae), likely due to differences in embryonic development time. For spawning pocilloporid corals, whose larvae develop relatively more rapidly, recruitment was higher at sites where adult coral cover was higher. In contrast, recruitment was not related to adult coral cover in acroporid and poritid corals, whose embryonic development times were relatively slow. Moreover, recruitment of acroporid corals varied between years, and recruitment was greater at leeward compared to windward reefs for a few days after spawning. These results suggest that embryonic development time and wind-driven surface currents affect larval dispersal and subsequent recruitment patterns at a local scale. Based on embryonic development time, some spawning corals are more likely to have higher rates of self-seeding than others. Our results predict that among spawning corals, local populations of acroporid and poritid corals, whose larvae potentially disperse over long distances and recruit in neighboring reefs, are more resilient to local disturbances than those of pocilloporid corals, whose recruitment relies upon local stock.  相似文献   

18.
Coral reefs around the world are facing serious threats. These fragile ecosystems are in need for conservation. The coastal state of Bahia hosts the most extensive and richest area of coral reefs in the South Atlantic Ocean. Assessment, planning and management of coral reef ecosystems are particularly challenging tasks. This work shows how the creation of a GIS improves the process of management, monitoring and conservation of the Bahian reef environments The initial data input started by the vectorization of 1) bathymetric data from the Bureau of Hydrography and Navigation (DHN), 2) shoreline and mangrove areas from Landsat 7 ETM + images, 3) near surface reefs from Quickbird images, and 4) coastal and marine protected areas of federal, state and local administrations. Geological, physical, biological and social information was then included in order to create a suitable marine GIS for conservation aims. The data includes information on sediment granulometry and transport patterns, rocky substrate outcrops, sea surface temperature, wave direction, rain precipitation, major contributing river discharge, artisanal fishery, benthic cover and bleaching data. ReefBahia GIS has provided essential information for a better understanding of coral reefs of the state of Bahia geological and ecological characteristics such as mapping, representation, connectivity and biodiversity of coral reefs, geological facies, Quaternary sedimentation, numeric modeling of wave refraction and monitoring of bleaching events.  相似文献   

19.
We tested the effect of near-future CO2 levels (≈490, 570, 700, and 960 μatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 μatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 μatm CO2 (control). In contrast, juveniles reared at 700 and 960 μatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 μatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 μatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator–prey interactions and commercial fisheries.  相似文献   

20.
Apex predators are declining at alarming rates due to exploitation by humans, but we have yet to fully discern the impacts of apex predator loss on ecosystem function. In a management context, it is critically important to clarify the role apex predators play in structuring populations of lower trophic levels. Thus, we examined the top‐down influence of reef sharks (an apex predator on coral reefs) and mesopredators on large‐bodied herbivores. We measured the abundance, size structure, and biomass of apex predators, mesopredators, and herbivores across fished, no‐take, and no‐entry management zones in the Great Barrier Reef Marine Park, Australia. Shark abundance and mesopredator size and biomass were higher in no‐entry zones than in fished and no‐take zones, which indicates the viability of strictly enforced human exclusion areas as tools for the conservation of predator communities. Changes in predator populations due to protection in no‐entry zones did not have a discernible influence on the density, size, or biomass of different functional groups of herbivorous fishes. The lack of a relationship between predators and herbivores suggests that top‐down forces may not play a strong role in regulating large‐bodied herbivorous coral reef fish populations. Given this inconsistency with traditional ecological theories of trophic cascades, trophic structures on coral reefs may need to be reassessed to enable the establishment of appropriate and effective management regimes. El Impacto de las Áreas de Conservación sobre las Interacciones Tróficas entre los Depredadores Dominantes y los Herbívoros en los Arrecifes de Coral  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号