首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult Vinciguerria nimbaria are the main prey of tuna during the tuna fishing season (late autumn and winter) in the equatorial Atlantic (0–4°N, and ~15°W). V. nimbaria trophic behavior in the fishing grounds was studied in relation to hydrobiological factors to determine its role in the trophic food web. Sampling stations spaced by 20 nautical miles were set up along a 15°W north–south transect from 4°N to 0°40S. At each station, the temperature and vertical fluorescence profiles were recorded. Nitrate and chlorophyll a analyses were performed on water sampled at different levels in the euphotic zone. Vertical plankton hauls were carried out at depths of 0–100 and 0–200 m using a standard WP2 net fitted with a 200-μm mesh gauze. Vinciguerria nimbaria adults were collected using a young-fish mid-water trawl net (10 × 15 m opening mouth, 10 mm cod end mesh). The weight of the stomach contents, the stomach fullness index, the number of prey, the frequency of occurrence and the prey preponderance were recorded for 20 fish from each haul. An oligotrophic typical tropical structure (TTS) was found between 1° and 4°N where small zooplankton was relatively abundant above or near the thermocline. In the TTS, V. nimbaria behaved as an epipelagic fish, feeding on the dominant small prey during the daytime. In turn, it was a prey for tuna. In the equatorial zone, where zooplankton was more abundant than in the north equatorial zone, V. nimbaria behaved as a mesopelagic fish and as an opportunistic mesozooplankton feeder. It consumed a wide range of sizes of food, feeding on the most abundant species of zooplankton as well as the largest zooplankton species, possibly while migrating towards the surface in the late afternoon or in the deep layer.  相似文献   

2.
Food limitation is likely to be a source of mortality for fish larvae in the first few weeks after hatching. In the laboratory, we analyzed all aspects of foraging in cod larvae (Gadus morhua Linnaeus) from 5 to 20 d post-hatching using protozoa (Balanion sp.) and copepod nauplii (Pseudodiaptomus sp.) as prey. A camera acquisition system with two orthogonal cameras and a digital image analysis program was used to observe patterns of foraging. Digitization provided three-dimensional speeds, distances, and angles for each foraging event, and determined prey and fish larval head and tail positions. Larval cod swimming speeds, perception distances, angles, and volumes increased with larval fish size. Larval cod swam in a series of short intense bursts interspersed with slower gliding sequences. In 94% of all foraging events prey items were perceived during glides. Larval cod foraging has three possible outcomes: unsuccessful attacks, aborted attacks, and successful attacks. The percentage of successful attacks increased with fish size. In all larval fish size classes, successful attacks had smaller attack distances and faster attack speeds than unsuccessful attacks. Among prey items slowly swimming protozoans were the preferred food of first-feeding cod larvae; larger larvae had higher swimming speeds and captured larger, faster copepod nauplii. Protozoans may be an important prey item for first-feeding larvae providing essential resources for growth to a size at which copepod nauplii are captured. Received: 20 April 1999 / Accepted: 12 January 2000  相似文献   

3.
Females of the spionid polychaete Streblospio benedicti (Webster) produce either small eggs (60–70 μm diameter) and planktotrophic larvae, or large eggs (100–200 μm) and lecithotrophic larvae that reportedly do not feed. This intraspecific polymorphism, a form of poecilogony, is potentially useful in studies of larval ecology and evolution, but necessary data on larval form and function are lacking. This study describes the morphology and nutritional biology of larvae obtained from Atlantic (South Carolina) and Pacific (California and Washington) populations from 2003 to 2005. The two types of larvae produced by Atlantic S. benedicti differed greatly in length (229±22 μm SD for planktotrophs vs. 638±40 μm for lecithotrophs) and chaetiger number (2–5 vs. 10–11) at release from the female’s brood pouch. Planktotrophic larvae bore long provisional chaetae on their first chaetiger; provisional chaetae were absent in lecithotrophic larvae. Larvae from Pacific populations were all of the lecithotrophic form, and were similar to their Atlantic counterparts in all respects. High-speed video microscopy revealed that both types of larvae used opposed bands of cilia to capture suspended particles and transport them to the mouth, where they were often ingested. Lecithotrophic larvae reared with suspended phytoplankton (Rhodomonas sp., 104 cells ml−1) for 2 days grew significantly faster than sibling larvae reared without added food, indicating that these larvae can digest and assimilate ingested food. Larvae of S. benedicti that develop from large eggs are thus facultative planktotrophs instead of obligately non-feeding lecithotrophs, a result that affects the interpretation of comparative studies of the ecology and evolution of larvae in S. benedicti and certain other marine invertebrates.  相似文献   

4.
Prey selection shortly after the onset of feeding by laboratory-reared gilthead seabream, Sparus aurata L., larvae was studied using larvae fed on two types of microcapsule (hard- and soft-walled) having diameters ranging from 25 to 300 m. Preferences between inert food and live prey (rotifers and Artemia sp. nauplii) were also studied. Seabream larvae were able to ingest inert food from first feeding. Larvae of all size classes ingested hard microcapsules with diameters in the range 25 to 250 m. However, larvae with a total length (TL) below 4 mm preferentially selected particles 25 to 50 m in diameter, larvae of TL 4 and 5 mm preferred particles 51 to 100 m in diameter, while larvae above 5 mm TL preferred particles 101 to 150 m in diameter. With soft microcapsules, larvae always preferred particles larger than in the previous case, and above 4.5 mm TL they preferentially selected particles 201 to 250 m in diameter. In addition, the gradual increase of preferred diameters with increasing TL was more pronounced when larvae were increasing TL was more pronounced when larvae were fed on soft particles. Mean values for prey width/mouth width ratios were approximately 0.24 and 0.30 when larvae were fed on hard-walled and soft-walled microcapsules, respectively, irrespective of the absolute value of larval length. When a mixed diet of live and inert food items was offered, live prey were always preferentially selected, even if the prey width/mouth width ratio was apparently not favourable. Only a physical constraint such as excessive prey width could counter this preference for living prey vs inert microcapsules. These results contribute to our knowledge in larval feeding behaviour, especially in the presence of inert food, and represent a fundamental step in developing prepared food for marine fish larvae.  相似文献   

5.
Depth-stratified samples, collected during a period where the water column was vertically mixed (March 2000) and a period of thermal stratification (September 2000), were analyzed in order to investigate the horizontal and vertical distribution patterns and composition of mesozooplankton, especially copepod species assemblages, in a pelagic (Ionian Sea) and a coastal area (Patraikos Gulf) of the eastern Mediterranean. Total mesozooplankton abundance and biomass were significantly lower in the highly oligotrophic offshore waters of the Ionian Sea when compared to the semi-enclosed Patraikos Gulf during both seasons. Small-sized copepods dominated the mesozooplankton community. An ‘offshore’ and a ‘coastal’ copepod assemblage were defined in the surface layer (0–50 m) only during March when differences in environmental conditions (i.e., temperature, salinity and fluorescence) were strong between the two areas. Copepod vertical community structure in offshore waters differed between sampling months. In March one assemblage (0–200 m) was mainly identified, while in September three distinct assemblages (0–50, 50–100 and 100–200 m) were observed, related to different vertical distribution patterns of the various copepod species. A pronounced seasonal change of the dominant copepods was evident in the surface layer, where strong differences in hydrological properties were observed from March to September. Below this layer, the copepod community was relatively stable showing decreasing seasonal differences with increasing depth.  相似文献   

6.
Feeding rates of the jellyfish Aurelia aurita on fish larvae   总被引:4,自引:0,他引:4  
We quantified feeding rates of field caught Aurelia aurita feeding on yolk sac cod (Gadus morhua) larvae in a series of incubation experiments. A short-time (~1 h) functional response experiment with a wide range of prey concentrations (0.5–16 prey l−1, initial concentration) revealed that ingestion rates increased linearly over this range, such that clearance rates were similar between the different prey concentrations. This suggests that A. aurita is capable of efficiently utilizing dense prey patches. This indication was further supported by a linear increase of prey captured by A. aurita during 2.5 h of feeding at extremely high prey concentration (>200 prey l−1). Clearance rate in darkness scaled with jellyfish diameter to a power of ~1.7 for jellyfish 3.9–9.5 cm in diameter. The jellyfish did not alter their umbrella pulse frequency in response to presence of fish larvae. There were no significant differences between A. aurita feeding rates in light and darkness for yolk sac prey ages 0–7 days (at 7.5°C). Although prey vision and escape abilities of fish may develop rapidly during early larval ontogeny, these factors apparently have little impact on interactions with predators such as A. aurita during the yolk sac stage.  相似文献   

7.
The ecology of small, gelatinous zooplankton is not integrated into management of Dogger Bank (54° 00′ N, 3° 25′ E to 55° 35′ N, 2° 20′ E). In pursuit of this goal, gelatinous zooplankton and their potential prey were sampled along a transect across the bank on June 10–16, 2007. Eleven species of small medusae and ctenophores were collected, with six abundant taxa occurring in greater numbers below the thermocline and in the shallower, southeastern portion of the bank. There were no statistically significant diel changes in distribution. In contrast, potential prey were distributed more evenly across the bank and throughout the water column. Isotopic analyses revealed that gelatinous zooplankton fed on both smaller (100–300 μm) and larger (>300 μm) mesozooplankton, but also potentially on each other. These ecological insights suggest that small medusae and ctenophores should be integrated into sustainable management of Dogger Bank.  相似文献   

8.
This study evaluated whether larvae of the Indo-Pacific vermetid gastropod Dendropoma maximum are obligate planktotrophs, or whether they exhibit an intermediate feeding strategy. Experiments were conducted in Moorea, French Polynesia (149°50′W, 17°30′S), Sep–Oct 2009, to examine D. maximum larval growth and metamorphic responses to different diets and amounts of food. Dendropoma maximum larvae required particulate food to undergo metamorphosis, but were able to survive and grow in the absence of food for up to 20 days. Larvae in Low and Unfed food treatments exhibited phenotypic plasticity by growing a larger velum (the larval feeding structure) compared with those in high food. Unfed D. maximum larvae had a slower initial growth rate; however, by 11-day post-hatch fed and unfed larvae had converged on the same mean shell height (553 μm), which was only 10% larger than the initial size at hatching. Therefore, although the nutritional strategy of D. maximum larvae is best described as obligate planktotrophy, it appears to approach an intermediate feeding strategy.  相似文献   

9.
The zoeal larvae of brachyuran crabs must feed soon after hatching on a diet that includes large micro- and mesozooplankton in order to satisfy nutritional requirements. However, newly hatched larvae have been shown to ingest a variety of dinoflagellates, perhaps using microbial carbon sources to sustain them until they encounter more favored prey. Ingestion of dinoflagellates by larval crabs has been documented previously under conditions in which the larvae were exposed to algae provided in monoculture or in defined mixtures of cells. We report here on experiments conducted on the hatching stage of five crab species to determine if ingestion of dinoflagellates occurred when they were provided in combination with Artemia sp. nauplii or after a period of feeding on mesozooplankton. Quantitative measurements of chl a in the larval guts provided evidence of ingestion of algal cells. Active ingestion of the dinoflagellate Prorocentrum micans at specified intervals during an extended feeding period was determined on larvae of two crab species using fluorescently labeled cells provided for brief periods at prescribed time intervals. Stage 1 larvae of four of the five crab species ingested dinoflagellates when they were provided in combination with nauplii and larvae of all five species ingested cells after feeding solely on nauplii for 24 h. Ingestion of algal cells was first evident in the larval guts after 6 h of feeding at both low (200 cell ml−1) and high (1,000 cells ml−1) prey densities. Higher prey densities resulted in higher gut chl a. Larvae continuously exposed to dinoflagellates actively ingested cells at every 3 h interval tested over a 36 h period. Results confirm previous studies that larvae will ingest dinoflagellates even when they are encountered in a mixed prey field or when having previously fed. Ingestion of cells may occur on a continual basis over time.  相似文献   

10.
Recruitment of capelin in the Barents Sea fail when juvenile herring and cod are abundant and the potential for feeding competition of wild sympatric capelin and herring larvae and small cod juveniles were investigated. The frequency of gut evacuation after capture of capelin larvae were also studied in mesocosms. Small capelin larvae (<35 mm length) fed on small prey including phytoplankton, invertebrate eggs and nauplii, bivalves, other invertebrate larvae and small copepods. Calanus copepodites were only observed in large capelin larvae (>26 mm length). Calanus copepodites were the major food sources for contemporary herring larvae (25–35 mm length) and Calanus and euphausiids were the major prey for small juvenile herring (37–60 mm length) and cod (18–40 mm length). Capelin larvae reared in mesocosms evacuated the guts shortly after capture. Capelin larvae had a smaller mouth and fed on smaller prey than herring and cod of the same length. This implies that the small capelin larvae, in contrast to sympatric small herring and cod, are not tightly linked to the food chain involving Calanus and euphausiids. Thus, exploitative competition between capelin larvae and planktivorous fish that rely on Calanus and euphausiids in the Barents Sea may be relaxed.  相似文献   

11.
Investigations of factors affecting feeding success in fish larvae require knowledge of the scales of variability of the feeding process itself and the indices used to assess this variability. In this study, we measured short-term (diel) variability in feeding rates of wild haddock (Melanogrammus aeglifinus) larvae four times per day during a 10-d cruise in the northern North Sea. Feeding activity was evaluated using indices of gut fullness, prey digestive state and biochemical measurements (tryptic enzyme activity). The gut fullness and the enzyme activity indices indicated moderate to high rates of food consumption throughout the cruise. Time series analysis of the three indices showed significant diel variability in all indices and enabled identification of significant lags between food uptake and peak digestive enzyme activity. The typical pattern of food consumption and digestion was characterized by maximal ingestion of prey early in the evening (19:00 hrs) and peak digestive enzyme activity at 01:00  hrs. The time scale over which enzyme activities reacted to prey ingestion was ca. 6 h, and is consistent with expectations from controlled laboratory experiments with other larval fish species. Significant diel variability in tryptic enzyme activity suggests that attempts to relate this measure of feeding success to other variables (e.g. food concentrations) should take care to accommodate natural cycles in feeding activity before making statistical comparisons. Received: 29 October 1998 / Accepted: 18 June 1999  相似文献   

12.
Paraeuchaeta norvegica (8.5 mm total length) and yolk-sac stage Atlantic cod larvae (4 mm total length) (Gadus morhua) larvae were observed in aquaria (3 l of water) using silhouette video photography. This allowed direct observations (and quantitative measurement) of predator–prey interactions between these two species in 3-dimensions. Tail beats, used by cod larvae to propel themselves through the viscous fluid environment, also generate signals detectable by mechanoreceptive copepod predators. When the prey is close enough for detection and successful capture (approximately half a body-length), the copepod launches an extremely rapid high Reynolds number attack, grabbing the larva around its midsection. While capture itself takes place in milliseconds, minutes are required to subdue and completely ingest a cod larva. The behavioural observations are used to estimate the hydrodynamic signal strength of the cod larva’s tail beats and the copepod’s perceptive field for larval fish prey. Cod larvae are more sensitive to fluid velocity than P. norvegica and also appear capable of distinguishing between the signal generated by a swimming and an attacking copepod. However, the copepod can lunge at much faster velocities than a yolk-sac cod larva can escape, leading to the larva’s capture. These observations can serve as input to the predator–prey component of ecosystem models intended to assess the impact of P. norvegica on cod larvae.  相似文献   

13.
Relation of fish larvae and zooplankton biomass in the Gulf of Aden   总被引:2,自引:0,他引:2  
This study is based on zooplankton samples collected in the upper 50 m by the F.R.V. Manihine in the Gulf of Aden during October–November, 1966 and February–March, 1967. Generally, the displacement volume of zooplankton varied between 20 and 67 ml/m2. Some higher values, up to 100 ml/m2, were also observed. The number of larval fish in positive hauls ranged from 2 to 282 larvae/m2. An inverse relationship between the number of larval fish and the accompanying volume of zooplankton was noted. This relationship is discussed. It is hypothesized that larval mortality due to predation in the Gulf of Aden during the northeast monsoon (November, February and March) was very high.  相似文献   

14.
Epifluorescence microscopy was used to analyze the stomach contents of bivalve larvae collected in the Baie des Chaleurs (western Gulf of St. Lawrence, Canada) in order to document food-particle sizes, compare feeding among taxa, and compare the diet with the in situ phytoplankton community. Stomach contents were mainly composed of small autotrophic flagellates (<5 μm) and cyanobacteria (<2 μm), reflecting the microbial food web which characterizes these waters. More than half (55%) of all veligers examined contained algal cells of 5 to 15 μm, whereas only 3% had cells of 15 to 25 μm. Differences in the size ranges of ingested algal cells among similar-sized larvae of different species suggests that veligers actively selected food particles. Among the smallest veligers (185 to 260 μm), scallops (Placopecten magellicanus) and mussels (Mytilus edulis) ingested more <5 μm and 5 to 15 μm algae than clams (Mya arenaria). Among larger veligers (261 to 405 μm), clams contained significantly more <5 μm cells than mussels, whereas mussels contained significantly more 5 to 15 μm algae than clams. Algal cells of 15 to 25 μm were preferentially ingested by mussel veligers. Feeding also differed between different-sized veligers within taxa, i.e. the smallest clam veligers ingested fewer of 5 to 15 μm algae than the larger size classes. Mussel veligers ingested significantly more 15 to 25 μm and fewer <5 μm cells as their size increased. The dominance of ultraplankton in the nearshore waters of Baie des Chaleurs and in the stomach contents suggests that veliger larvae may be an important export path for carbon produced by small phytoplankton. Received: 17 July 1996 / Accepted: 20 September 1996  相似文献   

15.
Food selection by young larvae of the gulf menhaden (Brevoortia patronus) was studied in the laboratory at Beaufort, North Carolina (USA) in 1982 and 1983; this species is especially interesting, since the larvae began feeding on phytoplankton as well as microzooplankton. When dinoflagellates (Prorocentrum micans), tintinnids (Favella sp.), and N1 nauplii of a copepod (Acartia tonsa) were presented to laboratory-reared, larval menhaden (3.9 to 4.2 mm notochord length), the fish larvae ate dinoflagellates and tintinnids, but not copepod nauplii. Larvae showed significant (P<0.001) selection for the tintinnids. Given the same mixture of food items, larger larvae (6.4 mm notochord length) ate copepod nauplii as well as the other food organisms. These feeding responses are consistent with larval feeding in the northern Gulf of Mexico, where gulf menhaden larvae between 3 and 5 mm in notochord length frequently ate large numbers of dinoflagellates (mostly P. micans and P. compressum) and tintinnids (mostly Favella sp.), but did not eat copepod nauplii. As larvae grew, copepod nauplii and other food organisms became important, while dinoflagellates and tintinnids became relatively less important in the diet. Since the tintinnids and nauplii used in the laboratory feeding experiments were similar in size as well as carbon and nitrogen contents, the feeding selectivity and dietary ontogeny that we observed were likely due to a combination of prey capturability and larval fish maturation and learning.Contribution No. 5575 of the Woods Hole Oceanographic Institution  相似文献   

16.
Most studies on feeding by herring larvae (Clupea harengus) have taken place in clear, open waters, but several herring stocks around the world spawn in inshore and estuarine regions. An example is the spring-spawning Blackwater Estuary (Essex, England) stock. Samples were collected in this estuary to examine prey selectivity and feeding levels in relation to biological and environmental conditions. Herring larvae negatively selected copepod nauplii, but positively selected the copepodite and adult stages of Acartia spp. Gastropod larvae were also positively selected. Particles >150 μm width were preferred, whilst particles smaller than this value were preferentially rejected. Concentrations of potential prey items in the water were in the range of 6.0 to 49.7 organisms l−1 with a median concentration of 15.0 organisms l−1 (n = 26). These values are towards the low end of prey concentrations quoted in the literature as being required to sustain herring larval growth and survival. However, theoretical considerations suggest that, in this environment, levels of tidally-induced turbulence enhance encounter rates between larval herring and their prey. On the other hand, turbidity is also related to tidal current speed and might reduce feeding success by decreasing underwater light levels. Measurements at two sites in the estuary confirmed that tidally-induced turbidity reduced the effective water depth in which herring larvae could visually feed by up to 50% at times of peak current speed. However, with the gut-content data available in the present study, it was not possible to discern any clear relationships between feeding success and the state of the tide. Feeding success appeared to be more strongly influenced by surface light-levels. Received: 24 June 1998 / Accepted: 17 February 1999  相似文献   

17.
The extent to which behaviour affects the dispersal of pelagic larvae in reef fishes has been a topic of major discussion among marine ecologists. Here, we experimentally quantified the extent to which the displacement of late-stage larvae of Abudefduf saxatilis is due to active movement (i.e. swimming) and drifting. We consider drifting as the component of larval displacement accounted for by the current. Drifting was quantified by comparing larval displacement to the displacement of passive particles in an extended flow chamber that gave larvae the free choice of swimming (i.e. swim with or against the current or not swim at all). We also determine whether drifting results from currents exceeding larval swimming capabilities or from the behavioural choice of larvae of not to swim against adverse currents. To do this, we compare the speeds of larval swimming in the extended flow chamber to those obtained in a smaller chamber in which larvae are behaviourally forced to swim due to space constraints and a retaining fence (most available data on larval swimming is based on this sort of chamber). Within the extended chamber, larvae tended to face the current and swim slower than it. This resulted in a net displacement increasingly determined by drifting. We also found that in the extended chamber, larvae swam at speeds between one and six times slower than the speeds they achieved in the “behaviourally modifying” smaller chamber. This suggests that the net displacement in the extended chamber was in part due to the behavioural choice of the larvae of not to swim. The importance of this “behavioural drifting” is discussed in terms of energy savings required for successful completion of the larval period and post-settlement survival. The idea that larvae may modulate their swimming behaviour raises caution for the use of published data regarding swimming capabilities of reef fish larvae when assessing the extent to which these fish actively affect their dispersal.  相似文献   

18.
Most marine fishes undergo a pelagic larval phase, the early life history stage that is often associated with a high rate of mortality due to starvation and predation. We present the first study that examines the effects of prey swimming behavior on prey-capture kinematics in marine fish larvae. Using a digital high-speed video camera, we recorded the swimming velocity of zooplankton prey (Artemia franciscana, Brachionus rotundiformis, a ciliate species, and two species of copepods) and the feeding behavior of red drum (Sciaenops ocellatus) larvae. From the video recordings we measured: (1) zooplankton swimming velocity in the absence of a red drum larva; (2) zooplankton swimming velocity in the presence of a red drum larva; and (3) the excursion and timing of key kinematic events during prey capture in red drum larvae. Two-way ANOVA revealed that: (1) swimming velocity varied among zooplankton prey; and (2) all zooplankton prey, except rotifers and ciliates, increased their swimming velocity in the presence of a red drum larva. The kinematics of prey capture differed between two developmental stages in S. ocellatus larvae. Hyoid-stage larvae (3–14 days old) fed on slow swimming B. rotundiformis (rotifers) while hyoid-opercular stage larvae (15 days and older) ate fast moving A. franciscana. Hyoid-opercular stage red drum larvae had a larger gape, hyoid depression and lower jaw angle, and a longer gape cycle duration relative to their hyoid-stage conspecifics. Interestingly, the feeding repertoire within either stage of red drum development was not affected by prey type. Knowledge of the direct relationship between fish larvae and their prey aids in our understanding of optimal foraging strategies and of the sources of mortality in marine fish larvae.  相似文献   

19.
The lipid/fatty acid composition of marine fish eggs and larvae is linked with buoyancy regulation, but our understanding of such processes is largely restricted to species with pelagic eggs. In this study, we examined developmental changes in the lipid/fatty acids of eggs and embryos of Pacific cod (Gadus macrocephalus), a species that spawns demersal eggs along coastal shelf edges, but as larvae must make a rapid transition to the upper reaches of the water column. Adult Pacific cod were collected in the Gulf of Alaska during the spawning season and eggs of two females were artificially fertilized with sperm from three males for each female. The eggs were subsequently reared in the laboratory to determine (1) how lipids/fatty acids were catabolized during egg and larval development, and (2) whether lipid/fatty acid catabolism had measurable effects on egg/embryo density. Eggs incubated at 4°C began hatching after 3-weeks and continued to hatch over a 10-day period, during which there was a distinct shift in lipid classes (phospholipids (PL), triacyglycerols (TAG), and sterols (ST)) and essential fatty acids (EFAs: 22:6n-3 (DHA), 20:5n-3 (EPA), and 20:4n-6 (AA)). In the egg stage, total lipid content steadily decreased during the first 60% of development, but just prior to hatch we observed an unexpected 2–3-fold lipid increase (~6–9 μg individual−1) and a significant drop in egg density. The increase in lipids was largely driven by PL, with evidence of long-chained fatty acid synthesis. Late-hatching larvae had progressively decreasing lipid and fatty acid reserves, suggesting a shift from lipogenesis to lipid catabolism with continued larval development. Egg density measures suggest that lipid/fatty acid composition is linked to buoyancy regulation as larvae shift from a demersal to a pelagic existence following hatch. The biochemical pathway by which Pacific cod are apparently able to synthesize EFAs is unknown, therefore representing a remarkable finding meriting further investigation.  相似文献   

20.
Larval fish growth and survival depends not only on prey quantity, but also on prey quality. To investigate effects of prey fatty acid concentration on larval herring growth, we collected different prey organisms and larval herring (Clupea harengus L.) in the Kiel Canal during the spring season of 2009. Along with biotic background data, we analysed fatty acids both in prey organisms and in the larvae and used biochemically derived growth rates of the larvae as the response variable. Larval herring reached their highest RNA/DNA derived growth rates only at high docosahexaenoic acid (DHA) concentration. When the ratio of copepodids to lesser quality cirriped nauplii was low, larval growth and larval DHA concentration were both significantly negatively affected. This was true even as prey abundance was increasing. This finding indicates that even in mixed, natural feeding conditions, growth variations are associated with DHA availability in larval fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号