首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
ABSTRACT: The purpose of this study was to assess short term, macroinvertebrate colonization dynamics and biofilm accumulation in two agricultural streams, one of which had been recently exposed to chronic, intermittent organic effluents from a slaughterhouse. During the winter and summer, macroinvertebrates and biofilm were collected from brick substrates from four or three sites in the streams on a geometric time schedule (1, 2, 4, 8, 16, and 32 days of exposure). Invertebrate total densities stabilized quickly, but the mass of biofilm increased throughout the study periods. Invertebrate community indices (diversity, evenness, dominance, richness) differed between the unaffected, “agricultural reference” sites and the affected sites, below the point source. All sites were dominated by Baetis bicaudatus (mayfly), Hydrobia sp. (gastropod), and Dugesia tigrina (Turbellaria). Response of these taxa differed between seasons and exposure to organic effluents. Stream invertebrate colonization processes showed evidence of the perturbation after the inflow of organic effluents had stopped from the slaughterhouse. Chronic organic enrichment reduced the species richness in the potential pool of colonists. Three months after the organic inputs had stopped, colonization timing and community structure was not yet at levels evident in reference and upstream sites.  相似文献   

2.
ABSTRACT: One component of the filamentous algal community of a northern fen ecosystem in central Michigan was studied under conditions of nutrient enrichment by secondarily treated sewage effluent during one growing season. The productivity of Cladophora spp. measured by continuous flow bioassay was 2.6 g dry weight m day at the site of effluent addition compared to 0.085 g m day at the control site. Under conditions of nutrient enrichment, uptake by bioassay Cladophora spp. averaged 12 mg m?2day?1for phosphorus and 55 mg m?2day?1for nitrogen, compared to 0.01 mg m?2 day?1and 0.16 mg m?2day?1for phosphorus and nitrogen, respectively, in the control area. At the end of the growing season approximately 4.3 g N m?2 and 0.96 g P m?2were immobilized in Cladophora algal biomass. Algal growth temporarily immobilized 3.0 percent of the nitrogen and 1.0 percent of the phosphorus added as sewage effluent. Gross productivity of surface water in the fen averaged 1.5 g O2m?2day?1at the nutrient enriched site, compared to 0.5 g O2 m?2day?1at the control area. Gross productivity, community respiration and reaeration constant values in the fen were similar to data collected by other researchers in shallow water aquatic systems, but only at the fertilized sites.  相似文献   

3.
This study reveals the first analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer. Microbial monitoring during CO2 injection has been reported. By using fluorescence in situ hybridisation (FISH), we have shown that the microbial community was strongly influenced by the CO2 injection. Before CO2 arrival, up to 6 × 106 cells ml−1 were detected by DAPI staining at a depth of 647 m below the surface. The microbial community was dominated by the domain Bacteria that represented approximately 60% to 90% of the total cell number, with Proteobacteria and Firmicutes as the most abundant phyla comprising up to 47% and 45% of the entire population, respectively. Both the total cell counts as well as the counts of the specific physiological groups revealed quantitative and qualitative changes after CO2 arrival. Our study revealed temporal outcompetition of sulphate-reducing bacteria by methanogenic archaea. In addition, an enhanced activity of the microbial population after five months CO2 storage indicated that the bacterial community was able to adapt to the extreme conditions of the deep biosphere and to the extreme changes of these atypical conditions.  相似文献   

4.
Johnsen, Torbjørn M., Wenche Eikrem, Christine D. Olseng, Knut E. Tollefsen, and Vilhelm Bjerknes, 2010. Prymnesium parvum: The Norwegian Experience. Journal of the American Water Resources Association (JAWRA) 46(1):6-13. DOI: 10.1111/j.1752-1688.2009.00386.x Abstract: In Norwegian waters, Prymnesium parvum has been reported from Oslofjorden in the south to Spitzbergen in the north. However, blooms of P. parvum have only been reported from the Sandsfjorden system in Ryfylke, Western Norway where the salinity of the permanent brackish layer (2-5 m) typically is in the range of 4-7 psu during the summer months. The first bloom on record occurred in 1989, and it killed 750 metric tons of caged salmon and trout which was a significant economic loss to the fish farming industry. Toxic blooms occurred as well in subsequent years and the number of fish farms in the area decreased considerably as did the occurrence of P. parvum. In 2005, fish farming was reintroduced to the area and again, in 2007 a toxic bloom of P. parvum killed 135 metric tons of caged fish. The Norwegian Institute for Water Research has, in collaboration with “Erfjord Stamfisk” fish farm, set up a monitoring program that includes light microscopy cell counts of Prymnesium, water quality measurements, and observation of the caged fish. A submergible fish net was mounted over the fish pens and during the toxic outbreak of P. parvum in July-August 2007, which was as previous years confined to the upper brackish water layer, the fish nets were lowered to 10 m depths below the surface and fish feeding was temporarily stopped. Despite substantial weight loss, the fish survived the toxic bloom and the economic loss was minimal. Monitoring of P. parvum bloom dynamics in 2007 revealed that populations were initially dominated by the nonmotile forms which were gradually replaced by the flagellated forms. Toxicity was observed when the flagellated cells dominated populations in the summer. Chrysochromulina, solitary small Chaetoceros species, and small centric diatoms co-existed with P. parvum during the monitoring period (June-October).  相似文献   

5.
Environmental dredging is a primary remedial option for removal of the contaminated material from aquatic environment. Of primary concern in environmental dredging is the effectiveness of the intended sediment removal. A 5-year field monitoring study was conducted to assess the effectiveness of the environmental dredging in South Lake, China. The concentrations of total nitrogen (TN), total phosphors, and heavy metals (Zn, Pb, Cd, Cu, Cr, Ni, Hg, and As) before and after dredging in sediment were determined and compared. Multiple ecological risk indices were employed to assess the contamination of heavy metals before and after dredging. Our results showed that the total phosphorus levels reduced 42% after dredging. Similar changes for Hg, Zn, As Pb, Cd, Cu, Cr, and Ni were observed, with reduction percentages of 97.0, 93.1, 82.6, 63.9, 52.7, 50.1, 32.0, and 23.6, respectively, and the quality of sediment improved based on the criterion of Sediment Quality Guidelines by USEPA and contamination degree values (Cd) decreased significantly (paired t-test, p < 0.05). Unexpectedly, the TN increased 49% after dredging compared to before dredging. Findings from the study demonstrated that the environmental dredging was an effective mechanism for removal of total phosphorus and heavy metals from South Lake. Nevertheless, the dredging was ineffective to remove total nitrogen from sediment. We conclude that the reason for the observed increase in TN after dredging was likely ammonia release from the sediment impairing the dredging effectiveness.  相似文献   

6.
ABSTRACT: We surveyed first‐to third‐order streams (channel widths from 1.4 to 10 m) in the southeastern slopes of the Cascade Range of Washington and found two distinct endpoints of riparian vegetation. Where the forest overstory is dominated by park‐like Ponderosa pine (Pinus ponderosa), channels are commonly bordered with a dense scrub‐shrub vegetation community. Where fire suppression and/or lack of active riparian zone management have resulted in dense encroachment of fir forests that create closed forest canopies over the channel, scrub‐shrub vegetation communities are virtually absent near the channel. Other factors being equal, distinct differences in channel morphology exist in streams flowing thru each riparian community. The scrub‐shrub channels have more box‐like cross‐sections, lower width‐to‐depth ratios, more pools, more undercut banks, more common sand‐dominated substrates, and similar amounts of woody debris (despite lower tree density). Temperature comparisons of forest and scrub‐shrub sections of two streams indicate that summer water temperatures are slightly lower in the scrub‐shrub streams. We surmise that these morphology and temperature effects are driven by differences in root density and canopy conditions that alter dynamic channel processes between each riparian community. We suspect that the scrub‐shrub community was more common in the landscape prior to the 20th century and may have been the dominant native riparian community for these stream types. We therefore suggest that managing these streams for dense riparian conifer does not mimic natural conditions, nor does it provide superior in‐stream habitat.  相似文献   

7.
We examined the physiological and morphological response patterns of plains cottonwood [Populus deltoides subsp. monilifera (Aiton) Eck.] to acute water stress imposed by groundwater pumping. Between 3 and 27 July 1996, four large pumps were used to withdraw alluvial groundwater from a cottonwood forest along the South Platte River, near Denver, Colorado, USA. The study was designed as a stand-level, split-plot experiment with factorial treatments including two soil types (a gravel soil and a loam topsoil over gravel), two water table drawdown depths (∼0.5 m and >1.0 m), and one water table control (no drawdown) per soil type. Measurements of water table depth, soil water potential (Ψs), predawn and midday shoot water potential (Ψpd and Ψmd), and D/H (deuterium/hydrogen) ratios of different water sources were made in each of six 600-m2 plots prior to, during, and immediately following pumping. Two additional plots were established and measured to examine the extent to which surface irrigation could be used to mitigate the effects of deep drawdown on P. deltoides for each soil type. Recovery of tree water status following pumping was evaluated by measuring stomatal conductance (g s ) and xylem water potential (Ψxp) on approximately hourly time steps from before dawn to mid-afternoon on 11 August 1996 in watered and unwatered, deep-drawdown plots on gravel soils. P. deltoides responded to abrupt alluvial water table decline with decreased shoot water potential followed by leaf mortality. Ψpd and percent leaf loss were significantly related to the magnitude of water table declines. The onset and course of these responses were influenced by short-term variability in surface and ground water levels, acting in concert with physiological and morphological adjustments. Decreases in Ψpd corresponded with increases in Ψmd, suggesting shoot water status improved in response to stomatal closure and crown dieback. Crown dieback caused by xylem cavitation likely occurred when Ψpd reached −0.4 to −0.8 MPa. The application of surface irrigation allowed trees to maintain favorable water status with little or no apparent cavitation, even in deep-drawdown plots. Two weeks after the partial canopy dieback and cessation of pumping, g s and Ψxp measurements indicated that water stress persisted in unwatered P. deltoides in deep-drawdown plots.  相似文献   

8.
ABSTRACT: We measured diurnal changes in water levels in three swamps dominated by pondcypress trees (Taxodium distichum var. nuans) in central Florida for four years in order to obtain additional documentation of relatively low evapotranspiration (ET) rates. Two of these swamps were monitored for another three years after one of them was clearcut. Estimated annual ET from undisturbed cypress swamps varied from 38 cm/yr to 86 cm/yr, averaging 60 cm (not including interception). Faster ET rates may have been related to faster pondcypress growth rates, a greater proportion of hardwoods in the canopy, and clearcutting in the surrounding pine plantation. The average ET rate was considerably lower than ET rates that have been estimated for north Florida pine plantations. However, incorporating estimates of interception indicates that overall ET rates in pondcypress swamps may be only slightly lower than ET from pine plantations. ET decreased only 5 percent in one swamp after it was clearcut, indicating that this management practice is not likely to affect regional water balances.  相似文献   

9.
10.
Since wetland construction projects are becoming more commonplace, meaningful follow-up studies are needed to evaluate how these systems change over time. To that end, the objective of our study was to examine the temporal changes in plant community composition and water chemistry in two constructed wetlands. We investigated two wetland sites that were constructed in 2003 in northern Otsego County, NY, a county that is largely dominated by agriculture. Site 1 was previously an active cow pasture and site 2 was previously a wet meadow surrounded by agricultural fields. No active plant introduction was made during the construction; however, both sites were located in areas with many remnant wetlands and were connected to through-flowing streams. In 2004 (Year 1) and 2010 (Year 7), the plant community composition and nitrogen retention were assessed. We found that both sites experienced site-wide declines in plant species richness, including the loss of upland and facultative upland species and the unanticipated loss of facultative wetland and some obligate species. We propose that high water levels, which, at their maximum depth were >1.5 m deeper than in Year 1, maintained by landowners in the years after the initial survey, may have been responsible for the unexpected loss of wetland species. We also found that site 1 exhibited considerable nitrogen retention in both Year 1 and Year 7; however, N concentrations were low at site 2 in both years.  相似文献   

11.
Inland water bodies are considered as integrated parts of the landscape and the monitoring of water quality and aquatic resources need to be addressed on a regional basis for optimal assessment and management. In this study, a simple stratified sampling scheme was applied to a mesoscale survey of western and northwestern Irish lakes, which was carried out to identify, based on the distribution patterns of phytoplankton biomass, potential associations between lake trophic state and land cover attributes. Phytoplankton community analysis was also performed to determine whether taxa associations reflected meteorology-linked aestival succession or specific spatial distributions. The assessment was based on the typology of hydrogeomorphological and land cover attributes of river catchments through ArcGIS analysis. Sampling was carried out in 50 lakes and during a 15-week period in summer 2009. Results showed a general longitudinal gradient in the trophic status of the lakes sampled, with a greater frequency of mesotrophic lakes in the eastern part of the study area where land cover is dominated by agricultural surfaces. Significant relationships (p < 0.010) were found between chlorophyll-a concentration and the proportion of river catchment surface covered by agriculture land and wetlands, findings which might be considered further as proxies for developing an eutrophication risk index. Multivariate analysis of phytoplankton community data clustered the sampled lakes into three assemblages, with ordination along axis 1 being significantly correlated to time and temperature (p < 0.006). There was greater frequency of occurrence of diatoms in lakes from cluster III (Kruskal–Wallis, p < 0.05, H = 6.34, df = 2, n = 49), concomitant to lower chlorophyll-a concentrations, lake surface temperatures and Secchi depths, reflecting meteorological conditions dominated by precipitations. Those results support the potential of mesoscale surveys to assess water quality variables and detect environmental patterns at regional scales.  相似文献   

12.
ABSTRACT: Sugarcane (Saccharum spp.) was planted in six lysimeters containing Pahokee muck (Lithic Mediaprist) where water tables were maintained at 30, 60, and 90 cm depths. The main objective was to study the impact of a 40 percent water cutback (108 mm) on sugarcane production during the period near the end of the dry season (i.e., May). The water cutback treatment was simulated through manipulation of water table depth. Due to the high available water capacity of the muck soil and selection of a sugarcane cultivar ‘CP63-588’ (which has a high tolerance of water table fluctuations), the sugarcane growth, and the yields of sugarcane biomass and sugar were not significantly different as a result of the treatments with and without 40 percent water cutback during a period of two months. This result is in good agreement with the 1981 cane yield in the Everglades Agricultural Area where a 35 percent water cutback was imposed during the 1981 drought.  相似文献   

13.
ABSTRACT: Throughout western North America, willows and cottonwoods are dominant woody plants in riparian zones, streamside areas that are periodically flooded. This study compared tolerances of willows‐Salix discolor, S. exigua, and S. lutea‐and cottonwoods‐Populus angustifolia, P balsamifera, and P deltoides‐to water inundation, one component of stream flooding. Rooted cuttings were grown for 152 days in 10 cm tall pots in water depths from 2.5 to 10 cm (inundated). Shoot and root elongation growth of the inundated cottonwoods were reduced 23 and 45 percent, while S. lutea was relatively unaffected and the inundated sandbar willow, S. exigua, displayed 72 and 43 percent increases in shoot and root elongation. The inundation reduced transpiration in P deltoides and for mature P balsamifera trees that were flooded by a small reservoir on Willow Creek, Alberta. Those flooded trees died in their second year of inundation. The greater inundation tolerance of willows versus cottonwoods is consistent with observations along Midvale Creek, Montana, where beaver dams created a pond in which P trichocarpa died while willows thrived after five years. These patterns of inundation tolerance are consistent with elevational zones of occurrence as willows‐and particularly the sandbar willow—occur at low elevations close to the stream. The understanding of inundation tolerances should assist in the provision of hydrologic patterns that will conserve and restore these shrubs and trees along streams and could permit their establishment along artificial reservoirs.  相似文献   

14.
A series of statistical analyses were used to identify temporal and spatial patterns in the phytoplankton and nutrient dynamics of Lake Washington, an mesotrophic lake in Washington State (USA). These analyses were based on fortnightly or monthly samples of water temperature, Secchi transparency, ammonium (NH4), nitrate (NO3), inorganic phosphorus (IP), total nitrogen (TN), total phosphorus (TP), dissolved oxygen (DO), pH and chlorophyll a (chl a) collected during 1995–2000 from 12 stations. Lake Washington has a very consistent and pronounced annual spring diatom bloom which occurs from March to May. During this bloom, epilimnetic chl a concentrations peak on average at 10 μg/L, which is 3 times higher than chl a concentrations typically seen during summer stratified conditions. The spring bloom on average comprised 62% diatoms, 21% chlorophytes and 8% cyanobacteria. During summer stratification, diatoms comprised 26% of the phytoplankton community, chlorophytes 37% and cyanobacteria 25%. Cryptophytes comprised approximately 8% of the community throughout the year. Overall, 6 phytoplankton genera (i.e., Aulacoseira, Fragilaria, Cryptomonas, Asterionella, Stephanodiscus, and Ankistrodesmus) cumulatively accounted for over 50% of the community. These analyses also suggest that the phytoplankton community strongly influences the seasonality of NO3, IP, DO, pH and water clarity. According to a MANOVA, seasonal fluctuations explained 40% of the total variability for the major parameters, spatial heterogeneity explained 10% of variability, and the seasonal-spatial interaction explained 10% of variability. Distinctive patterns were identified between offshore and inshore sampling stations. The results of our analyses also suggest that spatial variability was substantial, but much smaller than temporal variability.  相似文献   

15.
Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm‐ and tidal‐related flooding of spatially extensive coastal marshes within the north‐central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L‐Band SAR (PALSAR) (L‐band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C‐band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006‐2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR‐ and ASAR‐based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference‐scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR‐based inundation accuracies averaged 84% (= 160), while ASAR‐based mapping accuracies averaged 62% (= 245).  相似文献   

16.
Cornus stolonifera, Salix petiolaris, and Spiraea alba clones already located within the corridor of an electrical power line. To establish the efficiency of treatments, we examined the statistical differences of growth traits between species and treatments. An analysis of the effects of layering shows, after the first growth season, differences for all growth traits in only one species, Spiraea alba. After the second growth season, we observed the development of new aerial stems. Layering favors horizontal expansion of shrubs over height development. The third year after treatment, the effect of layering is reduced except for Cornus stolonifera, which continuously increases, as shown by the significant progression of the clone issued from the layer even five years after treatments. With the cutting back technique, we expected a distinct vertical growth of the shrubs at the expense of increasing the crown diameter. This technique would be best associated with the rejuvenation of clones, followed by a layering of new shoots to allow a horizontal expansion of the shrubs. Therefore, the formation of a dense shrub community by layering should be considered a valuable approach for the biological control of undesirable trees in powerline rights-of-way.  相似文献   

17.
Abstract: Nutrient dose‐response bioassays were conducted using water from three sites along the North Bosque River. These bioassays provided support data for refinement of the Soil and Water Assessment Tool (SWAT) model used in the development of two phosphorus TMDLs for the North Bosque River. Test organisms were native phytoplanktonic algae and stock cultured Pseudokirchneriella subcapitata (Korshikov) Hindak. Growth was measured daily by in vivo fluorescence. Algal growth parameters for maximum growth (μmax) and half‐saturation constants for nitrogen (KN) or phosphorus (KP) were determined by fitting maximum growth rates associated with each dose level to a Monod growth rate function. Growth parameters of native algae were compared between locations and to growth parameters of P. subcapitata and literature values. No significant differences in half‐saturation constants were indicated within nutrient treatment for site or algal type. Geometric mean KN was 32 μg/l and for KP 7 μg/l. A significant difference was detected in maximum growth rates between algae types but not between sites or nutrient treatments. Mean μmax was 1.5/day for native algae and 1.2/day for stock algae. These results indicate that watershed‐specific maximum growth rates may need to be considered when modeling algal growth dynamics with regard to nutrients.  相似文献   

18.
Carbonate‐sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface‐water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater‐fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air‐water temperature relationships for 40 GWFS in southeastern Minnesota. A 40‐stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface‐water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater‐fed systems, but will do so at a slower rate than surface‐water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.  相似文献   

19.
ABSTRACT: Overwinter draw down can be a useful technique for aquatic plant management. Its effectiveness depends largely on the susceptibility of nuisance species to draw down. A single overwinter draw down provided good control of aquatic plants in a flowage dominated by Potamogeton robbinsii Little additional control was gained by a second draw down the following winter. Rapid reinvasion of plants after draw down ceased dictates continued management. To avoid fish kills caused by low dissolved oxygen levels caution is advised when using overwinter draw down. The growth of Zizania aquatica was not negatively influenced by draw down. The influence on water quality of nutrient release from decaying vegetation and exposed bottom sediments was uncertain.  相似文献   

20.
The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号