首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Considerable effort is expended each year in making flood peak estimates at both gaged and ungaged sites. Many methods, both simplistic and complex, have been proposed for making such estimates. The hydrologist that must make an estimate at a particular site is interested in the accuracy of the estimate. Most methods are developed using either statistical analyses or analytical optimization schemes. While publications describing these methods often include some statistical measure of goodness-of-flt, the terminology often does not provide the potential user with an answer to the question,‘How accurate is the estimate?’ That is, statistical terminology often are not used properly, which may lead to a false sense of security. The use of the correct terminology will help potential users evaluate the usefulness of a proposed method and provide a means of comparing different methods. This study provides definitions for terms often used in literature on flood peak estimation and provides an interpretation for these terms. Specific problems discussed include the use of arbitrary levels of significance in statistical tests of hypotheses, the identification of both random and systematic variation in estimates from hydrologic methods, and the difference between accuracy of model calibration and accuracy of prediction.  相似文献   

2.
ABSTRACT: A semi-distributed deterministic model for real-time flood forecasting in large basins is proposed. Variability of rainfall and losses in space is preserved and the effective rainfall-direct runoff model segment based on the Clark procedure is incorporated. The distribution of losses in space is assumed proportional to rainfall intensity and their evolution in time is represented by the φ-index; furthermore, an initial period without production of effective rainfall is considered. The first estimation of losses and the associated forecasts of flow are performed at the time corresponding to the first rise observed in the hydrograph. Then the forecasts of flow are corrected at each subsequent time step through the updating of the φ-index. The model was tested by using rainfall-runoff events observed on two Italian basins and the predictions of flow for lead times up to six hours agree reasonably well with the observations in each event. For example, for the coefficient of persistence, which compares the model forecasts with those generated by the no-model assumption, appreciable positive values were computed. In particular, for the larger basin with an area of 4,147 km2, the mean values were 0.4, 0.4 and 0.5 for forecast lead times of two hours, four hours and six hours, respectively. Good performance of the model is also shown by a comparison of its flow predictions with those derived from a unit hydrograph based model  相似文献   

3.
ABSTRACT: Hydrologic and economic information must be integrated in flood plain management. This study describes an integrated approach which includes consideration of the hydrologic, hydrodynamic, physical, and economic components of the total system. On the basis of these components, a theoretical model is proposed which provides a rational procedure for estimating flood damages from projections of economic development within an area. The utility of the model is demonstrated by applying it to a flood-prone region in Southern Quebec, Canada.  相似文献   

4.
ABSTRACT: Literature on the flood hazard/residential land market relationship is full of contradictory findings, many of which are counter-intuitive to the belief that flooding has a negative impact on house prices. This research advances a conceptual framework through which these relationships might be re-examined. Based on the expected utility model, the theoretical framework integrates the economic notion of capitalization with spatial and temporal characteristics of the flood hazard. Four communities with different flood regimes are used to test the effect of flooding on the residential real estate market. Results show that, (1) there is an identifiable relationship between characteristics of the flood hazard and changes in house values; (2) the length of the recovery period is dependent on characteristics and expectations of flooding, attributes of the real estate market, and availability of capital to fuel recovery; and (3) dynamics of the urban market and spatial extent of the flood hazard influence these relationships. Further research is now necessary to examine these findings under different spatial, temporal, hydrological, and socio-economic conditions.  相似文献   

5.
ABSTRACT. The interrelationships between the runoff characteristics of watersheds (expressed as the mean annual flood), standard basin parameters (area, drainage properties, and relief), and the parameters which describe the solutional modification of the basins (carbonate rock fractions, sinkhole development, and measures of internal drainage) were used to group 62 carbonate watersheds. Simple binary correlations were obtained by direct plotting of the data. This was followed by multivariate analyses: factor and cluster analyses. Following the cluster analysis, which separated the basins into three groups, the variance within each group was examined again by binary correlations and by factor analysis. Prediction equations for those basins underlain by dolomite rock [QBAR = 12.4 TOT1.01] and for those basins underlain by carbonate rock with very little surface expression [QBAR = 43.5 TOT0.87] were proposed. Basins underlain by karstic limestone had a large amount of variance within the data set; therefore no prediction equation could be obtained. (QBAR = mean annual flood, cfs; TOT = total length of all blue lines shown on topographic maps, miles.)  相似文献   

6.
ABSTRACT: The 1950 flood disaster in the Red River Valley, Manitoba, and particularly in Winnipeg made all levels of government aware of the need for control measures. The principal elements of the system which was implemented were two large excavated diversion channels, a storage reservoir, and ring dykes around several small communities. In terms of cost and size, the flood control system is the largest in Canada and despite Federal contributions amounting to nearly 60 percent of the final cost, it represented a considerable fiscal burden for the comparatively small population of Manitoba. Between the opening of the Red River Floodway in 1968 and 1979, a series of exceptional spring peak flows on the Red and Assiniboine Rivers demonstrated the benefits of such a system to a degree which could not have been anticipated at the time the projects were being considered. Furthermore, maximum spring discharges from 1913 to 1978 show a clear rising trend, indicating that the flood hazard is becoming even more severe than was initially assumed; if this trend continues, future benefits will continue to exceed expectations. The overall effectiveness of the hazard reduction program in the Red River Valley, however, has suffered from continued development in unprotected areas. Recent federal-provincial agreements have been reached which will substantially reduce this problem and place greater emphasis on improving the non-structural components of an overall flood hazard reduction program.  相似文献   

7.
Computer simulation of river basin hydrology has rapidly progressed from an interesting academic exercise to a practical engineering procedure of increasing utility. Mathematical models of the many interrelated processes which occur in a basin have been developed along with efficient numerical procedures for their solution. The present paper is concerned with a particular model which has been used to describe the transformation of a temporally and spatially varying rainfall into a time history of stage and discharge on a flood plain. Although developed principally as a model of the physical processes involved, it is envisioned that the model can serve as one component of an information system for flood plain planning and management. The model consists of the following elements: (i) a rainfall simulation which generates stochastic inputs to the model according to specified rainfall statistics, (ii) a catchment-runoff model which converts the rainfall to surface runoff, (iii) a flood stage model which converts the surface runoff to time histories of flood stage and discharge. The model has been used to investigate the effect of various structural flood control measures in a basin and, in particular, to establish frequency-stage information for each of these. Of particular interest in development of the model have been recurring and partially unanswered questions relative to the proper balance among availability of data for use in the model, data requirements of the model and the objectives of the outputs produced by the model.  相似文献   

8.
ABSTRACT: The flood hydroclimatology of the Grand Forks flood of April 1997, the most costly flood on a per capita basis for a major metropolitan area in United States history, is analyzed in terms of the natural processes that control spring snowmelt flooding in the region. The geomorphological characteristics of the basin are reviewed, and an integrated assessment of the hydroclimatological conditions during the winter of 1996 to 1997 is presented to gain a real‐world understanding of the physical basis of this catastrophic flood event. The Grand Forks flood resulted from the principal flood‐producing factors occurring at either historic or extreme levels, or at levels conducive to severe flooding. Above normal fall precipitation increased the fall soil moisture storage and reduced the spring soil moisture storage potential. A concrete frost layer developed that effectively reduced the soil infiltration capacity to zero. Record snowfall totals and snow cover depths occurred across the basin because of the unusual persistence of a blocking high circulation pattern throughout the winter. A severe, late spring blizzard delayed the snowmelt season and replenished the snow cover to record levels for early April. This blizzard was followed by a sudden transition to an extreme late season thaw due to the abrupt breakdown of the blocking circulation pattern. The presence of river ice contributed to backwater effects and affected the timing of tributary inflows to the main stem of the Red River. Only the absence of spring rains prevented an even more catastrophic flood disaster from taking place. This paper contributes to our understanding of the flood hydroclimatology of catastrophic flood events in an unusual flood hazard region that possesses relatively flat terrain, a north‐flowing river, and an annual peak discharge time series dominated by spring snowmelt floods.  相似文献   

9.
: The construction of a flood peak index map was attempted for use by hydrologists in the simple format of rainfall maps. Since flood peaks are highly dependent on watershed area, the effect of area was removed. By regression analysis flood peaks of 2.33 and 100-year return periods were found to be proportional to watershed area to the 0.8 and 0.7 powers, respectively. Therefore, indices C2 33= Q2 33/A0.7 were completed at each gage and plotted on a Pennsylvania map. It was attempted to further remove some of the scatter by regression of C with several other watershed parameters like slope, percent forest cover, and watershed shape, but no significant correlation could be found. The index maps, drawn without attenuation of the scatter, can be used by hydrologists to compute flood peaks as Q = CAn (with n = 0.8 and 0.7 for the 2.33 and 100-year flood peaks, respectively). Flood peak safety factors can be based on visual observation of the index variation in the vicinity of the location for which the flood peak estimate is needed.  相似文献   

10.
ABSTRACT: Flood potential data can be effectively interpreted if simple frequency analysis concepts are used to explain the significance of flood potential. Instead of simply presenting data as a quantitative amount or as a percentage of the average condition, predictions can be discussed in terms of their probabilities of exceedance, or return periods. Criteria are presented for evaluating the significance of various return periods. Frequency interpretations are applied to snow course data, peak flow forecasts, and streamflow volume forecasts in northern Utah to illustrate these concepts. In addition, access to realtime data allows tracking of snowmelt progression and identification of any deviations from the forecast flood potential situation. Several data elements, including snowpack, streamfiow volume and peak, and realtime data are jointly evaluated to assess potential hazard and probable risk.  相似文献   

11.
ABSTRACT: The project described in this report was undertaken by the Louisiana State Planning Office to establish the extent of backwater flooding in Louisiana in April 1975. Band 7 Landsat imagery, enlarged to a scale of 1:250,000 was used to visually identify flooded areas. Inundated areas were delineated on overlays keyed to 1:250,000 U.S. Geological Survey topographic quadrangles. Tabular data identifying acres flooded, according to land use type, were derived by merging the flood map overlays with computerized 1972 land use data. Approximately 1.12 million acres of the state were inundated by flood waters. The total acreage and land use types affected by flooding were determined within 72 hours from the time the flood areas were imaged. Flooded maps were prepared for 26 parishes. Field observations were made by Louisiana Cooperative Extension Service county agents in order to determine the accuracy of parish flood maps and flood acreage figures by land use type. Results indicated that this was a fast, accurate, and relatively inexpensive method of compiling flood data for disaster planning and postflood analysis.  相似文献   

12.
ABSTRACT: Recognition of the flood hazard that exists on alluvial fans has seriously lagged behind the recognition of other more conventional flood hazards such as those associated with most rivers. This delay in recognition was due, until recently, to a general lack of economic investment and development in these areas and a concomitant lack of historical alluvial fan flood damage. Dramatic recent events, such as Tropical Storm Kathleen, emphasized to the Federal Insurance Administration (FIA) the need for developing an appropriate methodology to identify flood hazard areas on alluvial fans. This paper presents the methodology now employed by FIA as well as flood plain management considerations that could reduce future flood related damage to communities developing in these areas.  相似文献   

13.
ABSTRACT. The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicate that ERTS-I is extremely useful as a regional tool for flood management. Quantitative estimates of area flooded were made in St. Charles County, Missouri and Arkansas. Flood hazard mapping was conducted in three study areas along the Mississippi River using pre-flood ERTS-1 imagery enlarged to 1:250,000 and 1:100,000 scale. The flood prone areas delineated on these maps correspond to areas that would be inundated by significant flooding (approximately the 100 year flood). The flood prone area boundaries were generally in agreement with flood hazard maps produced by the U. S. Army Corps of Engineers and U. S. Geological Survey although the latter are somewhat more detailed because of their larger scale. Initial results indicate that ERTS-1 digital mapping of flood prone areas can be performed at 1:62,500 which is comparable to some conventional flood hazard map scales.  相似文献   

14.
ABSTRACT: Panchromatic black and white, color, and color infrared photographs and thermal infrared imagery are compared for a capability to show flood boundaries. In open agricultural and urban areas, these boundaries are easily delineated on all types of am. Boundaries are more difficult to see in wooded areas. In March, hardwood trees are dormant, but black and white photographs and color photographs show only the tops of these trees. Color infrared photographs in January and March have a distinctive color or tone in inundated woods; the limit of this tone is the flood boundary. Daytime thermal infrared imagery in March shows that inundated woods are cooler than dry land but warmer than open water. After about April 1, both color infrared photography and thermal infrared imagery show only the top of the tree canopy and do not reflect underlying flood water. Inundated areas can be delineated easily on ERTS satellite imagery from December through March. On imagery from May 4–5, 1973, however, most inundation boundaries had to be drawn as dashed lines; the tree canopy obscures flood waters in wooded areas. Despite this problem, the results of mapping flood boundaries on May imagery are believed to be reasonable for the scale of the imagery.  相似文献   

15.
: Despite the advances in catchment modeling in recent years, engineers still face major problems in estimating flood flows. Application of unit hydrograph and runoff routing models to five United Kingdom catchments shows that either can be tuned to predict, on a test event, the routing effects of a catchment with equal accuracy. The larger remaining problem is the prediction of losses from rainfall and this study shows how alternative ways of describing the within event distribution of these losses can be an important factor controlling the success of the overall model. Other problems include the risks of extrapolation to larger events, baseflow separation methods, rainfall patterns, and inevitable errors in the data.  相似文献   

16.
ABSTRACT: This paper presents evidence that currently published flood insurance premiums may be insufficient to cover expected losses in coastal areas subject to hurricane. The problems of developing flood premiums in coastal zones are discussed and Federal Insurance Administration (FIA) reaction to these problems analyzed. Flood losses in the coastal zone of Bay County, Florida due to hurricane Eloise are compared with losses which would be predicted by the FIA. This comparison raises important questions concerning the adequacy of flood premiums in coastal zones and the undesirable indirect effects that underpricing flood risk will have on location decisions in the coastal floodplain.  相似文献   

17.
Flooding and the susceptibility to flood damage inherent in all land uses constitute the flood hazard. Resolution of the hazard while properly recognizing flood plain environmental attributes within the context of overall community or area needs is the essence of comprehensive flood plain management. The traditional approach–flood control–has effected modification of only the flooding component of the hazard whether it be coastal or inland. Until recently Federal programs have overlooked the possibilities of modifying the susceptibility component, for which the major responsibility lies with non-Federal interests. Beginning with actions in the TVA area, the latter is now being strongly encouraged through Federal programs and actions notably the Flood Plain Management Services and Survey Programs of the Corps of Engineers, those stemming from Executive Order 11296, and those required for eligibility under the National Flood Insurance Act of 1968. Flood plain management objectives must be stated in planning, e.g., economic efficiency, reduction in threat to life and health, environmental improvement, and regional development, to permit proper evaluation of the optional means and approaches for achieving them.  相似文献   

18.
ABSTRACT: The aim of this paper is to compare two views of flood management and thus add to the present thinking of living with floods as opposed to the traditional approach of flood control. The traditional pathway has widely been adopted in developed countries and aims to control floodwaters by means of dams and dikes. The alternative pathway tends towards a policy whereby society lives with the floods by being prepared and having the right damage reduction measures in place. In this paper two pathways are tentatively compared for the Lower Incomati Basin, Mozambique. In the design cultural theory is considered, as is how the design of each path may look according to different management perspectives. The Lower Incomati Basin provides an interesting case study as it is in a relatively undeveloped state. Hence, it is an ideal area for conducting research into the application of alternative flood management strategies. The preliminary results suggest that both pathways are feasible. However, considering recent hydrological extremes such as the 2000 floods, the resilient pathway may ultimately be a more appealing flood management strategy.  相似文献   

19.
ABSTRACT: The impact of man made change on the hydrology of developing watersheds is frequently measured in terms of the ratio: flood peak after development to flood peak before development over a range of return periods. However, the analysis of urbanization effects on flood frequency presents a vexing problem because of a general lack of flood data in urban areas and also because of nonstationarity in the development process. Clearly, the flood peak ratio depends on the impervious fraction and percent of basin sewered and these factors have been taken into account in recent urban flood peak models. In genral, these models are developed either by: (1) split sample analysis of available annual flood data, or (2) by computer simulation using mathematical watershed models capable of representing man made changes. The present paper discusses the results of work in progress to characterize the impact of urbanization on small developing watersheds in Pennsylvania.  相似文献   

20.
ABSTRACT: Machine learning techniques are finding more and more applications in the field of forecasting. A novel regression technique, called Support Vector Machine (SVM), based on the statistical learning theory is explored in this study. SVM is based on the principle of Structural Risk Minimization as opposed to the principle of Empirical Risk Minimization espoused by conventional regression techniques. The flood data at Dhaka, Bangladesh, are used in this study to demonstrate the forecasting capabilities of SVM. The result is compared with that of Artificial Neural Network (ANN) based model for one‐lead day to seven‐lead day forecasting. The improvements in maximum predicted water level errors by SVM over ANN for four‐lead day to seven‐lead day are 9.6 cm, 22.6 cm, 4.9 cm and 15.7 cm, respectively. The result shows that the prediction accuracy of SVM is at least as good as and in some cases (particularly at higher lead days) actually better than that of ANN, yet it offers advantages over many of the limitations of ANN, for example in arriving at ANN's optimal network architecture and choosing useful training set. Thus, SVM appears to be a very promising prediction tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号