首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p < 0.001). RUSLE2-erosion estimates were highly correlated with USLE estimates (r = 0.87; p < 001), so the method of implementing the USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.  相似文献   

2.
ABSTRACT: In order to choose among “best management practices,” forest managers need to predict sediment yield to perennial streams following various forest land operations. The “universal soil loss equation” (USLE) is not directly applicable to forest operations because of the heterogenous soil surface conditions left by harvesting, site preparation, and planting. A sediment hazard index is proposed, to be based on the amount of exposed mineral soil and its proximity to streams. The model offered includes rainfall erosivity, soil erodibility and average land slope, together with the index W. A paired watershed experiment in the central Georgia Piedmont was used to estimate parameters in the model. The experimental basin (80 acres) was clearcut, drum roller chopped twice, and planted by machine. The standard error of estimate of sediment yield was computed to be about 50/lbs/ac per sampling period (four months). Use of William's erogivity index (storm flow times peak flow) reduced the standard error to 33/lbs/ac.  相似文献   

3.
Soil erosion is a serious problem in areas with expanding construction, agricultural production, and improper storm water management. It is important to understand the major processes affecting sediment delivery to surficial water bodies in order to tailor effective mitigation and outreach activities. This study analyzes how naturally occurring and anthropogenic influences, such as urbanization and soil disturbance on steep slopes, are reflected in the amount of soil erosion and sediment delivery within sub-watershed-sized areas. In this study, two sub-watersheds of the Rappahannock River, Horsepen Run and Little Falls Run, were analyzed using the Revised Universal Soil Loss Equation (RUSLE) and a sediment delivery ratio (SDR) to estimate annual sediment flux rates. The RUSLE/SDR analyses for Horsepen Run and Little Falls Run predicted 298 Mg/y and 234 Mg/y, respectively, but nearly identical per-unit-area sediment flux rates of 0.15 Mg/ha/y and 0.18 Mg/ha/y. Suspended sediment sampling indicated greater amounts of sediment in Little Falls Run, which is most likely due to anthropogenic influences. Field analyses also suggest that all-terrain vehicle crossings represent the majority of sediment flux derived from forested areas of Horsepen Run. The combined RUSLE/SDR and field sampling data indicate that small-scale anthropogenic disturbances (ATV trails and construction sites) play a major role in overall sediment flux rates for both basins and that these sites must be properly accounted for when evaluating sediment flux rates at a sub-watershed scale.  相似文献   

4.
SOIL EROSION AND SEDIMENT YIELD PREDICTION ACCURACY USING WEPP1   总被引:1,自引:0,他引:1  
ABSTRACT: The objectives of this paper are to discuss expectations for the Water Erosion Prediction Project (WEPP) accuracy, to review published studies related to WEPP goodness of fit, and to evaluate these in the context of expectations for WEPP's goodness of fit. WEPP model erosion predictions have been compared in numerous studies to observed values for soil loss and sediment delivery from cropland plots, forest roads, irrigated lands and small watersheds. A number of different techniques for evaluating WEPP have been used, including one recently developed where the ability of WEPP to accurately predict soil erosion can be compared to the accuracy of replicated plots to predict soil erosion. In one study involving 1,594 years of data from runoff plots, WEPP performed similarly to the Universal Soil Loss Erosion (USLE) technology, indicating that WEPP has met the criteria of results being “at least as good with respect to observed data and known relationships as those from the USLE,” particularly when the USLE technology was developed using relationships derived from that data set, and using soil erodibility values measured on those plots using data sets from the same period of record. In many cases, WEPP performed as well as could be expected, based on comparisons with the variability in replicate data sets. One major finding has been that soil erodibility values calculated using the technology in WEPP for rainfall conditions may not be suitable for furrow irrigated conditions. WEPP was found to represent the major storms that account for high percentages of soil loss quite well—a single storm application that the USLE technology is unsuitable for—and WEPP has performed well for disturbed forests and forest roads. WEPP has been able to reflect the extremes of soil loss, being quite responsive to the wide differences in cropping, tillage, and other forms of management, one of the requirements for WEPP validation. WEPP was also found to perform well on a wide range of small watersheds, an area where USLE technology cannot be used.  相似文献   

5.
An erosion and sediment transport component incorporated in the HYdrology Simulation using Time‐ARea method (HYSTAR) upland watershed model provides grid‐based prediction of erosion, transport and deposition of sediment in a dynamic, continuous, and fully distributed framework. The model represents the spatiotemporally varied flow in sediment transport simulation by coupling the time‐area routing method and sediment transport capacity approach within a grid‐based spatial data model. This avoids the common, and simplistic, approach of using the Universal Soil Loss Equation (USLE) to estimate erosion rates with a delivery ratio to relate gross soil erosion to sediment yield of a watershed, while enabling us to simulate two‐dimensional sediment transport processes without the complexity of numerical solution of the partial differential governing equations. In using the time‐area method for routing sediment, the model offers a novel alternative to watershed‐scale sediment transport simulation that provides detailed spatial representation. In predicting four‐year sediment hydrographs of a watershed in Virginia, the model provided good performance with R2 of 0.82 and 0.78 and relative error of ?35% and 11% using the Yalin and Yang's sediment transport capacity equations, respectively. Prediction of spatiotemporal variation in sediment transport processes was evaluated using maps of sediment transport rates, concentrations, and erosion and deposition mass, which compare well with expected behavior of flow hydraulics and sediment transport processes.  相似文献   

6.
ABSTRACT: We have developed a computer model of soil loss on an upland watershed from the continuity considerations for sediment transport and from equations describing rill and interrill erosion. The model is based on dividing the upland area into a grid containing rill and interill zones, on the Universal Soil Loss Equation (USLE), and on equations describing detachment and transport capacity of rill flow. The USLE estimates the sediment load from the contributing areas. The location and amount of total erosion and deposition are determined by comparing the transport and detachment capacity of rill flow for specific storms. The model considers the mechanics of erosion process and can serve as basis for reservoir and channel design and land use planning.  相似文献   

7.
Abstract: The watershed scale Soil and Water Assessment Tool (SWAT) model divides watersheds into smaller subwatersheds for simulation of rainfall‐runoff and sediment loading at the field level and routing through stream networks. Typically, the SWAT model first needs to be calibrated and validated for accurate estimation through adjustment of sensitive input parameters (i.e., Curve Number values, USLE P, slope and slope‐length, and so on). However, in some instances, SWAT‐simulated results are greatly affected by the watershed delineation and Digital Elevation Models (DEM) cell size. In this study, the SWAT ArcView GIS Patch II was developed for steep sloping watersheds, and its performance was evaluated for various threshold values and DEM cell size scenarios when delineating subwatersheds using the SWAT model. The SWAT ArcView GIS Patch II was developed using the ArcView GIS Avenue program and Spatial Analyst libraries. The SWAT ArcView GIS Patch II improves upon the SWAT ArcView GIS Patch I because it reflects the topographic factor in calculating the field slope‐length of Hydrologic Response Units in the SWAT model. The simulated sediment value for 321 subwatersheds (watershed delineation threshold value of 25 ha) is greater than that for 43 subwatersheds (watershed delineation threshold value of 200 ha) by 201% without applying the SWAT ArcView GIS Patch II. However, when the SWAT ArcView GIS Patch II was applied, the difference in simulated sediment yield decreases for the same scenario (i.e., difference in simulated sediment with 321 subwatersheds and 43 subwatersheds) was 12%. The simulated sediment value for DEM cell size of 50 m is greater than that for DEM cell size of 10 m by 19.8% without the SWAT ArcView GIS Patch II. However, the difference becomes smaller (3.4% difference) between 50 and 10 m with the SWAT ArcView GIS Patch II for the DEM scenarios. As shown in this study, the SWAT ArcView GIS Patch II can reduce differences in simulated sediment values for various watershed delineation and DEM cell size scenarios. Without the SWAT ArcView GIS Patch II, variations in the SWAT‐simulated results using various watershed delineation and DEM cell size scenarios could be greater than those from input parameter calibration. Thus, the results obtained in this study show that the SWAT ArcView GIS Patch II should be used when simulating hydrology and sediment yield for steep sloping watersheds (especially if average slope of the subwatershed is >25%) for more accurate simulation of hydrology and sediment using the SWAT model. The SWAT ArcView GIS Patch II is available at http://www.EnvSys.co.kr/~swat for free download.  相似文献   

8.
ABSTRACT: Bathymetric and sedimentation surveys were conducted using a dual frequency (28/200 kHz) echo sounder system in two reservoirs (Lee Creek Reservoir and Lake Shepherd Springs) in the Ozark Plateau of northwestern Arkansas. Echo sounder survey data were merged within geographic information system (GIS) software to provide detailed visualization and analyses of current depths, pre‐impoundment topography, distribution, thickness, and volume estimates of lacustrine sediment, time averaged sediment accumulation rates, long term average annual sediment flux, and water storage capacity. Calculated long term average sediment accumulation rates were used to model sediment infilling and projected lifetimes of each reservoir. Results from echo sounder surveys and GIS analyses suggest that the Lee Creek Reservoir has a projected lifetime of approximately 500 years compared to a projected lifetime for Lake Shepherd Springs of approximately 3,000 years. Estimated differences in projected lifetimes of these reservoirs reflected differences in initial reservoir volume and long term average annual sediment flux from the respective watersheds related to watershed area, physiography, land cover, and land use. The universal soil loss equation (USLE) model generated sediment fluxes an order of magnitude larger from the watersheds of both reservoirs compared to the geophysical data estimates. This study demonstrated the utility of merging geophysical survey (echo sounder) data within a GIS as an aid to understanding patterns of reservoir sedimentation. These data and analyses also provide a baseline relevant to understanding sedimentation processes and are necessary for development of long term management plans for these reservoirs and their watersheds.  相似文献   

9.
ABSTRACT A rill-interrill erosion model was applied to a mined and reclaimed area. Soil loss from the interrill areas was estimated by the Universal Soil Loss Equation (USLE). The model considers the fate and ultimate disposition of the sediment from interrill areas along with the fate and destination of soil materials detached by the rill flow. The net sediment loss was predicted by comparing, for a given flow, the amounts of eroded soil to rill transport capacity. When applied to a selected stripmined and reclaimed site the model displayed the location of contributing areas and the amount of erosion and deposition. The predicted areal distribution of erosion and deposition was compared to measured data. Agreement between the predicted and measured values was within 25 percent.  相似文献   

10.
User-oriented criteria for the evaluation of physically based management models are presented. These criteria emphasize the utility rather than the elegance of the model. The standards are then applied to efforts at predicting non-point pollutant loadings. In particular a critical review of sediment pollution is used as the basis for the evaluation of sediment yield models as management tools. A wide range of sediment yield models are rated and recommendations for their use are made.  相似文献   

11.
/ Various types of recreational traffic impact hiking trails uniquely and cause different levels of trail degradation; however, trail head restrictions are applied similarly across all types of packstock. The purpose of this study was to assess the relative physical impact of hikers, llamas, and horses on recreational trails. Horse, llama, and hiker traffic were applied to 56 separate plots on an existing trail at Lubrecht Experimental Forest in western Montana. The traffic was applied to plots at intensities of 250 and 1000 passes along with a no-traffic control under both prewetted and dry trail conditions. Soil erosion potential was assessed by sediment yield and runoff (using a Meeuwig type rainfall simulator), changes in soil bulk density, and changes in soil surface roughness. Soil moisture, slope, and rainfall intensity were recorded as independent variables in order to evaluate the extent that they were held constant by the experimental design. Horse traffic consistently made more sediment available for erosion from trails than llama, hiker, or no traffic when analyzed across wet and dry trail plots and high and low intensity traffic plots. Although total runoff was not significantly affected by trail user, wet trail traffic caused significantly greater runoff than dry trail traffic. Llama traffic caused a significant increase in sediment yield compared to the control, but caused erosion yields not significantly different than hiker traffic. Trail traffic did not increase soil compaction on wet trails. Traffic applied to dry trail plots generally resulted in a significant decrease in soil bulk density compared to the control. Decreased soil bulk density was negatively correlated with increased sediment yield and appeared to result in increased trail roughness for horse traffic compared to hiker or llama traffic. Differences described here between llama and horse traffic indicate that trail managers may want to consider managing packstock llamas independent of horses.KEY WORDS: Recreational impacts; Sediment yield; Trail degradation  相似文献   

12.
An erosion-based land classification system for military installations   总被引:3,自引:0,他引:3  
The universal soil loss equation (USLE) has been integrated with a geographic information system known as the geographical resources analysis support system (GRASS) to create a land classification system for use by military trainers and land managers to minimize the environmental impacts of military training activities. The USLE provides an estimate of current average annual sheet and rill erosion based upon factors representing climate, soil erodibility, topography, cover, and conservation support practices. The erosion estimate is compared to erosion tolerance values to produce an expression of the current erosion status. An index of inherent site erodibility is also achieved through manipulation of the USLE. Based on published soil surveys, satellite imagery, and ground-truth vegetation transects, data layers are created within GRASS for each of the component factors of the USLE. Appropriate mathematical operations are performed with the data layers, and color-coded maps are produced that represent the erosion status and erodibility index for each 50-m × 50-m area of soil surface. These maps aid military trainers and land managers in scheduling appropriate kinds and intensities of military training activities.  相似文献   

13.
Abstract: Alluvial fans in southern California are continuously being developed for residential, industrial, commercial, and agricultural purposes. Development and alteration of alluvial fans often require consideration of mud and debris flows from burned mountain watersheds. Accurate prediction of sediment (hyper‐concentrated sediment or debris) yield is essential for the design, operation, and maintenance of debris basins to safeguard properly the general population. This paper presents results based on a statistical model and Artificial Neural Network (ANN) models. The models predict sediment yield caused by storms following wildfire events in burned mountainous watersheds. Both sediment yield prediction models have been developed for use in relatively small watersheds (50‐800 ha) in the greater Los Angeles area. The statistical model was developed using multiple regression analysis on sediment yield data collected from 1938 to 1983. Following the multiple regression analysis, a method for multi‐sequence sediment yield prediction under burned watershed conditions was developed. The statistical model was then calibrated based on 17 years of sediment yield, fire, and precipitation data collected between 1984 and 2000. The present study also evaluated ANN models created to predict the sediment yields. The training of the ANN models utilized single storm event data generated for the 17‐year period between 1984 and 2000 as the training input data. Training patterns and neural network architectures were varied to further study the ANN performance. Results from these models were compared with the available field data obtained from several debris basins within Los Angeles County. Both predictive models were then applied for hind‐casting the sediment prediction of several post 2000 events. Both the statistical and ANN models yield remarkably consistent results when compared with the measured field data. The results show that these models are very useful tools for predicting sediment yield sequences. The results can be used for scheduling cleanout operation of debris basins. It can be of great help in the planning of emergency response for burned areas to minimize the damage to properties and lives.  相似文献   

14.
ABSTRACT: A fundamental problem in protecting surface drinking water supplies is the identification of sites highly susceptible to soil erosion and other forms of nonpoint source (NPS) pollution. The New York City Department of Environmental Protection is trying to identify erodible sites as part of a program aimed at avoiding costly filtration. New York City's 2,000 square mile watershed system is well suited for analysis with geographic information systems (GIS); an increasingly important tool to determine the spatial distribution of sensitive NPS pollution areas. This study used a GIS to compare three land cover sources for input into the Modified Universal Soil Loss Equation (MUSLE), a model estimating soil loss from rangeland and forests, for a tributary watershed within New York City's water supply system. Sources included both conventional data (aerial photography) and Landsat data (MSS and TM images). Although land cover classifications varied significantly across these sources, location-specific and aggregate watershed predictions of the MUSLE were very similar. We conclude that using Landsat TM imagery with a hybrid classification algorithm provides a rapid, objective means of developing large area land cover databases for use in the MUSLE, thus presenting an attractive alternative to photo interpretation.  相似文献   

15.
ABSTRACT: A previous modeling study used the Generalized Watershed Loading Functions (GWLF) model to simulate stream‐flow, and nutrient and sediment loads to Cannonsville Reservoir from the West Branch Delaware River (WBDR). We made several model revisions, calibrated key parameters, and tested the original GWLF model and a revised GWLF model using more recent data. Model revisions included: addition of unsaturated leakage between unsaturated and saturated subsurface reservoirs; revised timing of sediment export; inclusion of urban sediments and dissolved nutrients; tracking of particulate nutrients from point sources; and revised timing of septic system loads. The revision of sediment yield timing resulted in significant improvements in monthly sediment and particulate phosphorus predictions as compared to the original model. Addition of unsaturated leakage improved hydrologic predictions during low flow months. The other model changes improve realism without adding significant model complexity or data requirements. Goodness of fit of revised model predictions versus stream measurements, as measured by the Nash‐Sutcliff coefficient of model efficiency, exceeded 0.8 for streamflow‐0.7 for sediment yield and dissolved nitrogen (N) and 0.6 for particulate and dissolved phosphorus (P). The revised GWLF model, with limited calibration, provides reasonable estimates of monthly streamflow, and nutrient and sediment loads in the Cannonsville watershed.  相似文献   

16.
Sediment and total phosphorus (TP) export vary through space and time. This study was conducted to determine the factors controlling sediment and TP export in two agricultural catchments situated in the Belgian Loess Belt. At the outlet of these catchments runoff discharge was continuously measured and suspended sediment samples were taken during rainfall events. Within the catchments vegetation type and cover, soil surface parameters, erosion features, sediment pathways, and rainfall characteristics were monitored. Total P content and sediment characteristics such as clay, organic carbon, and suspended sediment concentration were correlated. Total sediment and TP export differ significantly between the monitored catchments. Much of the difference is due to the occurrence of an extreme event in one catchment and the morphology and spatial organization of land use in the catchments. In one catchment, the direct connection between erosive areas and the catchment outlet by means of a road system contributed to a high sediment delivery ratio (SDR) at the outlet. In the other catchment, the presence of a wide valley in the center of the catchment caused sediment deposition. Vegetation also had an effect on sediment production and deposition. Thus, many factors control sediment and TP export from small agricultural catchments; some of these factors are related to the physical catchment characteristics such as morphology and landscape structure and are (semi)permanent, while others, such as vegetation cover and land use, are time dependent.  相似文献   

17.
Recent Changes of Sediment Yield in the Upper Yangtze, China   总被引:2,自引:0,他引:2  
/ Reservoir sedimentation is one of the many environmental problems associated with the Three Gorges Project in China. The rate and characteristics of sedimentation that directly affect the operating life of the reservoir are closely related to soil erosion and sediment transport dynamics in the upstream catchment and to the ability to manage the throughput of sediment-laden waters. The recent changes in sediment yield were examined using gauging data from 187 stations of varying sizes from less than 100 km2 to larger than 1,000,000 km2 in the Upper Yangtze basin between 1956 and 1987. Whereas many previous studies have concentrated on the trends in the main channel of the Yangtze, the distributed pattern of changes across the whole catchment is complex. Results from time series analysis indicate ten stations, mainly located in the Dadu and Wu tributaries (with a total incremental catchment area of 78,963 km2) have shown increasing trajectories of sediment yield, and six stations, located in the upper Jialing and Tuo tributaries (with a total incremental area of 27,816 km2) have experienced decreasing trajectories. By dividing the time series into three components, it is possible to map significant decadal changes in sediment yields that can be related to phases of deforestation and the construction of water conservancy projects. Most of the observed decreases in sediment yield are associated with large reservoir schemes on tributary rivers. The lack of evidence for increasing sediment input to the Three Gorges area masks a considerable variation in sediment conveyance and storage within the Upper Yangtze catchment.KEY WORDS: Sediment yield; Reservoir sedimentation; Three Gorges Project; Time series analysis; China  相似文献   

18.
ABSTRACT: Runoff and sediment yield were collected from 100 plots during simulated rainfalls (100 mm/hr for 15 minutes) at antecedent soil moisture conditions. A clustering technique was used to stratify the variability of a single data set within a sagebrush‐grass community into four groups based on vegetation life form and amount of cover. The four cluster groups were grass, grass/shrub, shrub, and forb/grass and were found to be significantly different in plant height, surface roughness, soil bulk density, and soil organic matter. Stepwise multiple regression analyses were performed on the single data set and each cluster group. Results for individual groups resulted in more robust predictive equations for runoff (r2= 0.65–0.73) and sediment yield (r2= 0.37–0.91) than for equations developed from the single data set (r2= 0.56 for runoff and r2= 0.27 for sediment yield). The standard errors of the cluster group regression equations were also improved in three of the four group equations for both runoff and sediment yield compared to the single data set. Runoff was found to be significantly less (p >0.01) in the forb/grass group compared with other vegetation cluster groups, but this was influenced by four plots that produced little or no runoff. Sediment yield was not found to be significantly different among any cluster groups. Discriminant analysis was then used to identify important variables and develop a model to classify plots into one of the four cluster groups. The discriminant model could be incorporated into rangeland hydrology and erosion models. The percentage cover of grasses, shrubs, litter, and bare ground effectively stratified about 12 percent of the variation observed in runoff and 26 percent of the variability for sediment yield as determined by r2.  相似文献   

19.
The impact on sediment pollution of environmentally sensitive harvesting of a 15 ha plot (20% of the catchment area) of mature coniferous plantation forest in the 0.89 km2 Afon Tanllwyth catchment, Plynlimon, was investigated for 12 months before harvesting began and a further 18 months after. The results revealed: (a) a steepening of the suspended sediment concentration vs. discharge rating curve resulting in a 39% increase in suspended sediment yield (as compared to the adjacent forested Hafren catchment) during the year in which the harvesting operations took place; (b) a statistically significant increase in main channel bank erosion rates, as compared with the nearby Afon Cyff; main channel banks are estimated to have contributed around 80% of the total catchment suspended sediment yield during the two year period (1995-1996), and (c) no significant change in bedload yields over the duration of the study, though a longer post-harvesting time series of bedload data will be required to properly assess the impact of the harvesting operation upon bedload yields. Forest management implications of these findings are discussed in detail with respect to the existing Forest and Water guidelines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号