首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: This paper details the increasing tendency to overdevelop lands adjacent to public reservoirs. The impact on water quality of the pollutant load carried in surface runoff from developed lands is described as well as the depreciation in recreational experience due to loss of scenic horizons. The case study, Spruce Run Reservoir in Clinton, New Jersey, included population and demand projections. Land speculation and proposed development are evaluated on a physical constraint basis. Areas of conflict are outlined and conflict resolutions proposed.  相似文献   

2.
ABSTRACT: Phosphorus loading tolerances of small lakes are analyzed by means of a statistical model of lake eutrophication based upon the work of Vollenweider and Dillon. Using a sample of 195 midwestern and eastern U. S. lakes, it was found that Vollenweider and Dillon's method of predicting the trophic status of relatively deep, slow-flushing lakes can be applied to shallower lakes with much shorter retention times. The statistical model used to replicate the results of Vollenweider and Dillon is stated in detail, for convenience of application to small lake water quality management problems. The model extends the Vollenweider and Dillon results by associating each alternative phosphorous loading with a probability that a given lake can achieve or maintain noneutrophis status. It is applicable to lakes for which only minimal data are available. The major policy conclusion is that the highly variable tolerance for phosphorus loading must be considered in legislating efficient effluent limitations. The paper concludes with a comparison to a recent contribution employing a similar approach.  相似文献   

3.
ABSTRACT: Sediments from the Pompton and Passaic Rivers at Two Bridges were analyzed for potentially available phosphorus fractions and total phosphorus (TP). Water samples from the same sites were analyzed for dissolved phosphorus, TP, suspended solids (SS), and volatile SS. Significant negative correlations between river TP concentrations and flow were observed. However, storm flows resulted in increases in TP and SS concentrations and flux (loadings). Most of the increase in river P loading at high flow was in the dissolved fraction, suggesting that the sediments may be a large source of dissolved P. Concentrations of potentially available P in the sediments ranged from 140 to 1310 times the TP concentration in the overlying water. According to a modified Vollenweider model, current P concentrations in the Pompton and Passaic Rivers will result in excessive P loading in the Wanaque Reservoir if even small volumes of river water are pumped to the reservoir through the recently completed Wanaque South pipeline. Reductions in sewage treatment plant effluent P concentrations alone will not produce sufficient decreases in river phosphorus concentrations to avoid this predicted overloading and eutrophication.  相似文献   

4.
ABSTRACT: Mass balance models have been common tools in lake quality management for some years. However, verification for use on reservoirs, especially in the Western United States, has been seriously lacking, In this study, such a verification is attempted using data from the U.S EPA National Eutrophication Survey. Several models from the literature are compared for accuracy in application to the western reservoir data. Model standard error and correlation between estimated and observed reservoir phosphorus concentrations are the Criteria used for comparison. Standard errors am further used to calculate uncertainty of trophic state classification based on estimated phosphorus concentration. The model proposed by Dillon and Rigler (1974) proved most accurate, with a correlation coefficient of 0.86 and standard error of 0.2, based on logarithmic transformed values. Deficiencies in the other models appear to & from coefficients fit to lake data and from inappropriate model formulation.  相似文献   

5.
The models available for simulating phosphorus dynamics and trophic state in impoundments vary widely. The simpler empirically derived phosphorus models tend to be appropriate for long-term, steady or near steady state analyses. The more complex ecosystem models, because of computational expense and the importance of input parameter uncertainty, are impractical for very long-term simulation and most applicable for time-variable water quality simulations generally of short to intermediate time frames. An improved model for time variable, long-term simulation of trophic state in reservoirs with fluctuating inflow and outflow rates and volume is needed. Such a model is developed in this paper representing the phosphorus cycle in two-layer (i.e., epilimnion and hypolimnion) reservoirs. The model is designed to simulate seasonally varying reservoir water quality and eutrophication potential by using the phosphorus state variable as the water quality indicator. Long-term simulations with fluctuating volumes and variable influent and effluent flow rates are feasible and practical. The model utility is demonstrated through application to a pumped storage reservoir characteristic of these conditions.  相似文献   

6.
ABSTRACT: Policy and management plans can be enhanced through effective communication between researchers and decision makers. Differences in understanding can come from differences in professional cultures. Scientists deal with facts, proof and incremental progress whereas the decision makers are often faced with perceptions, emotions and deadlines. A case study is presented illustrating the interaction between the political system and science on a water management issue. Irrigation projects in the western San Joaquin Valley of California lead to a situation requiring subsurface drainage and disposal of the drainage water. The original plan was to discharge the drainage water in the Suisun Bay east of the San Francisco Bay. Severe damage to birds associated with selenium in the water led to a reevaluation of irrigation and drainage management options. Federal and state agencies cooperated to establish a San Joaquin Valley Drainage Program (SJVDP) which was to develop plans for solving the problem. Discharge to the Bay was politically eliminated as an option for evaluation, an action criticized by a National Research Council Committee as not being scientifically based. The SJVDP published a Management Plan in 1990 which contained proposals viewed by the scientific community as not necessarily incorrect but not completely justified based on the scientific knowledge at the time. A segment of the Citizens Advisory Committee that was part of the SJVDP consisting of representatives from the interest groups viewed the Management Plan as a negotiated agreement between the environmental and agricultural interests. Presently, an Activity Plan exists, consisting of technical committees to evaluate the current technical and economic evaluation of the management options proposed in the Management Plan. This case study illustrates that factors other than scientific facts have bearing on decisions. Successful management plans must be technically sound, economically viable and socially acceptable. The scientific community needs to evaluate its role in the policy making arena and to focus research on questions of greatest value to decision makers, as well as to scientific peers.  相似文献   

7.
ABSTRACT: An export coefficient modeling approach was used to assess the influence of land use on phosphorus loading to a Southern Ontario stream. A model was constructed for the 1995–1996 water year and calibrated within ± 3 percent of the observed mean concentration of total phosphorus. It was found that runoff from urban areas contributed most to the loading of phosphorus to the stream. When the model was assessed by running it for the 1977–1978 water year, using water quality and land use data collected independently, agreement within ± 7 percent was obtained. The model was then used to forecast the impact of future urban development proposed for the watershed, in terms of phosphorus loading, and to evaluate the reduction in loading resulting from several urban best management practices (BMP). It was determined that phosphorus removal will have to be applied to all the urban runoff from the watershed to appreciably reduce stream phosphorus concentration. Of the BMP designs assessed, an infiltration pond system resulted in the greatest phosphorus load reduction, 50 percent from the 1995–1996 baseline.  相似文献   

8.
ABSTRACT: Spatial distributions of nitrogen and phosphorus in water were related to environmental setting as part of a regional water-quality assessment of the Central Nebraska Basins. The environmental settings (Sandhills, Loess Hills, Glaciated Area, and Platte Valley) were characterized by different concentrations of nitrogen and phosphorus in ground water and stream water. Statistically significant differences in nitrate concentrations in both ground-water and stream-water samples were related to regional distributions of cropland and rangeland. Nitrate concentrations were larger, especially in shallow ground water, in environmental settings dominated by cropland and associated fertilizer use than in settings dominated by rangeland. Similarly, total-nitrogen and nitrate concentrations were relatively large in selected streams draining primarily cropland. Comparative concentrations of phosphorus in stream water on the basis of environmental setting were similar to those of nitrogen, although the largest phosphorus concentrations probably relate to wastewater discharge into small streams. Nitrogen and phosphorus concentrations in much of the Platte River apparently reflected the quality of water entering the study unit from upstream and limited base-flow contributions from within the Platte Valley itself.  相似文献   

9.
ABSTRACT: Anthropogenic phosphorus loading, mainly from the Everglades Agricultural Area (EAA), is believed to be the primary cause of eutrophication in the Everglades. The state of Florida has adopted a plan for addressing Everglades eutrophication problems by reducing anthropogenic phosphorus loads through the implementation of Best Management Practices (BMPs) in agricultural watersheds and the construction of stormwater treatment areas (STAs). Optimizing the effectiveness of these STAs for reducing phosphorus concentrations from agricultural runoff is a critical component of the District's comprehensive Everglades protection effort. Therefore, the objective of this study was to develop a simple tool that can be used to estimate STAs’performance and evaluate management alternatives considered in the Everglades restoration efforts. The model was tested at two south Florida wetland sites and then was used to simulate several management alternatives and predict ecosystem responses to reduced external phosphorus (P) loadings. Good agreement between model predictions at the two wetland sites and actual observations indicated that the model can be used as a management tool to predict wetlands’response to reductions in external phosphorus load and long-term P levels in aquatic ecosystems. Model results showed that lowering P content of the Everglades Protection Area (EPA) depends on reducing P loads originating from EAA discharges, not from rainfall. Assuming no action is taken (e.g., no BMPs or STAs implemented), the steady state model predicted that the average concentration within the modeled area of the marsh would reach 20 μg L?1 within five years. With an 85 percent reduction in P loading, the steady-state model predicted that Water Conservation Area 2A (WCA-2A) P concentration will equilibrate at approximately 10 μ L?1, while elimination of all loadings is projected to further reduce marsh P to values less than 10 μg L?1.  相似文献   

10.
ABSTRACT: Export coefficients (kg/km2/yr) for dissolved ortho-phosphate (OP), total phosphorus (TP), total inorganic nitrogen (TIN), and total nitrogen (TN) were derived for watersheds in Wisconsin using data bases available for 17 basins from the U.S. Environmental Protection Agency — National Eutrophication Survey, U.S. Geological Survey, and the Wisconsin Department of Natural Resources. Three general land use categories, representative of most regions in Wisconsin, were established: forest, mixed, and agricultural. Data for the 17 basins indicated greater exports of OP. TP, TIN, and TN as the percentage of forest decreased and agriculture increased. These region-specific coefficients are compared to the values reported in the literature representing much broader areas of the U.S.  相似文献   

11.
ABSTRACT: Linear programming is the simplest of all the optimization techniques used in regional water quality management studies; but the technique can optimize only one goal. When there are multiple goals with the same or different priorities, goal programming is a useful decisionmaking tool. This paper illustrates the application of goal programming to a regional water quality management problem where the following two goals are considered: (1) minimize the total cost of waste treatment, and (2) maintain the water quality goals (dissolved oxygen) close to the minimum level stated in the stream standards.  相似文献   

12.
: The export of dissolved molybdate reactive phosphorus (DMRP) from 22 watersheds in the Duffin Creek drainage basin near Toronto Ontario was measured over a 25-month period. The annual average loss varied from 0.027 to 2.11 kg P/ha. Phosphorus levels in a number of watersheds were strongly influenced by effluent from a sewage treatment plant which contributed about 68 percent of the annual DMRP input to Duffin Creek. An analysis of 12 watersheds which did not contain major point pollution sources revealed that DMRP concentration and losses had a significant positive correlation with crop area and a strong negative association with forest, abandoned farm land, and area of sand + sandy loam soils. The causal relationships underlying these simple correlations are difficult to evaluate because of considerable multicollinearity between land use, soil, and topographic variables. Analysis of a mass balance for the downstream reaches of Duffin Creek indicated that there was considerable retention of phosphorus in the river channel particularly during summer low flows.  相似文献   

13.
ABSTRACT: Models for the prediction of chlorophyll a concentrations were developed and tested using data on 223 Florida lakes. A statistical analysis showed that the best model was log (Chl a) =?2.49 + 0.269 log (TP) + 1.06 log (TN) or log (Chl a) =?2.49 + 1.06 log (TN/TP) + 1.33 log (TP) where Chl a is the chlorophyll a concentration (mg m-3), TP is the total phosphorus concentration (mg m-3) and TN is the total nitrogen concentration (mg m-3). The model yields unbiased estimates of chlorophyll a concentrations over a wide range of lake types and has a 95 percent confidence interval of 29–319 percent of the calculated chlorophyll a concentrations. Other models, especially the published Dillon-Rigler and Jones-Bachmann phosphorus-chlorophyll models, are less precise when applied to Florida lakes. The data support the hypothesis that nitrogen is an important limiting nutrient in hypereutrophic lakes.  相似文献   

14.
Regression relationships were developed between summer mean total phosphorus (P) concentrations in near-surface water and both chlorophyll a concentrations and Secchi disc transparency for Puget Sound region lakes. Total P concentrations in the lakes studied ranged from 7 to 66 μ/L. The relationship between total P and chlorophyll a, based on data from 69 lakes, explained 57 percent of the variance in chlorophyll a. Predicted chlorophyll a concentrations and 95 percent confidence intervals ranged from 1 +3-0.5μg/L for 7 μg/L P to about +35-10μ/L for 66 μ/L P. The relationship between total P and Secchi disc, based on data from 71 lakes, explained 53 percent of the variance in Secchi disc. Predicted Secchi disc transparencies and 95 percent confidence intervals ranged from 5.5 +5.5-3.0 m for 7 μ/L P to 1.4 +1.5-0.7 m for 66 μ/L P.  相似文献   

15.
ABSTRACT: A simple, black-box lake model was developed for phosphorus, using nonlinear regression analysis on a data base of north temperate lakes. The uncertainty associated with the model was then combined with the parameter uncertainty and the independent variable uncertainty to provide an estimate of the confidence limits associated with a predicted value. The prediction uncertainty is often neglected, yet it is an important measure of the usefulness of a model. Prediction uncertainty reflects the modeler's confidence in the model, and it should be used by a decision maker as a weight indicating the value of the model prediction. A procedure is outlined that combined lake modeling and uncertainty analysis for use in lake quality assessment and lake management. An example is provided illustrating the use of this procedure in nutrient budget sampling design, data analysis, and the evaluation of lake management strategies for a 208 program in New Hampshire.  相似文献   

16.
ABSTRACT: Existing land use data were used to estimate nonpoint source phosphorus loads to Lake Champlain (Vermont/New York/Quebec) in a loading function model that combined P concentration coefficients with regional hydrologic data. The estimates were verified against monitored loading data, then used to assess the relative magnitudes of contributions from major land uses and regions of the Lake Champlain Basin. The Basin is comprised of 62 percent forest, 28 percent agricultural land, 3 percent urban land, and 7 percent water. The best-fit model estimated an annual total P load of 457 mt/year, which did not differ significantly from the 458 metric tons/year measured for an average hydrologic year, and accurately predicted loads from major tributaries. Agriculture contributes 66 percent of the annual nonpoint source P load to Lake Champlain; urban and forest land contribute 18 percent and 16 percent, respectively. Because agricultural land contributes most nonpoint source P to Lake Champlain, load reduction effort must deal with agricultural sources. However, because the urban 3 percent of the basin contributes 18 percent of the estimated load, high load reduction efficiencies might be achieved by addressing urban sources. This assessment clearly demonstrated the relationship between land use and P loads in the Lake Champlain Basin, a prerequisite for policy-makers to endorse a P management strategy requiring changes in land use and management.  相似文献   

17.
ABSTRACT: Although several sophisticated nonpoint pollution models exist, few are available that are easy to use, cover a variety of conditions, and integrate a wide range of information to allow managers and planners to assess different control strategies. Here, a straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.  相似文献   

18.
ABSTRACT: Surface water in the Long Creek watershed, located in western Piedmont region of North Carolina, was monitored from 1993 to 2001. The 8,190 ha watershed has undergone considerable land use and management changes during this period. Land use surveys have documented a 60 percent decrease in cropland area and a more than 200 percent increase in areas being developed into new homes. In addition, more than 200 conservation practices have been applied to the cropland and other agricultural land that remains in production. The water quality of Long Creek was monitored by collecting grab samples at four sites along Long Creek and continuously monitoring discharge at one site. The monitoring has documented a 70 percent reduction in median total phosphorus (TP) concentrations, with little reductions in nitrate and total Kjel‐dahl nitrogen, or suspended sediment levels. Fecal coliform (FC) and streptococci (FS) levels declined significantly downstream as compared to upstream during the last four years of monitoring. This decrease was attributed to the implementation of waste management practices and livestock exclusion fencing on three dairy operations in the watershed. Annual rainfall and discharge increased steadily until peaking in the third year of the monitoring period and varied while generally decreasing during the last four years of the project. An array of observation, pollutant concentration, and hydrologic data provide considerable evidence to suggest that the implementation of BMPs in the watershed have significantly reduced phosphorus and bacteria levels in Long Creek.  相似文献   

19.
ABSTRACT: A UNIX-based windows application was developed to integrate a phosphorus transport model with the Geographic Resources Analysis Support System (GRASS). The system prioritizes potential phosphorus loading from fields or cells in a watershed and can evaluate the effects of alternate management practices on phosphorus yield. The model simulates phosphorus loading by using a daily mass balance on a unit-area basis and incorporates the effects from rainfall, topography, soil properties, fertilizer and animal waste application, and management. Model predictions include dissolved and sediment-bound phosphorus yield, runoff volume, and sediment yield. Within the integrated GRASS-modeling system, the user can obtain model input data, execute the model using various options, rank model input and out. put data, and display them as GRASS-based maps or data tables. All functions are menu driven, developed using C language and X-window tools to run on a SUN workstation platform. The system provides a powerful and efficient tool for prioritizing phosphorus loading from nonpoint sources.  相似文献   

20.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号