首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
ABSTRACT: Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium‐sodium‐chloride‐dominated type in the recharge area to calcium‐bicarbonate‐dominated type in the confined portion of the aquifer. Ground water in the recharge area was under saturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite‐plus‐nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.  相似文献   

2.
Lead arsenate pesticides were widely used in apple orchards from 1925 to 1955. Soils from historic orchards in four counties in Virginia and West Virginia contained elevated concentrations of As and Pb, consistent with an arsenical pesticide source. Arsenic concentrations in approximately 50% of the orchard site soils and approximately 1% of reference site soils exceed the USEPA Preliminary Remediation Goal (PRG) screening guideline of 22 mg kg(-1) for As in residential soil, defined on the basis of combined chronic exposure risk. Approximately 5% of orchard site soils exceed the USEPA PRG for Pb of 400 mg kg(-1) in residential soil; no reference site soils sampled exceed this value. A variety of statistical methods were used to characterize the occurrence, distribution, and dispersion of arsenical pesticide residues in soils, stream sediments, and ground waters relative to landscape features and likely background conditions. Concentrations of Zn, Pb, and Cu were most strongly associated with high developed land density and population density, whereas elevated concentrations of As were weakly correlated with high orchard density, consistent with a pesticide residue source. Arsenic concentrations in ground water wells in the region are generally <0.005 mg L(-1). There was no spatial association between As concentrations in ground water and proximity to orchards. Arsenic had limited mobility into ground water from surface soils contaminated with arsenical pesticide residues at concentrations typically found in orchards.  相似文献   

3.
The flow rate of the Lower Jordan River has changed dramatically during the second half of the 20th century. The diversion of its major natural sources reduced its flow rate and led to drying events during the drought years of 2000 and 2001. Under these conditions of low flow rates, the potential influence of external sources on the river discharge and chemical composition became significant. Our measurements show that the concentrations of chloride, calcium, and sodium in the river water decrease along the first 20-km section, while sulfate and magnesium concentrations increase. These variations were addressed by a recent geochemical study, suggesting that ground water inflow plays a major role. To further examine the role of ground water, we applied mass-balance calculations, using detailed flow rate measurements, water samplings, and chemical analyses along the northern (upstream) part of the river. Our flow-rate measurements showed that the river base-flow during 2000 and 2001 was 500 to 1100 L s(-1), which is about 40 times lower than the historical flow rates. Our measurements and calculations indicate that ground water input was 20 to 80% of the river water flow, and 20 to 50% of its solute mass flow. This study independently identifies the composition of possible end-members. These end-members contain high sulfate concentration and have similar chemical characteristics as were found in agricultural drains and in the "saline" Yarmouk River. Future regional development plans that include the river flow rate and chemistry should consider the interactions between the river and its shallow ground water system.  相似文献   

4.
ABSTRACT: Water samples collected from 14 underground coal mines in Colorado were analyzed for major dissolved constituents. The data indicate the water quality of 13 of the samples has developed by the interaction of calcite saturated ground water with sodium rich marine shales. Those samples that displayed evidence of being most completely reacted were composed almost entirely of sodium and bicarbonate ions and had a calcium to sodium activity ratio of 0.16, similar to that of seawater. The one sample that was not saturated with respect to calcite was saturated with respect to gypsum. The dissolved solids concentration attainable by dissolution of gypsum is much less than that attainable by the calcite marine shale equilibration, or approximately 2,500 milligrams per liter. By considering the maximum predicted concentrations of dissolved solids in relation to promulgated water quality criteria, it is possible to predict the hazards of reuse of this mine drainage. The primary problems would be damage or destruction of crops if the drainage water was used for irrigation. In addition, some samples contained concentrations of chloride and sulfate in excess of recommended standards for public water supplies.  相似文献   

5.
ABSTRACT: Water quality indicators of two agriculturally impacted karst areas in southeastern West Virginia were studied to determine the water quality effects of grazing agriculture and water quality trends following initiation of water quality improvement programs. Both areas are tributaries of the Greenbrier River and received funding for best management practices under the President's Initiative for Water Quality and then under the Environmental Quality Incentives Program (EQIP). After 11 years of study there was little evidence to suggest that water quality improved in one area. Three and a half years of study in the other area showed little evidence of consistent water quality improvement under EQIP. Lack of consistent water quality improvement at the catchment scale does not imply that the voluntary programs were failures. Increased livestock numbers as a result of successful changes in forage management practices may have overridden water quality improvements achieved through best management practices. Practices that target well defined contributing areas significantly impacting aquifer water quality might be one way to improve water quality at catchment scales in karst basins. For example, a significant decrease in fecal coliform concentrations was observed in subterranean drainage from one targeted sinkhole after dairy cattle were permanently excluded from the sinkhole.  相似文献   

6.
ABSTRACT: Two water‐quality studies were done on the outskirts of the Detroit metropolitan area to determine how recent residential development has affected ground‐water quality. Pairs of monitor and domestic wells were sampled in areas where residential land use overlies glacial outwash deposits. Young, shallow waters had significantly higher median concentrations of nitrate, chloride, and dissolved solids than older, deeper waters. Analysis of chloride/bromide ratios indicates that elevated salinities are due to human activities rather than natural factors, such as upward migration of brine. Trace concentrations of volatile organic compounds were detected in samples from 97 percent of the monitor wells. Pesticides were detected infrequently even though they are routinely applied to lawns and roadways in the study area. The greatest influence on ground‐water quality appears to be from septic‐system effluent (domestic sewage, household solvents, water‐softener backwash) and infiltration of storm‐water runoff from paved surfaces (road salt, fuel residue). No health‐related drinking‐water standards were exceeded in samples from domestic wells. However, the effects of human activities are apparent in 76 percent of young waters, and at depths far below 25 feet, which is the current minimum well‐depth requirement.  相似文献   

7.
In this paper, a field study was carried out to examine the effect of flue gas desulfurization (FGD) by-product on water quality at an underground coal mine in central-eastern Ohio. Flue gas desulfurizalion by-product was injected into the down-dip portions of the Robert-Dawson mine in an attempt to seal major seeps exiting the mine and to coat exposed pyritic surfaces. Immediately following grout injection, significant increases in acidity, iron, aluminum, sulfur, and calcium were observed at most surface and ground water locations near where grouting was carried out. Following this initial flush of elements, concentrations of most constituents have decreased to near pre-grouting levels. Data from the site and geochemical modeling suggest that an increase in water level or rerouting of drainage flow resulted in the dissolution of iron and aluminum sulfate salts and ferrihydrite. Dissolution of the FGD grout material resulted in increases in calcium and sulfate concentrations in the drainage waters. Water within the mine voids was saturated with respect to calcium sulfate and gypsum immediately following grout injection. Based on an analysis of core samples obtained from the site, acid mine drainage (AMD) was in contact with at least some portions of the grout and this resulted in grout weathering. Subsequent transport of calcium and sulfate to the underclay, perhaps by fracture flow, has resulted in the deposition of gypsum and calcium sulfate solids.  相似文献   

8.
ABSTRACT: The ground water quality of a shallow unconfined aquifer was monitored before and after implementation of a border strip irrigation scheme, by taking monthly samples from an array of 13 shallow wells. Two 30 m deep wells were sampled to obtain vertical concentration profiles. Marked vertical, temporal, and spatial variabilities were recorded. The monthly data were analyzed for step and linear trends using nonparametric tests that were adjusted for the effects of serial correlation. Average nitrate concentrations increased in the preirrigation period and decreased after irrigation began. This was attributed to wetter years in 1978–1979 than in 1976–1977 which increased leaching, and to disturbance of the topsoil during land contouring before irrigation, followed by excessive drainage after irrigation. Few significant trends were recorded for other determinants, possibly because of shorter data records. Nitrate, sulphate, and potassium concentrations decreased with depth, whereas sodium, calcium, bicarbonate, and chloride concentrations increased. These trends allowed an estimation to be made of the depth of ground water affected by percolating drainage. This depth increased during the irrigation season and after periods of winter recharge. Furthermore, an overall increase in the depth of drainage-affected ground water occurred with time, which paralleled the development of the irrigation scheme.  相似文献   

9.
Coal companies are reluctant to include wetland development in reclamation plans partly due to a lack of information on the resulting characteristics of such sites. It is easier for coal companies to recreate terrestrial habitats than to attempt experimental methods and possibly face significant regulatory disapproval. Therefore, we studied a young (10 years) wetland on a reclaimed surface coal mine in southern Illinois so as to ascertain soil and water characteristics such that the site might serve as a model for wetland development on surface mines. Water pH was not measured because of equipment problems, but evidence (plant life, fish, herpetofauna) suggests suitable pH levels. Other water parameters (conductivity, salinity, alkalinity, chloride, copper, total hardness, iron, manganese, nitrate, nitrite, phosphate, and sulfate) were measured, and only copper was seen in potentially high concentrations (but with no obvious toxic effects). Soil variables measured included pH, nitrate, nitrite, ammonia, potassium, calcium, magnesium, manganese, aluminum, iron, sulfate, chloride, and percent organic matter. Soils were slightly alkaline and most parameters fell within levels reported for other studies on both natural and manmade wetlands. Aluminum was high, but this might be indicative more of large amounts complexed with soils and therefore unavailable, than amounts actually accessible to plants. Organic matter was moderate, somewhat surprising given the age of the system.  相似文献   

10.
《环境质量管理》2018,27(4):79-86
The Seymour aquifer consists of unconfined outcrops of sand and gravel in a semiarid, agricultural region of north‐central Texas in the United States of America. Most water samples collected from the aquifer in 2015 had nitrate concentrations above the drinking water standard of 44.3 milligrams per liter (mg/L). Generally, areas with high nitrate concentration in 2010 remained high in 2015, although the median dropped by 3.9 mg/L. The largest decreases in nitrate concentration—up to 97 mg/L (60%)—were observed in wells with depths less than the median of 13.1 meters (m). However, other wells, including depths above and below the median, showed increases in nitrate concentration of up to 40 mg/L (42%). In 2015, chloride concentrations in six wells exceeded the secondary contaminant level of 250 mg/L, and one well had a chloride concentration of 1,810 mg/L. Past and ongoing agricultural practices, including cultivation of native grassland, application of fertilizer, and irrigation with nitrate‐contaminated groundwater, help sustain overall high nitrate concentrations within the aquifer. Local conditions governing nitrogen inputs and dilution result in significant improvement or worsening of the nitrate problem over relatively short timeframes. The pumping of groundwater from the aquifer may facilitate mixing with groundwater of increased salinity that has been affected by the dissolution of evaporites in underlying Permian bedrock.  相似文献   

11.
ABSTRACT: Ground water, of relatively good quality, occurs though-out southeastern Montana's Tongue River basin and can be procured cheaply and easily. The widespread occurrence of springs and the de velopment of shallow aquifers enables settlement to occur away from perennial streams and allows for extensive grazing of the range. Ground water m the Tongue River basin occurs in five aquifers ranging from shallow alluvium to the extremely deep Madison Group. Coal beds of the Fort Union Formation contain significant quantities of good quality ground water. Extensive strip mining of these coal beds lowers the water level of nearby wells and causes springs to dry up. There are over 1,700 permits for ground water appropriation in the Tongue River Valley. Development of ground water has been especially important to ranchers in that it enabled most of the basin to be used for grazing. Ground water also provides an important source of water for domestic use. Ground water quality varies considerably in the basin depending upon locality and aquifer. Generally, ground water is characterized by high sodium, sulfate, and bicarbonate levels. Strip mining significantly alters ground water quality, primarily by leachates entering from the mine spoil.  相似文献   

12.
ABSTRACT: An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (A1), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent.  相似文献   

13.
ABSTRACT: The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are located on karst terrain. Nitrate concentrations were measured in several karst springs in Southeastern West Virginia in order to determine the impact of animal agriculture on nitrate pollution of the karst ground water system. Karst basins with 79, 51, 16, and 0 percent agriculture had mean nitrate concentrations of 15.8, 12.2, 2.7, and 0.4 mg/l, respectively. A strong linear relationship between nitrate concentration and percent agricultural land was shown. Median nitrate concentration increased about 0.19 mg l-1 per percent increase in agricultural land. Weather patterns were also found to significantly affect the median nitrate concentrations and the temporal variability of those concentrations. Lower nitrate concentrations and lower temporal variability were observed during a severe drought period. It was concluded that agriculture was significantly affecting nitrate concentrations in the karst aquifer. Best management practices may be one way to protect the ground water resource.  相似文献   

14.
The duration of acid mine drainage flowing out of underground mines is important in the design of watershed restoration and abandoned mine land reclamation projects. Past studies have reported that acid water flows from underground mines for hundreds of years with little change, while others state that poor drainage quality may last only 20 to 40 years. More than 150 above-drainage (those not flooded after abandonment) underground mine discharges from Pittsburgh and Upper Freeport coal seams were located and sampled during 1968 in northern West Virginia, and we revisited 44 of those sites in 1999-2000 and measured water flow, pH, acidity, Fe, sulfate, and conductivity. We found no significant difference in flows between 1968 and 1999-2000. Therefore, we felt the water quality data could be compared and the data represented real changes in pollutant concentrations. There were significant water quality differences between year and coal seam, but no effect of disturbance. While pH was not significantly improved, average total acidity declined 79% between 1968 and 1999-2000 in Pittsburgh mines (from 66.8 to 14 mmol H+ L(-1)) and 56% in Upper Freeport mines (from 23.8 to 10.4 mmol H+ L(-1)). Iron decreased an average of about 80% across all sites (from an average of 400 to 72 mg L(-1)), while sulfate decreased between 50 and 75%. Pittsburgh seam discharge water was much worse in 1968 than Upper Freeport seam water. Twenty of our 44 sites had water quality information in 1980, which served as a midpoint to assess the slope of the decline in acidity and metal concentrations. Five of 20 sites (25%) showed an apparent exponential rate of decline in acidity and iron, while 10 of 20 sites (50%) showed a more linear decline. Drainage from five Upper Freeport sites increased in acidity and iron. While it is clear that surface mines and below-drainage underground mines improve in discharge quality relatively rapidly (20-40 years), above-drainage underground mines are not as easily predicted. In total, the drainage from 34 out of 44 (77%) above-drainage underground mines showed significant improvement in acidity over time, some exponentially and some linearly. Ten discharges showed no improvement and three of these got much worse.  相似文献   

15.
Abstract: Analyses of major elements, environmental isotope ratios (δ18O, δ2H), and PHREEQC inverse modeling investigations were conducted to understand the processes controlling the salinization of groundwater within the Datong Basin. The hydrochemical results showed that groundwater with high total dissolved solid (TDS) concentrations was dominated by sodium bicarbonate (Na‐HCO3), sodium chlorite (Na‐Cl), and sodium sulfate (Na‐SO4) type waters, whereas low‐TDS groundwater from near mountain areas was dominated by calcium bicarbonate (Ca‐HCO3) and magnesium bicarbonate (Mg‐HCO3) type waters. The characterization of the major components of groundwater and PHREEQC inverse modeling indicated that the aluminosilicate hydrolysis, cation exchange, and dissolution of evaporites (halite, mirabilite, and gypsum) governed the salinization of groundwater within the Datong Basin. The environmental isotope (δ18O, δ2H) and Cl?/Br? ratios revealed the impact of fast vertical recharge by irrigation returns and salt‐flushing water on the groundwater salinization. According to the analyses of major hydrochemical components and PHREEQC inverse modeling, evaporite dissolution associated with irrigation and salt‐flushing practice was probably the dominant controlling factor for the groundwater salinization, especially in the central part of the basin. Therefore, groundwater pumping for irrigation and salt‐flushing should be controlled to protect groundwater quality in this area.  相似文献   

16.
An ensemble of thirty physico-chemical characteristics was used to assess the quality of well waters in four urban centers in southern Nigeria: Lagos, Benin City, Warri, and Ekpoma. The characteristics investigated include pH; color; turbidity; salinity; electrical conductivity, EC; total dissolved solids, TDS; total suspended solids, TSS; dissolved oxygen, DO; total hydrocarbon, THC; biochemical oxygen demand, BOD; chemical oxygen demand, COD; and nitrate, nitrite, ammonia, sulfate, and phosphate concentrations. Also monitored were the concentrations of sodium, calcium, potassium, magnesium, chloride, bicarbonate, iron, lead, copper, manganese, zinc, chromium, nickel, and cadmium. The results obtained were compared with World Health Organization, WHO, and Nigerian Federal Ministry of Environment, FME, drinking water standards. The results show that with the well water obtained from Lagos, turbidity, 11.80 NTU; pH, 5.68; EC, 1065.55 μS/cm; TDS, 539.00 mg/L; concentrations of iron, 1.83 mg/L; manganese, 0.14 mg/L; and lead, 1.35 mg/L did not meet the WHO standards. In Warri, pH, 5.19; concentrations of lead, 1.35 mg/L; and chromium, 0.10 mg/L in the well water were above the WHO desirable limits. The results also indicated that the well water from Benin City contained concentrations of chromium, 0.18 mg/L; and lead, 0.20 mg/L that exceeded the recommended WHO limits. In Ekpoma, the pH, 6.00; concentrations of chromium, 0.15 mg/L; and lead, 0.44 mg/L were higher than the desirable limits of WHO. Generally, the assessments revealed that the waters were good and fit for drinking and other domestic application without serious threat to public health.  相似文献   

17.
ABSTRACT. A hybrid computer program was developed to predict the water and salt outflow from a river basin in which irrigation is the major user of water. The model combines a chemical model which predicts the quality of water percolated through a soil profile with a general hydrologic model. The chemical model considers the reactions that occur in the soil, including the exchange of calcium, magnesium, and sodium cations on the soil complex, and the dissolution and precipitation of gypsum and lime. The chemical composition of the outflow is a function of these chemical processes within the soil, plus the blending of undiverted inflows, evaporation, transpiration, and the mixing of sub surface return flows with groundwater. The six common ions of western waters, namely calcium (Ca++), magnesium (Mg++), sodium (Na+), sulfate (SO4=), chloride (Cl?), and bicarbonate (HCO3?) were considered in the study. Total dissolved solids (TDS) outflow was obtained by adding the individual ions. The overall model operates on a monthly time unit. The model was tested on a portion of the Little Bear River basin in northern Utah. The model successfully simulated measured outflows of water and each of the six ions for a 24-month period. The usefulness of the model was demonstrated by a management study of the prototype system. For example, preliminary results indicated that the available water supply could be used to irrigate additional land without unduly increasing the salt outflow from the basin. With minor adjustments the model can be applied to other hydrologic areas.  相似文献   

18.
ABSTRACT: A survey of 34 open hand dug wells was performed in the Senegal River basin of West Africa. Nitrate concentrations were determined on the well water samples over a six-month period. With the exception of two wells, the wells indicated varying levels of nitrate contamination. The range of concentrations was 0.10 to 880 mg/I as nitrate. These data when compared to physical characteristics, land use, and age using a chi-square analysis did not suggest any strong association. The fact that these wells are open and in a semiarid climate may be of such importance that the previously considered factors are of minor relative importance. Contamination may be primarily the result of foreign matter entering the well mouth.  相似文献   

19.
ABSTRACT: Data from 54 well in central and eastern Kansas developed in unconsolidated deposits of Quaternary age indicate that nitrate concentrations are inversely related to the depth of the well screen opening below the water level in the well casing because this relationship was found to exist in an area of Nebraska and in a large area of Kansas, the relationship is generally valid over a wide geo- graphical area. In addition, the data indicate that the incidence of nitrate concentrations exceeding 45 milligrams per liter and nitrate concentrations, in general, are significantly lower in water from wells with screens deeper than 25 feet below the water table in unconfined aquifers or where screens are placed in deep confined aquifers. No concentrations of nitrate greater than 45 milligrams per liter were in obseved wells where screens were deeper than 60 feet below the casing water level. These findings suggest that general placement of well screens as far below the water table as possible in unconfined unconsolidated aquifers in Kansas. and possibly other areas of the Midwest, may be an effective measure in preventing undesirable nitrate concentrations in ground water supplies. particularly in areas where nitrate is a problem.  相似文献   

20.
The effects of water quality on brine discharged from oil and gas recovery operations are described for surface water and ground water in two small watersheds in eastern Kentucky. The brine, which had salinity that was often several times that of sea water, led to significantly higher concentrations of several minerals in surface water, particularly in the first and second order streams. Concentractions as high as 50,000 mg/I for sodium and 64,000 mg/I for chloride were measured in streams. The. differences in chemical concentrations for various chemicals over the period of the study were ascribed to temporal variability, particularly due to differences between wet and dry seasons, and to spatial variability, particularly due to dilution and other chemical decay processes. Chemical decay coefficients for sodium and chloride were developed as a function of watershed area for possible application to similar watersheds. There was some evidence that the brine was influencing the Licking River, the major stream that drains the eastern part of Kentucky.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号