首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
The conventional “ pump-and-treat“ technology for subsurface remediation of groundwater contaminated with volatile organic compounds(VOCs) such as 1,1, l-trichloroethane(TCA), a common chlorinated organic solvent, has hmitation of prohibitively long treatment time due to extremely low water solubility of the VOCs. Surfactant-based soil remediation has emerged as the effective technology that substantially reduces the treatment time. In order to make the whole process economical, the surfactant used in soil washing has to be recovered and reused. This study examined the recovery of anionic surfactant, sodium dodecyl sulfate( SDS), from soil remediation fluids containing TCA, using a bench-scale membrane pervaporation unit. The effects of high TCA concentration, surfactant dosage, and flow rate on permeationflux and selectivity( a value) of the process were evaluated. In general, higher surfactant concentration yielded lower TCA flux and constantwater flux, resulting in declining a values; higher flow rate of TCA feed stream results in higher VOC flux and selectivity, an indication of the effect of concentration polarization; higher TCA feed concentration produces higher TCA permeation across the membrane, however, the seletlvity was virtually unchanged unless the total TCA concentratinn exceeded 2000 ppm.  相似文献   

2.
A co-current flow rotating packed bed was applied to remove volatile organic compounds(VOCs) by sodium hypochlorite(Na Cl O) and surfactant(sodium dodecyl benzene sulfonate,SDBS) from air stream. Xylene was used as a model VOC herein. The effect of p H,concentration of Na Cl O and SDBS solution, liquid flow rate, gas flow rate and rotational speed on xylene removal efficiency and overall mass transfer coefficient(KGa) were discussed. Then, a correlation for KGa of the co-current rotating packed bed was proposed by fitting the experimental data of KGa and independent variables of liquid/gas ratio,rotational speed, p H, Na Cl O concentration and treatment time, which was in good agreement with the experimental data(the deviation ≤± 30%).  相似文献   

3.
Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model developed in this study showed a good agreement with experimental results, validating the robustness of the model. This model demonstrated, as expected, that the permeate flux decreased along the membrane channel due to decreasing osmotic pressure differential across the FO membrane. A series of fouling experiments were conducted under the draw and feed solutions at various recoveries simulated by the model. The simulated fouling experiments revealed that higher organic (alginate) fouling and thus more flux decline were observed at the last section of a membrane channel, as foulants in feed solution became more concentrated. Furthermore, the water flux in FO process declined more severely as the recovery increased due to more foulants transported to membrane surface with elevated solute concentrations at higher recovery, which created favorable solution environments for organic adsorption. The fouling reversibility also decreased at the last section of the membrane channel, suggesting that fouling distribution on FO membrane along the module should be carefully examined to improve overall cleaning efficiency. Lastly, it was found that such fouling distribution observed with co-current flow operation became less pronounced in counter- current flow operation of FO membrane process.  相似文献   

4.
Characteristics of toluene decomposition and formation of nitrogen oxide(NOx) by-products were investigated in a dielectric barrier discharge(DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide(Mn Ox), iron oxide(Fe Ox), cobalt oxide(Co Ox) and copper oxide(Cu O), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density(SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the Cu O catalyst showed the best performance in NOx suppression. The Mn Ox catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression.  相似文献   

5.
The removal of As(V) from synthetic water was studied using four different nanofiltration (NF) membranes (ESNA-1-K1, NF270, ESNA-1-LF, and HODRA-CORE). The influences of ion concentration, transmembrane pressure (TMP), and the presence of natural organic matter (humic acid, HA) on the arsenic removal efficiency and permeate flux were investigated. The arsenic rejection of ESNA- 1-LF was higher than those of the other membranes in all experiments (> 94%), and the HODRA-CORE membrane gave the lowest removal of arsenic (< 47%). An increase in the ion concentration in the feed solution and addition of HA decreased the arsenic rejection of the HODRA-CORE membrane. However, both increasing of the ion concentration and addition of HA made the rejection increased for the other membranes (ESNA-1-K1, NF270, and ESNA-1-LF). With increasing TMP, for all four NF membranes, increases in both arsenic rejection and permeate flux were observed. The permeate fluxes of the four NF membranes decreased to some extent after addition of HA to the solutions for operating time of 6 hr.  相似文献   

6.
The direct contact membrane distillation applied for fluoride removal from brackish groundwater was investigated.The self-prepared polyvinylidene fluoride membrane exhibited high rejection of inorganic salt solutes.The maximum permeate flux 35.6 kg/(m2 ·hr) was obtained with the feed solution at 80°C and the cold distillate water at 20°C.The feed concentration had no significant impact on the permeate flux and the rejection in fluoride.The precipitation of CaCO3 would clog the hollow fiber inlets and foul the membrane surface with increasing concentration factor when natural groundwater was used directly as the feed,which resulted in a rapid decline in the module efficiency.This phenomenon was diminished by acidification of the feed.The experimental results showed that the permeate flux and the quality of obtained distillate kept stable before concentration factor reached 5.0 with the acidified groundwater as feed.The membrane module efficiency began to decline gradually when the feed continued to be concentrated,which can be mainly attributed to the formation of CaF2 deposits on the membrane surface.In addition,a 300 hr continuous fluoride removal experiment of acidified groundwater was carried out with concentration factor at 4.0,the permeate flux kept stable and the permeate fluoride was not detected.  相似文献   

7.
Supercritical gasification for the treatment of o-cresol wastewater   总被引:3,自引:1,他引:2  
The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650℃ and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CFL and CO, among which the total molar percentage of H2 and CFL was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.  相似文献   

8.
Measurement of the SO_3 concentration in flue gas is important to estimate the acid dew point and to control corrosion of downstream equipment. SO_3 measurement is a difficult question since SO_3 is a highly reactive gas, and its concentration is generally two orders of magnitude lower than the SO_2 concentration. The SO_3 concentration can be measured online by the isopropanol absorption method; however, the reliability of the test results is relatively low. This work aims to find the error sources and to evaluate the extent of influence of each factor on the measurement results. The test results from a SO_3 analyzer showed that the measuring errors are mainly caused by the gas–liquid flow ratio, SO_2 oxidation, and the side reactions of SO_3. The error in the gas sampling rate is generally less than 13%. The isopropanol solution flow rate decreases 3% to 30% due to the volatilization of isopropanol, and accordingly, this will increase the apparent SO_3 concentration. The amount of SO_2 oxidation is linearly related to the SO_2 concentration. The side reactions of SO_3 reduce the selectivity of SO_4~(2-) to nearly 73%. As sampling temperature increases from180 to 300°C, the selectivity of SO_4~(2-) decreases from 73% to 50%. The presence of H2 O in the sample gas helps to reduce the measurement error by inhibiting the volatilization of the isopropanol and weakening side reactions. A formula was established to modify the displayed value, and the measurement error was reduced from 25%–54% to less than 15%.  相似文献   

9.
A biological aerated filter (BAF) was evaluated as a fixed-biofilm process to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern Taiwan. The components of VOC were identified to be toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, bromodichloromethane and isopropanol (IPA). The full-scale BAF was constructed of two separate reactors in series, respectively, using 10- and 15-cm diameter polypropylene balls as the packing materials and a successful preliminary bench-scale experiment was performed to feasibility. Experimental results show that the BAF removed over 90% chemical oxygen demand (COD) from the influent with (1188 605) mg/L of COD. A total organic loading of 2.76 kg biochemical oxygen demand (BOD)/(m3 packing d) was determined for the packed bed, in which the flow pattern approached that of a mixed flow. A limited VOC concentration of (0.97 0.29) ppmv (as methane) was emitted from the BAF system. Moreover, the emission rate of VOC was calculated using the proposed formula, based on an air-water mass equilibrium relationship, and compared to the simulated results obtained using the Water 9 model. Both estimation approaches of calculation and model simulation revealed that 0.1% IPA (0.0031–0.0037 kg/d) were aerated into a gaseous phase, and 30% to 40% (0.006–0.008 kg/d) of the toluene were aerated.  相似文献   

10.
Biodegradation of mixture of VOC's in a biofilter   总被引:6,自引:0,他引:6  
Volatile organic compounds(VOC‘s) in air have become major concern in recent years. Biodegradation of a mixture of ethanol and methanol vapor was evaluated in a laboratory biofilter with a bed of compost and polystyrene particles using an acclimated mixed culture. The continuous performance of the biofilter was studied with different proportion of ethanol and methanol at different initial concentration and flow rates. The result showed significant removal for both ethanol and methanol, which were composition dependent.The presence of either compound in the mixture inhibited the biodegradation of the other.  相似文献   

11.
研究了夏季杭州市主要类型道路(隧道、快速道路、主干道和支路)空气中挥发性有机物的污染特征,以及2010年11月—2011年7月间快速道路空气中VOC的季节变化规律.分析结果表明,杭州市道路空气中VOC浓度显著大于风景区内VOC浓度,隧道浓度最高(828.4μg·m-3),其它道路空气中VOC浓度随着车流量减少而降低.源解析结果发现道路空气中VOC的主要贡献者为机动车排放,但同时也受到溶剂挥发、煤或生物质燃烧的影响,风景区内VOC则受煤或生物质燃料燃烧的影响更大.快速道路空气中VOC浓度和反应活性由机动车排放、植物排放和气象条件共同决定,呈现夏〉秋〉冬〉春的季节变化特征.机动车排放的烯烃和芳香烃是道路空气中主导的活性VOC物种,说明机动车排放是杭州市大气反应活性的最大贡献者.此外,在夏、秋季节,植被排放的异戊二烯显著的增强了道路空气中VOC的反应活性.  相似文献   

12.
研究了热活化过硫酸钠技术氧化水溶液及泥浆系统中1,1,1-三氯乙烷(1,1,1-trichloroethane,TCA)的效果.考察了温度、溶液pH值、氯离子及碳酸氢根离子对水溶液中TCA降解过程的影响,并处理了实际TCA污染地下水.结果表明:TCA氧化降解过程符合准一级动力学反应方程,且温度越高TCA降解速率越大,50°C、过硫酸钠/TCA物质的量比=100/1时,TCA在2h内可完全降解;溶液pH值越高TCA去除效率越低,且碱性条件明显地抑制TCA降解;氯离子及碳酸氢根离子均会对反应起到抑制作用,其中碳酸氢根抑制作用强于氯离子;由于实际地下水水质较为复杂,TCA降解速率相对缓慢,7d后去除率达到90%以上.泥浆系统中TCA降解效率受土壤有机质含量影响较大,土壤去除有机质后降解速率明显加快.热活化过硫酸钠技术用于修复TCA污染地下水具有较大潜力,但实际应用过程中应充分考虑场地性质的影响.  相似文献   

13.
Volatile organic compounds (VOCs) are a kind of important precursors for ozone photochemical formation. In this study, VOCs were measured from November 5th, 2013 to January 6th, 2014 at the Second Jinshan Industrial Area, Shanghai, China. The results showed that the measured VOCs were dominated by alkanes (41.8%), followed by aromatics (20.1%), alkenes (17.9%), and halo-hydrocarbons (12.5%). The daily trend of the VOC concentration showed a bimodal feature due to the rush-hour traffic in the morning and at nightfall. Based on the VOC concentration, a receptor model of Positive Matrix Factorization (PMF) coupled with the information related to VOC sources was applied to identify the major VOC emissions. The result showed five major VOC sources: solvent use and industrial processes were responsible for about 30% of the ambient VOCs, followed by rubber chemical industrial emissions (23%), refinery and petrochemical industrial emissions (21%), fuel evaporations (13%) and vehicular emissions (13%). The contribution of generalized industrial emissions was about 74% and significantly higher than that made by vehicle exhaust. Using a propylene-equivalent method, alkenes displayed the highest concentration, followed by aromatics and alkanes. Based on a maximum incremental reactivity (MIR) method, the average hourly ozone formation potential (OFP) of VOCs is 220.49?ppbv. The most significant source for ozone chemical formation was identified to be rubber chemical industrial emissions, following one by vehicular emission. The data shown herein may provide useful information to develop effective VOC pollution control strategies in industrialized area.  相似文献   

14.
Uneven distribution of volatile organic compounds (VOCs) and biomass, and excess biomass accumulation in some biofilters hinder the application of biofiltration technology. An innovative multilayer rotating drum biofilter (RDB) was developed to correct these problems. The RDB was operated at an empty bed contact time (EBCT) of 30 s and a rotational rate of 1.0 r/min. Diethyl ether was chosen as the model VOC. Performance of the RDB was evaluated at organic loading rates of 32,1, 64.2, 128, and 256 g ether/(m^3·h) (16.06 g ether/(m^3·h) ≈ 1.0 kg chemical oxygen demand (COD)/(m^3·d)). The EBCT and organic loading rates were recorded on the basis of the medium volume. Results show that the ether removal efficiency decreased with an increased VOC loading rate. Ether removal efficiencies exceeding 99% were achieved without biomass control even at a high VOC loading rate of 128 g ether/(m^3·h). However, when the VOC loading rate was increased to 256 g ether/(m^3·h), the average removal efficiency dropped to 43%. Nutrient limitation possibly contributed to the drop in ether removal efficiency. High biomass accumulation rate was also observed in the medium at the two higher ether loading rates, and removal of the excess biomass in the media was necessary to maintain stable performance. This work showed that the RDB is effective in the removal of diethyl ether from waste gas streams even at high organic loading rates. The results might help establish criteria for designing and operating RDBs.  相似文献   

15.
在pH=9下,镍离子浓度为5562.71mg/L的镍废水经充分沉淀后,以0.5μm孔径陶瓷膜微滤处理,发现浓缩时膜通量(J)先快速降低,经缓慢下降后,再较快降低,镍截留系数(RNi)接近1,当体积浓缩因子(VCF)从1增大到10时,截留液镍浓度(Cr)从5562.71mg/L浓缩至55507.76mg/L,渗透液镍浓度(Cp)为13.26mg/L.以陶瓷膜渗透液为料液,以聚乙烯亚胺为络合剂,考察聚合物与金属质量比(rp/m)、pH值、温度和操作压力对恒容超滤RNi和J的影响,并研究超滤浓缩过程.结果表明,RNi随rp/m或pH增大而增大,随温度升高而略下降,与操作压力无关;J随温度或操作压力增大而增大,随pH增大而增大至不变,rp/m对J影响甚微.超滤浓缩时,控制rp/m=7和pH=9,当VCF从1增大到30时,J仅下降9.76%,Cr从13.26mg/L增大至396.64mg/L,Cp约0.04mg/L,镍离子被浓缩,超滤渗透液可直接排放.  相似文献   

16.
广州番禺大气成分站挥发性有机物的污染特征   总被引:14,自引:0,他引:14       下载免费PDF全文
应用GC/FID在线挥发性有机物(VOCs)检测仪,于2011年6月~2012年5月在中国气象局广州番禺大气成分观测站进行了1a的连续监测,获得了具有高时间分辨率的VOCs组成、含量及其时间变化规律.结果表明:VOCs浓度月变化范围是(40.99~65.400)×10-9,月平均浓度48.10×10-9,冬季VOCs浓度高于夏季.VOCs日浓度变化范围是(35.10~59.13)×10-9.VOCs组分随季节变化所占比例不同,烷烃、烯烃和芳香烃全年平均所占比例分别为58%、16%和26%.采样点在7月份没有周末效应,而在12月份表现出显著周末效应.国庆长假期间的大气VOCs浓度比国庆节放假前、后均有大幅度降低,降幅分别达到39.3%和56.7%.采样点的大气VOCs浓度与风速呈负相关性.当风向为NNE、NE和SSW时,风速较大,VOCs的浓度较低;当风向为WNW和ENE时则相反.由于夏季温度高使溶剂挥发性和植物排放增强,所以导致BTEX(苯、乙苯、甲苯和二甲苯)和异戊二烯的浓度在夏季明显高于冬季.  相似文献   

17.
IntroductionThevolatileorganiccompounds (VOCs)isoneofthefivemajorprimarygasouspollutants(particulates,SOx ,NOx ,VOCs,CO) ,inwhich 31VOCspollutantsincludingbenzene,acroleinandaliphatic ,aromatichalogenatedhydrocarbonsarelistedinall 1 2 9prioritypollutantsbytheEnv…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号