首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this study was to evaluate the suitability of in vitro enzymatic methods for assaying the biodegradability of new starch-based biopolymers. The materials studied included commercial starch-based materials and thermoplastic starch films prepared by extrusion from glycerol and native potato starch, native barley starch, or crosslinked amylomaize starch. Enzymatic hydrolysis was performed using excessBacillus licheniformis -amylase andAspergillus niger glucoamylase at 37°C and 80°C. The degree of degradation was determined by measuring the dissolved carbohydrates and the weight loss of the samples. Biodegradation was also determined by incubating the samples in a compost environment and measuring the weight loss after composting. The results indicated that the enzymatic method is a rapid means of obtaining preliminary information about the biodegradability of starch-based materials. Other methods are needed to investigate more accurately the extent of biodegradability, especially in the case of complex materials in which starch is blended with other polymers.  相似文献   

2.
Lightweight Concrete Containing an Alkaline Resistant Starch-Based Aquagel   总被引:1,自引:0,他引:1  
Starch aquagel-based lightweight concrete has properties similar to those of other lightweight concrete products. However, starch aquagels are unstable in the strongly alkaline conditions typical of Portland Cement-based concrete and may interfere with the setting process. The effect of alkali treatments on the physical, mechanical, and functional properties of starch aquagels and aquagels from starch/polymer blends was investigated. Starch was blended at 100–115°C in a twin-screw extruder with five different polymers to determine whether the blends improved alkaline resistance. Polymer blends containing 5%, 15%, and 30% of the polymer hydrated and formed aquagels when equilibrated in water for 24 h. However, equilibrium moisture content was lower for the blends compared to the starch control. Aquagels equilibrated in 0.15 N NaOH swelled, lost compressive strength and had greater than 90% moisture. The blend of starch and 30% PVOH absorbed less moisture and was more resistant to alkaline dissolution in 1 N NaOH than the other blends tested making it a more suitable material for aquagel-based concrete. The moisture content of starch-based aquagels and mixing time were critical factors in determining setting times. The size of aquagel blends had a minor effect on density and compressive strength.  相似文献   

3.
The effects of starch structures, in particular amylose content, on grafting reactions were investigated using thermal gravimetric analysis (TGA), nuclear magnetic resonance, X-ray diffraction (XRD). As a model system, corn starches with different amylose contents (0, 26, 50 and 80 %) were grafted onto acrylamide to produce superabsorbent polymers (SAPs). The weight loss measured by TGA at different temperature was used to analyze the grafting ratio in quantity. In general, the grafting ratio increased (about 10 %) with increasing starch amylose content, and graft chain segment lengths were much lower for the amylopectin-rich (waxy) starch. The high molecular weight and branched structure of the amylopectin reduced the mobility of the polymer chains and increased viscosity, which resulted in resistance to chain growth. The water absorption capability was increased with increasing amylose content for the starch-based SAPs. XRD detection showed that the crystalline structure of all starches was destroyed after grafting reactions. The thermal stability of the polyacrylamide grafted onto the starches increased by about 10 °C, which could be explained by the strong bonding between the grafted polymer chains and the starch matrices.  相似文献   

4.
Journal of Polymers and the Environment - Green methods of modification, such as ozone, can bring new functionalities to starch. In this study, starch-based plastics were produced by extrusion,...  相似文献   

5.
Compostable plastic materials, produced from polylactic acid (PLA), corn starch, or sugarcane, degraded in a green yard-waste compost environment. The compostable plastics claim to meet ASTM D6400 standards for biodegradation, sustainable plant growth, and eco-toxicity. Biodegradation was measured by disintegration studies over 20 weeks. The commercially available compostable products, made from PLA, sugarcane, or corn starch, biodegraded while in a commercial compost facility with other common yard waste compostable items. The PLA container, cup, and knife completely degraded in 7 weeks at a rate similar to the Avicell micro-cellulose control. The corn starch-based trash bag and sugarcane plate degraded at a similar rate as the Kraft paper control. The three materials degraded between 80% and 90% after 20 weeks.  相似文献   

6.
Tartaric acid modified starch microparticles (TA-SM) previously obtained using the dry preparation technique were introduced as filler within glycerol plasticized-corn starch (GCS), the composites being prepared by casting process. The effects of cellulose addition within the TA-SM-GCS matrix on the structure, surface properties and water sorption, as well as mechanical and thermal properties of starch-based composite films were investigated. The water resistance and thermal stability were slightly improved through addition of high content of cellulose due to the inter-component H-bonding between components. The evaluation of mechanical properties evidenced a significant increase of the tensile strength of the composites with increasing the content level of cellulose.  相似文献   

7.
In order to verify the response of the controlled composting test method (i.e., the ISO/DIS 14855:1997, the ASTM D 5338-92, or the CEN counterpart) to starch at different concentrations, the maximum amount prescribed by the test method (100 g) and lower amounts (60 and 30 g), as if starch were a coingredient in a blend, were tested. After 44 days of incubation (at a constant temperature of 58°C) the biodegradation curves were in a plateau phase, displaying the following final values (referred to a nominal starch initial amount of 100 g): starch 100 g, 97.5%; starch 60 g, 63.7%; and starch 30 g, 32.5%. The data show a CO2 evolution roughly equal, in each case, to the theoretical maximum, indicating a complete starch mineralization. We cannot discern whether the deviations found at lower concentrations are caused by a priming effect. In any case, the extent of the deviations is not high and is acceptable in biodegradation studies. The average biodegradation of cellulose, obtained gathering four independent experiments with 11 biodegradation curves, turned out to be 96.8 ± 6.7% (SD) after 47 ± 1 days. The data indicate that the controlled composting is a reliable test method also for starch and cellulose and, consequently, for starch-based and cellulose-based materials.  相似文献   

8.

Hydrogels are a kind of three dimensional polymeric network system which has a significant amount of water imbibing capacity despite being soluble in it. Because of the potential applications of hydrogels in different fields such as biomedical, pharmaceutical, personal care products, biosensors, and cosmetics, it has become a very popular area of research in recent decades. Hydrogels, prepared from synthetic polymers and petrochemicals are not ecofriendly. For preparing biodegradable hydrogels, most available plant polysaccharides like starch are utilized. In its structure, starch has a large number of hydroxyl groups that aid in hydrogel networking. For their easy availability and applications, starch-based hydrogels (SHs) have gained huge attention. Moreover, SHs are non-toxic, biocompatible, and cheap. For these reasons, SHs can be an alternative to synthetic hydrogels. The main focus of this review is to provide a comprehensive summary of the structure and characteristics of starch, preparation, and characterization of SHs. This review also addresses several potential multidimensional applications of SHs and shows some future aspects in accordance.

Graphic abstract
  相似文献   

9.
The insulative character of expanded polystyrene loose-fill packing material supports the immobile triboelectric charge on its surface, causing static cling. One beneficial property of starch-based loose-fill is its antistatic behavior, which prevents the buildup of electrostatic charges on the foam surface, resulting in no static cling. This investigation explores the electrical resistance characteristics of plasticized starch materials such as commercial loose-fill. Electrical resistance standards used in this study to measure surface resistance and static decay properties are ASTM D 257-78, EOS/ESD S-11, and EIA 541. Following these established testing protocols, the electrical resistance of starch-based and expanded polystyrene loose-fill is quantified. Surface resistivity, measured at 12% RH, of starch-based loose-fill products is less than 1.0×1012 per square characteristic of inherently static dissipative materials.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may be suitable.Presented at the 1995 International Chemical Congress of Pacific Basin Societies, Symposium onEnvironmental Polymer Biodegradation, December 17–22, 1995, Honolulu, Hawaii, USA.  相似文献   

10.
The biodegradation of polyethylene-chitin (PE-chitin) and polyethylene-chitosan (PE-chitosan) films, containing 10% by weight chitin or chitosan, by pure microbial cultures and in a soil environment was studied. Three soil-inhabited organsims,Serratia marcescens, Pseudomonas aeruginosa, andBeauveria bassiana were able to utilize chitin and chitosan in prepared PE-chitin and PE-chitosan films after eight weeks of incubation at 25°C in a basal medium containing no source of carbon or nitrogen. In a soil environment, the biodegradation of those films was studied and compared with a commercial biodegradable film containing 6% by the weight of corn starch. In soil placed in the lab, 73.4% of the chitosan and 84.7% of the chitin in the films were degraded, while 46.5% of the starch in the commercial film was degraded after six months of incubation. In an open field, 100% of the chitin and 100% of the chitosan in the films were degraded, but only 85% of the starch in the commercial film was degraded after six months of incubation. The weight of controls, (polyethylene films), remained mainly stable during the incubation period. Both PE-chitin and PE-chitosan films degraded at a higher rate than the commercial starch-based film in a soil environment indicating the potential use of chitin-based films for the manufacturing of biodegradable packaging materials.  相似文献   

11.

Pollution and destruction of the environment due to the accumulation of non-degradable plastics are some of the most important concerns in the world. A significant amount of this waste is related to the polymers used in food packaging. Therefore, experts in the food industry have been looking for suitable biodegradable alternatives to synthetic polymers. Preparing biocompatible and biodegradable films based on starch is a good choice. In this study, various factors affecting films of starch/polyvinyl alcohol (PVA)/containing ZnO nanoparticles such as the amount of starch, PVA, glycerol, and ZnO were evaluated by response surface methodology (RSM). Film formation by solvent casting method, mechanical properties, swelling, solubility, and water vapor permeability (WVP) were selected as responses of RSM. The results showed that hydrogen bonding interactions between polyvinyl alcohol and starch improved the film formation. The effect of glycerol and PVA content on the mechanical strength was contrary to each other. As the amount of PVA increased, the tensile strength first decreased and then increased. The value of WVP was for all Runs from 0 to 6.77?×?10??8 g m??1 s??1 Pa??1. Finally, films with high film formation, maximum tensile strength, and high elongation at break, minimum solubility, permeability, and swelling were optimized.

  相似文献   

12.
The effect of multiple injection-moulding reprocessing of three biodegradable matrices on their mechanical properties, melt flow rate, molecular weight, phase transition temperatures and degradation temperature is presented. It has been found that, with successive reprocessing, tensile, flexural and impact strength decreased. Drop in mechanical properties has been assigned to degradation of the matrices, as corroborated by melt flow and molecular weight analysis. Although reprocessing did not significantly affect the glass transition, it diminished the melting point and degradation temperature of polymers. Results indicate that neat PLLA can be recycled for up to five times without suffering a drastic loss in mechanical and thermal properties. The aliphatic polyester Mater-Bi TF01U/095R can be recycled for up to 10 times, whilst starch-based Mater-Bi YI014U/C wastes should be destined to composting, since its recyclability is very poor. The effect of reprocessing on composites reinforced with chemithermomechanical pulp (CTMP) followed the tendencies observed for the neat matrices. Whilst CTMP-fibres behave mainly as filler in PLLA composites, reinforced thermoplastic starch-based composites presented enhanced mechanical properties and recyclability.  相似文献   

13.
The current study was undertaken to address the general question of whether there is an environmental advantage for renewable, starch?Cpolyvinyl alcohol (PVOH) biopolymer blends over petrochemical polymers. This was addressed using life cycle assessment (LCA) over a set of multiple case studies based on a consistent set of parameters and methodological background. A group of starch?CPVOH blended biopolymers derived from different feedstocks (wheat, potato, maize) were compared with high density polyethylene (HDPE), low density polyethylene (LDPE) and expanded polystyrene (EPS) in a range of applications. The results suggest that a general environmental advantage does not exist for the starch?CPVOH blended biopolymers over their petrochemical counterparts in all applications and, instead, a case-by-case approach is necessary to evaluate environmental pros and cons, based on specific comparisons. Overall, starch?CPVOH biopolymers were found to offer environmentally superior options to LDPE in thermal packaging applications. However, this was not the case in other applications, where the outcome of comparisons between starch?CPVOH biopolymers and HDPE/EPS varied according to various factors, including the specific end-of-life scenarios and the recycled content of the petrochemical polymers. A hierarchy of critical parameters for LCA-based decision-making concerning starch?CPVOH biopolymers is suggested as a general outcome of this research.  相似文献   

14.
Polyvinyl alcohol (PVA) and starch are both biodegradable polymers. These two polymers can be prepared as biodegradable plastics that are emerging as one of the environmental friendly materials available now. In this study, after reacting with sodium trimetaphosphate (STMP), modified corn starch was blended with PVA in different ratios by a barbender. Test samples were prepared for mechanical and thermal properties measurements. The surface roughness and morphology of fractured surface of the samples were observed by an atomic force microscopy (AFM) and scanning electron microscope (SEM) measurements. Aqueous degradation by enzyme, water absorption and biodegradability behavior were evaluated for the degradability. The biodegradability of these materials was followed by bio-reactivity kinetics models. Results showed that the addition of modified starch could enhance its water uptake. With an addition of 20 wt% of modified starch, the blend had a maximum weight loss during enzymatic degradation. It was found that the degradability was enhanced with the addition of the starch. Analyzing the results of the biodegradability based on the kinetic models, the growth rate of the microorganism was found to be increasing with the increase of the content of starch in the PVA/starch blends in the first order reaction fashion. In our biodegradability analysis, i.e., based on the China national standards (CNS) 14432 regulations, we estimated the decomposition behavior based on the mentioned first order reaction. We found that the PVA/starch blends would take 32.47, 16.20 and 12.47 years to degrade by 70% as their starch content 0, 20 and 40 wt%, respectively.  相似文献   

15.
Firstly, foam trays were produced from glyoxal cross-linked wheat, potato and corn starches and their mixtures. The most suitable starch type for starch-based foam tray production was selected according to the level of water absorption, density, surface and cross-section micrographs of the foam trays. It was decided that a wheat and potato starch blend was the most suitable starch source for producing the foam trays because they have the lowest water absorption percentage (25.5 ± 0.7%), low density (0.17 ± 0.01 g/cm3) and a smooth surface. Potato–wheat starch foam trays with fibres were produced by adding wheat and wood fibres. Unlike wood fibres addition, wheat fibres significantly decreased the percentage of water absorption (16.63 ± 1.2%) and density (0.115 ± 0.013 g/cm3) of the tray. Also, the trays including wheat fibre had a lighter colour than the wheat–potato starch tray. To further reduce water absorption of the tray, the trays were made by adding two different types of lipids (beeswax or shortening and three different types of filler materials—kaolin, montmorillonite or zinc oxide nanoparticles). According to the level of water absorption of the trays, it was decided that shortening and zinc oxide nanoparticles, in addition to kaolin, were respectively the most suitable lipid and filler materials. The foam trays were produced by adding these supplementary materials. The addition of shortening slightly, zinc oxide nanoparticles moderately and kaolin greatly increased the density of the wheat potato starch tray including fibre. However, the percent of water absorption of the trays containing wheat fibre + shortening or wheat fibre + shortening + zinc oxide nanoparticles decreased 6.4 ± 0.01 and 5.9 ± 0.3%, respectively.  相似文献   

16.
Eleven microorganisms were isolated from several temperate marine locations in the northeast Altantic coast of the United States and one tropical location in the Pacific Ocean (Hawaii) for the purpose of developing a rapid and accurate method of screening biodegradable materials for their susceptibility to mineralization. The materials evaluated in this study included chemically modified starch, amylose and pullulan, poly(3-hydroxybutyrate-co-valerate), (PHB/V), cellulose acetate, and a modified lignin/styrene. Some of the soluble, unmodified, biologically produced substrates such as starch, pullulan, and amylose mineralized rapidly. In general, the synthetic, insoluble polymers and the chemically modified polymers, such as acetylated and chlorinated amylose and pullulan, mineralized more slowly, although the ultimate mineralization of some of the substituted polysaccharides equaled or exceeded that of the unmodified substrate. The insoluble bacterial polyester, PHB/V, degraded rapidly after a short induction period. Initial respiration rate data, in general, could not be used as a predictor of ultimate mineralization. It was found that the cumulative level of carbon dioxide evolved signifies the minimum extent of biodegradation of the substrate, and the oxygen consumed is a good indicator of the maximum extent of substrate degradation.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.  相似文献   

17.
Two bio-based polymers, cellulose diacetate (CDA) and starch, were used to prepare blends with reasonable properties and low cost. Due to the poor processing properties, starch was modified in the presence of glycerol and epoxidized soybean oil (ESO), and CDA was plasticized by triacetin (TA) and ESO, respectively. The morphologies of the blends with different amounts of modified starch (MST) were studied by scanning electron microscope (SEM), and the physical properties of the blends, including thermal stability, mechanical property, water and moisture resistance, were investigated. The equilibrium moisture absorption rates of the blends containing 30 and 50 wt% MST at 100 % of relative humidity(RH) were 9.4 and 15.0 %, respectively. SEM and DMA results demonstrated that CDA and MST had a certain extent of compatibility. Due to the partial plasticization of starch, the tensile strength of the blends was nearly not affected by the amount of MST. Even if 50 wt% MST was added, the tensile strength of the blend was as high as 24.7 MPa. The obtained blend containing 30 wt% MST can keep good mechanical properties at 50 % RH, and its tensile strength and elongation at break are 30.2 MPa and 3.6 %, respectively. All the results show that the CDA/MST blends have a potential as an environmental friendly material.  相似文献   

18.
Development of biodegradable polymers from absolute environmental friendly materials has attracted increasing research interest due to public awareness of waste disposal problems caused by low degradable conventional plastics. In this study, the potential of incorporating natural rubber latex (NRL) into chemically modified sago starch for the making biodegradable polymer blends was assessed. Native sago starch was acetylated and hydroxypropylated before gelatinization in preparing starch thermoplastic using glycerol. They were than casted with NRL into biopolymer films according to the ratios of 100.00/0.00, 99.75/1.25, 98.50/2.50, 95.00/5.00, 90.00/10.00 and 80.00/20.00 wt/wt, via solution spreading technique. Water absorption, thermal, mechanical, morphological and biodegradable properties of the product films were evaluated by differential scanning calorimetry (DSC), universal testing machine (UTM), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy. Results showed that acetylation promoted the incorporating behavior of NRL in sago starch by demonstrating a good adhesion characteristic and giving a uniform, homogenous micro-structured surface under SEM observation. However, the thin biopolymer films did not exhibit any remarkable trend in their DSC thermal profile and UTM mechanical properties. The occurrence of NRL suppressed water adsorption capacity and delayed the biodegradability of the biopolymer films in the natural environment. Despite the depletion in water adsorption capacity, all of the product films degraded 50 % within 12 weeks. This study concluded that biopolymers with desirable properties could be formulated by choosing an appropriate casting ratio of the sago starch to NRL with suitable chemical substitution modes.  相似文献   

19.
The biodegradability of oxidized starch and inulin has been studied in relation to the degree of periodate oxidation to dialdehyde derivatives, by measuring oxygen consumption and mineralization to carbon dioxide. A higher degree of oxidation of dialdehyde starch and dialdchyde inulin results in a lower rate at which the polymers are biodegraded. It is demonstrated that the biodegradation rate of dialdehyde inulin derivatives decreases more than that of equivalent starch derivatives. The differences in biodegradation behavior between dialdehyde starch and dialdehyde inulin, resulting from comparable modifications, are discussed in terms of conformational structure.  相似文献   

20.
Blending starches with polymers such as poly-ε-caprolactone (PCL) has been used as a route to biodegradable plastics. The addition of starch has a significant effect on all physical properties including toughness, elongation at break. On blending cellulose acetate butyrate (CAB) with starch and PCL, improvements in most physical and mechanical properties were observed. This is may be due to CAB acts as a compatibilizer between PCL and starch due to the presence of both hydroxyl groups (in starch and CAB) and ester carbonyls (in PCL and CAB). The presence of different compounds affects the way in which other components degrade. For example the structure of CAB within a starch and PCL combination might make the degradation rate different to that when starch was only mixed with PCL. To check whether this was the case, three combinations of different blends were used to calculate the rate of degradation of each of them separately. These degradation rate constants were then used to predict the theoretical degradation which was checked against the experimental value for other different combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号