首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted poly(hydroxyalkanoate) (PHA-g-AA) and rice husk (RH) were evaluated. Composites containing PHA-g-AA (PHA-g-AA/RH) exhibited noticeably superior mechanical properties compared with those of PHA/RH because of greater compatibility with RH. The dispersion of RH in the PHA-g-AA matrix was homogeneous because of ester formation and the consequent creation of branched and crosslinked macromolecules, between the carboxyl groups of PHA-g-AA and hydroxyl groups in RH. The water resistance of PHA-g-AA/RH was higher than that of PHA/RH, although the weight loss of composites buried in soil compost indicated that both were biodegradable, especially at high levels of RH substitution. After 60 days, the weight loss of the PHA-g-AA/RH (40 wt%) composite was greater than 90 %. PHA/RH exhibited a weight loss of approximately 4–8 wt% more than PHA-g-AA/RH. The PHA/RH and PHA-g-AA/RH composites were more biodegradable than pure PHA, which implies a strong connection between RH content and biodegradability.  相似文献   

2.
The biodegradability, morphology, and mechanical properties of composite materials consisting of maleic anhydride-grafted poly(butylene succinate adipate) (PBSA-g-MA) and agricultural residues (wheat bran, WB) were evaluated. Composites containing maleic anhydride-grafted PBSA (PBSA-g-MA/WB) exhibited noticeably superior mechanical properties compared with those of PBSA/WB because of greater compatibility with WB. PBSA/WB exhibited a tensile strength at break of approximately 2–15 MPa more than PBSA-g-MA/WB. The dispersion of WB in the PBSA-g-MA matrix was highly homogeneous as a result of ester formation and the subsequent creation of branched and cross-linked macromolecules between the anhydride carboxyl groups of PBSA-g-MA and hydroxyl groups in WB. Additionally, the PBSA-g-MA/WB composites were more easily processed due to their lower melt viscosity. Water resistance of PBSA-g-MA/WB was higher than that of PBSA/WB, although weight loss of composites buried in Azospirillum brasilense BCRC 12270 liquid culture medium compost indicated that both were biodegradable, especially at high levels of WB substitution. After 60 days, the weight loss of the PBSA-g-MA/WB (40 wt%) composite was greater than 90 %. PBSA/WB exhibited a weight loss of approximately 4–8 wt% more than PBSA-g-MA/WB. The PBSA/WB and PBSA-g-MA/WB composites were more biodegradable than pure PBSA, which implies a strong connection between WB content and biodegradability.  相似文献   

3.
The structural, thermal, mechanical, and biodegradable properties of composite materials made from polylactide (PLA) and agricultural residues (arrowroot (Maranta arundinacea) fibre, AF) were evaluated. Melt blended glycidyl methacrylate-grafted polylactide (PLA-g-GMA) and coupling agent-treated arrowroot fibre (TAF) formed the PLA-g-GMA/TAF composite, which had better properties than the PLA/AF composite. The water resistance of the PLA-g-GMA/TAF composite was greater than that of the PLA/AF composite; the release of PLA in water from the PLA/AF and PLA-g-GMA/TAF composites indicated good biological activity. The PLA-g-GMA/TAF material had better mechanical properties than PLA/AF. This behaviour was attributed to better compatibility between the grafted polymer and TAF. The results indicated that the Tg of PLA was increased by the addition of fibre, which may have improved the heat resistance of PLA. Furthermore, the mass losses following burial in soil compost indicated that both materials were biodegradable, especially at high levels of AF or TAF substitution.  相似文献   

4.
Cellulose Fiber/Bentonite Clay/Biodegradable Thermoplastic Composites   总被引:1,自引:0,他引:1  
Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but fiber must be well dispersed to achieve any benefit. The approach to dispersing fiber in this study was to use aqueous gels of sodium bentonite clay. These clay-fiber gels were combined with powdered compostable thermoplastics and calcium carbonate filler. The composite was dried, twin-screw extruded, and injection molded to make thin parts for tensile testing. An experimental design was used to determine the effect of fiber concentration, fiber length, and clay concentration. Polybutylene adipate/terephthalate copolymer (PBAT) and 70/30 polylactic acid (PLA)/PBAT blend were the biodegradable plastics studied. The composite strength decreased compared to the thermoplastics (13 vs. 19 MPa for PBAT, 27 vs. 38 MPa for the PLA/PBAT blend). The composite elongation to break decreased compared to the thermoplastics (170% vs. 831% for PBAT, 4.9% vs. 8.7% for the PLA/PBAT blend). The modulus increased for the composites compared to the thermoplastic standards (149 vs. 61 MPa for PBAT, 1328 vs. 965 MPa for the PLA/PBAT blend). All composite samples had good water resistance.  相似文献   

5.
The biodegradability of the edible films made of whey proteins by disulfide cross-linking was investigated. Whey protein concentrate (WPC) and whey protein isolate (WPI) films were subjected to microbial degradation using Pseudomonas aeruginosa and composting burial degradation. Results from the microbial degradation showed that whey protein films could support the growth of P. aeruginosa. The bacterial growth characteristics were well described using the Gompertz model. WPC films degraded faster than WPI films, suggesting that the biodegradability of protein films is associated with the film composition and the extent of covalent cross-linking. WPI films buried in a compost pile began to degrade in two days and became darker over time. More than 80% of total solids were lost in 7 days.  相似文献   

6.
The present article summarizes the development of poly(butylene adipate-co-terephthalate) (PBAT) and organically modified layered silicates nanocomposite using a co-rotating twin screw extruder having a blown film unit. Wide angle X-ray diffraction (WAXD) studies indicated an increase in d spacing of the nanoclays in the bio-nanocomposite hybrids revealing formation of intercalated morphology. Transmission Electron Microscopy (TEM) also confirmed presence of partially exfoliated clay galleries as well as layers of intercalated structures within the PBAT matrix in the nanocomposite. Mechanical tests showed that the nanocomposite hybrids prepared using B109 nanoclay exhibited higher tensile modulus. Functionalization of PBAT matrix upon grafting with maleic anhydride (MA) resulted in further improvement in mechanical properties. The existence of interfacial bonds in grafted bio-nanocomposite hybrids are substantiated using FTIR spectroscopy. Thermal properties of nanocomposite hybrids employing DSC, TGA also revealed improved Tg, Tc and thermal stability over the virgin polymer. Dynamic Mechanical Analysis (DMA) indicated an increase of storage modulus (E′) of PBAT biopolymer with incorporation of nanofiller. The biodegradability of PBAT bionanocomposite hybrids showed an increase in the rate of biodegradability with addition of Na+MMT due to hydrophilic nature of the nanoclay.  相似文献   

7.
Biodegradable polymers are one of the most promising ways to replace non-degradable polymers. But, to be a real alternative to classical synthetic polymers and find applications, biopolymer (biodegradable polymer) properties have to be enhanced. Nano-biocomposites, which are obtained by incorporation of nanofillers into a biomatrix, are an interesting way to achieve these improvements. Modified and unmodified montmorillonites have been introduced into a biodegradable aromatic copolyester, poly(butylene adipate-co-terephthalate) (PBAT). Structural characterization, thermal and mechanical tests have been carried out to understand better the relations between the nanofillers structuring and the final nano-biocomposite properties. Main results show that clay incorporation and the obtained intercalated structures improve PBAT properties (enhanced thermal stability, increased stiffness) and thus may increase the attractiveness of this biopolymer.  相似文献   

8.
The primary biodegradability of polyethylene (PE) films containing different percentages of cornstarch (0–50%) and other additives (prooxidant, oxidized polyethylene) was tested using four species of earthworms (Eisenia fetida, Lumbricus terrestris, Aporectodea trapezoides, Aporectodea tuberculata), three species of cockroaches (Periplaneta americana, Blaberus sp.,Blattella germanica), termites (Reticulotermes flavipes), sowbugs (Porcellio laevis), and crickets (Acheta domesticus). These studies were conducted to elucidate the potential role of soil macroinvertebrates in degrading starch/PE biodegradable plastics. The results of the macroinvertebrate bioassays indicate that crickets, cockroaches, and sowbugs consumed starch-containing PE films most readily. In addition, the degree to which the films were attacked and consumed was directly related to the starch content of the film. Films with oxidized polyethylene and those containing prooxidant (vegetable oil and a transition metal catalyst) were also consumed. None of the four species of earthworms tested or the termites showed any activity toward the starch/polyethylene films. These results have important implications for determining the fate of novel plastic formulations which claim to be biodegradable in natural environments. Studies such as these, coupled with studies on microbial degradation, will help provide the type of information needed to assess the environmental fate of biodegradable starch/PE plastics and fill the voids in the scientific database regarding this rapidly developing field.  相似文献   

9.
Poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) are biodegradable polyesters and can be blended by twin-screw extrusion. Epoxy-functional styrene acrylic copolymer (ESA) was used as reactive agent for PLA/PBAT blends and the mechanical properties, phase morphology, thermal properties, melt properties, and melt rheological behaviors of the blends were investigated. During thermal extrusion, ESA was mainly a chain extender for the PLA matrix but had no evident reaction with PBAT. The great improvement in the toughness of PLA based blends was achieved by the addition of PBAT of no less than 15 wt% and that of ESA of no more than 0.5 wt%. Although SEM micrographs and the reduced deviation of the terminal slope of G′ and G″ indicated better compatibility and adhesion between the two phases, the blend with ESA was still a two-phase system as indicated in DSC curves. Rheological results reveal that the addition of ESA increased the storage modulus (G′), loss modulus (G″) and complex viscosity of the blend at nearly all frequencies. The melt strength and melt elasticity of the blend are improved by addition of ESA.  相似文献   

10.
The influence of the blending ratio of biodegradable starch/polyvinyl alcohol (PVA)/glycerol in encapsulating urea has been investigated. It is found that water absorption capacity increased approximately 135 % as the amounts of starch, PVA and glycerol in the composite film increase. Therefore, the swell ability of the composite film is increased and the urea is released from the composite film in the wet environment. The FTIR shows that the urea had been encapsulated successfully in the composite films. Moreover, the soil burial biodegradation results indicated that the biodegradability of the starch/PVA/glycerol/urea composite film strongly depended on the PVA proportion in the composite film matrix. The DSC results show that the higher the amount of PVA in the composite film, the less change of the melting enthalpy value. The crystalline region of PVA remains after biodegradation.  相似文献   

11.
Biodegradable composites can be produced by the combination of biodegradable polymers (BP) as matrix and vegetal fibers as reinforcement. Composites of a commercial biodegradable polymer blend and curauá fibers (loaded at 5, 15 and 20 wt%) were prepared by melt mixing in a twin-screw extruder. Chemical treatments such as alkali treatment of the fiber and addition of maleic anhydride grafted polypropylene (MA-g-PP) as coupling agent were performed to promote polymer/fiber interfacial adhesion so that mechanical performance can be improved. The resulting composites were evaluated through hardness, melt flow index and tensile, flexural and impact strengths as well as water absorption. Thermal analysis and Fourier transform infrared spectroscopy were also employed to characterize the composites. The polymer/fiber interface was investigated through scanning electron microscopy analysis. The biodegradability of composites was evaluated by compost-soil burial test. The addition of curauá fiber promoted an increase in the mechanical strengths and composites treated with 2 wt% MA-g-PP with 20 wt% curauá fiber showed an increase of nearly 75% in tensile and 56% in flexural strengths besides an improvement in impact strength with respect to neat polymer blend. Nevertheless, treated composites showed an increase in water absorption and biodegradation tests showed that the addition of fiber retards degradation time. The retained mass of BP/20 wt% fiber composite with MA-g-PP and neat BP was 68 and 26%, respectively, after 210 days of degradation test.  相似文献   

12.
The aim of this study was to evaluate the suitability of in vitro enzymatic methods for assaying the biodegradability of new starch-based biopolymers. The materials studied included commercial starch-based materials and thermoplastic starch films prepared by extrusion from glycerol and native potato starch, native barley starch, or crosslinked amylomaize starch. Enzymatic hydrolysis was performed using excessBacillus licheniformis -amylase andAspergillus niger glucoamylase at 37°C and 80°C. The degree of degradation was determined by measuring the dissolved carbohydrates and the weight loss of the samples. Biodegradation was also determined by incubating the samples in a compost environment and measuring the weight loss after composting. The results indicated that the enzymatic method is a rapid means of obtaining preliminary information about the biodegradability of starch-based materials. Other methods are needed to investigate more accurately the extent of biodegradability, especially in the case of complex materials in which starch is blended with other polymers.  相似文献   

13.
Soy meal, a co-product of the soy oil-based biodiesel industry, has up to 50 % protein content. The main aim of this work was to develop value-added application for soy meal. Soy meal was plasticized by glycerol and water, denatured by the addition of guanidine hydrochloride (GHCl), and then blended with poly (butylene adipate-co-terephthalate) (PBAT), petroleum based tough biodegradable polymer. Characterization by FTIR spectroscopy confirmed that soy meal was plasticized and denatured. The blends of PBAT/soy meal (SM), PBAT/plasticized soy meal and PBAT/GHCl modified plasticized soy meal (mPSM) were fabricated by industry prevalent extrusion and injection molding process. The developed bioblends were characterized by thermal and mechanical testing. One of the important outcomes of this research was that elongation of the bioblend was found to increase by 80 % after plasticization and denaturation of soy meal. Scanning electron microscope analysis showed that PBAT/mPSM blends have smoother surfaces and better internal structures than the other two.  相似文献   

14.
Novel biodegradable thermoplastic elastomer based on epoxidized natural rubber (ENR) and poly(butylene succinate) (PBS) blend was prepared by a simple blend technique. Influence of blend ratios of ENR and PBS on morphological, mechanical, thermal and biodegradable properties were investigated. In addition, chemical interaction between ENR and PBS molecules was evaluated by means of the rheological properties and infrared spectroscopy. Furthermore, the phase inversion behavior of ENR/PBS blend was predicted by different empirical and semi-empirical models including Utracki, Paul and Barlow, Steinmann and Gergen models. It was found that the co-continuous phase morphology was observed in the blend with ENR/PBS about 58/42 wt% which is in good agreement with the model of Steinmann. This correlates well to morphological and mechanical properties together with degree of crystallinity of PBS in the blends. In addition, the biodegradability was characterized by soil burial test after 1, 3 and 9 months and found that the biodegradable ENR/PBS blends with optimum mechanical and biodegradability were successfully prepared.  相似文献   

15.
Development of biodegradable polymers from absolute environmental friendly materials has attracted increasing research interest due to public awareness of waste disposal problems caused by low degradable conventional plastics. In this study, the potential of incorporating natural rubber latex (NRL) into chemically modified sago starch for the making biodegradable polymer blends was assessed. Native sago starch was acetylated and hydroxypropylated before gelatinization in preparing starch thermoplastic using glycerol. They were than casted with NRL into biopolymer films according to the ratios of 100.00/0.00, 99.75/1.25, 98.50/2.50, 95.00/5.00, 90.00/10.00 and 80.00/20.00 wt/wt, via solution spreading technique. Water absorption, thermal, mechanical, morphological and biodegradable properties of the product films were evaluated by differential scanning calorimetry (DSC), universal testing machine (UTM), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy. Results showed that acetylation promoted the incorporating behavior of NRL in sago starch by demonstrating a good adhesion characteristic and giving a uniform, homogenous micro-structured surface under SEM observation. However, the thin biopolymer films did not exhibit any remarkable trend in their DSC thermal profile and UTM mechanical properties. The occurrence of NRL suppressed water adsorption capacity and delayed the biodegradability of the biopolymer films in the natural environment. Despite the depletion in water adsorption capacity, all of the product films degraded 50 % within 12 weeks. This study concluded that biopolymers with desirable properties could be formulated by choosing an appropriate casting ratio of the sago starch to NRL with suitable chemical substitution modes.  相似文献   

16.
In this study the degradation of polylactic acid (PLA) plastic films in Costa Rican soil and in a leaf composting environment was investigated. Three types of PLA films were used: Ch-I, (PLA monolayer plastic films from Chronopol, Golden, CO), GII (PLA trilayer plastic films from Cargill Dow Polymers LLC, Minnetonka, MN), and Ca-I (PLA monolayer plastic films from Cargill Dow Polymers LLC). The average soil temperature and moisture content in Costa Rica were 27°C and 80%, respectively. The average degradation rate of PLA plastic films in the soil of the banana field was 7675 M w/week. Two compost rows were set up at the Iowa State University (ISU) (Ames) compost site. Temperature and relative humidity of the compost rows were kept at 55 ± 5°C and 50 ± 10% RH, respectively. The degradation rates of GII and Ca-I in the compost rows were 113,290 and 71,283 M w/week, respectively. Therefore, it was estimated that in Costa Rican soil and in compost rows, PLA would be visibly degraded in 6 months and in 3 weeks, respectively.  相似文献   

17.
Journal of Polymers and the Environment - In this work new biodegradable composite materials based on poly(butylene-adipate-co-terephthalate) (PBAT) reinforced with water-soluble calcium-phosphate...  相似文献   

18.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   

19.
To decrease the usage of petroleum based materials, a kind of bio-resource based composite foams were developed with soy protein isolate (SPI) as reactive reinforcing filler in castor oil based polyurethane foams (PUF) prepared by self-rising method using water as a blowing agent. The resulting composite foams were evaluated for their morphology, density, mechanical and biodegradation properties, etc. Fourier transform infrared spectroscopy study exhibited characteristic peaks for SPI and PUF and indicated that the amino groups and hydroxyl groups on SPI reacted with polyphenyl polymethylene polyisocyanates (PAPI) to increase the crosslinking degrees of the composite foams. Densities of the resultant composites were found to increase with increasing SPI content. Mechanical properties of the samples were improved with the increase of SPI content. The compost tests further proved that the composite PUF had better biodegradability than neat PUF. Therefore, this research has provided a simple method of preparing the bio-resource based polyurethane foams, while exploring the potential of using SPI in polyurethane foam applications.  相似文献   

20.
The present work mainly dedicated to fungal degradation of poly(butylene adipate-co-terephthalate) [PBAT], to enclose the role of fungi in a real process of biodegradation, the degree of degradation, and to understand the kinetics of PBAT biodegradation. Respirometer tests were realized in soil at 30 °C, and in compost at 30 and 58 °C. Results have shown that temperature is one of the essential parameters governing the fungal degradation of PBAT. Moreover, the final rates of PBAT biodegradation in an inoculated compost with fungi and in a real compost were found comparable, which means that the selected fungi were efficient as much as a mixture of bacteria and fungi. The curves of PBAT biodegradation were modeled by Hill sigmoid. Fungal degradation was completed by investigating the physical and the chemical properties of the polymer during the process of degradation using several analytical methods such as matrix assisted laser desorption ionization-time of fly spectroscopy, size exclusion chromatography, and differential scanning calorimetry. These experiments led to a better understanding of the various stages of fungal degradation of PBAT: hydrolysis as well as mineralization. Furthermore, the analysis of metabolizing products was investigated also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号